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Abstract

Actuaries model insurance claim amounts using heavy tailed probability distributions.
They routinely need to evaluate quantities related to these distributions such as quantiles
in the far right tail, moments or limited moments. Furthermore, actuaries often resort
to simulation to solve otherwise untractable risk evaluation problems. The paper dis-
cusses our implementation of support functions for the Feller-Pareto distribution for the
R package actuar. The Feller-Pareto defines a large family of heavy tailed distributions
encompassing the transformed beta family and many variants of the Pareto distribution.
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1. Introduction

Actuaries are experts in evaluating the likelihood and financial consequences of future events.
A pivotal part of their work is the modeling of the size and frequency of insurance claims.
With probability models for the claims process in hand, actuaries can compute insurance
premiums, determine the amount a company has to set aside in its reserve to cope with
future events, evaluate the risk the company will not be able to meet its obligations, or run
simulations to compare business strategies or solve otherwise untractable problems.

Needless to say, the probability distribution is the cornerstone of actuarial and statistical
modeling. In this data science golden age, one needs to be able to compute or simulate
various quantities for a large array of probability distributions. Actuarial applications, for
example, require accurate computation of probabilities or quantiles in the far right tail of
distributions; easy computation of raw and limited moments; fast and reliable simulation of
random variates (see, e.g., McNeil, Frey, and Embrechts 2015).

The R statistical system (R Core Team 2022a) provides in its base distribution a number of
functions to compute the probability density function (PDF) or the probability mass function
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(PMF), the cumulative distribution function (CDF) and the quantile function, as well as
functions to generate variates for the most common discrete and continuous distributions of
statistics.

The number of probability distributions implemented in base R has remained remarkably sta-
ble over time. The R Core Team has elected to delegate support for additional distributions
to extension packages developed and maintained by the R community. The Comprehen-
sive R Archive Network (CRAN) at https://CRAN.R-project.org is the central repository
of R packages. In their extensive CRAN Task View on probability distributions, Dutang
and Kiener (2022) list packages that support probability distributions not found in base R
(263 packages as of March 07, 2022).

First released on CRAN in 2005, actuar (Dutang, Goulet, and Pigeon 2008), available at
https://CRAN.R-project.org/package=actuar, provides specialized functions for actuar-
ial applications, but also support functions for a large number of continuous size distributions
useful for loss severity modeling; for phase-type distributions used in computation of ruin
probabilities; for zero-truncated and zero-modified extensions of the discrete distributions
commonly used in loss frequency modeling; for the heavy tailed Poisson-inverse Gaussian
discrete distribution. The package also introduces support functions to compute raw mo-
ments, limited moments and the moment generating function (when it exists) of continuous
distributions. These functions all prove useful in loss modeling and risk evaluation.

We introduce with this paper our latest addition to the range of heavy tailed probability
models supported by actuar: the Feller-Pareto distribution and related Pareto distributions
with a location parameter. To the best our knowledge, the Feller-Pareto distribution has not
yet been extensively used for insurance loss modeling. However, Brazauskas (2002) proposes
its use to model the size of insurance claims and Cummins, Dionne, McDonald, and Pritchett
(1990) relies on a special case to estimate the tail distribution and reinsurance premiums for
fire claims.

The paper is organized as follows. For the reader not familiar with the Feller-Pareto family
of distributions, we first summarize how it extends the transformed beta family in Section 2.
Next, we discuss the theoretical and numerical challenges faced during the numerical imple-
mentation in Section 3. In particular in Section 3.2, we also compare various algorithms to
generate random variates from the Feller-Pareto and related distributions. In Section 4, we
provide a small case study based on real world data. The workhorses behind the R sup-
port functions are implemented in C for unrivaled speed and efficiency. We close the paper
by briefly explaining how R package developers can now take advantage of these routines
through actuar’s new package API in Section 5.

For the purpose of this paper, a heavy tailed distribution is a positive distribution without a
finite moment generating function. Other definitions exist, such as the domain of attraction
in extreme value theory (Embrechts, Klippelberg, and Mikosch 1997).

2. Feller-Pareto distribution

The Pareto distribution is a well known probability distribution originally used by economists
to model income in a society. Due to its heavy tail, the distribution also plays an important
role in actuarial science to model loss cost, notably in reinsurance. In recent years, many
authors proposed increasingly flexible variants of the Pareto that eventually led to the distri-
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bution now generally known as the Feller-Pareto; see Arnold (2015); Kleiber and Kotz (2003)
for exhaustive surveys.

2.1. Definition

Arnold (2015) proposes the Feller-Pareto distribution as the distribution of the random vari-

able

U\ YV
X=#+9<V> , 71,0>0,ueR, (1)

where U and V are two independent gamma distributions with shape parameter 7 > 0 and
a > 0, respectively, and common scale parameter 1. In the sequel, we denote U ~ G(7,1),
V ~G(a,1) and X ~ FP(u,a,,T,0).

One will note the presence of the location parameter . In actuarial applications, this proves
useful for the modeling of claim amounts above a certain threshold such as, for example, for
reinsurance contracts stipulating that the reinsurance company is responsible for the total
amount of losses above a certain limit.

It is well known that the distribution of the ratio U/V in (1) is a beta distribution of the
second kind (see Johnson, Kotz, and Balakrishnan 1994a). Therefore, the CDF of X is given
in terms of the (incomplete) beta function by

T, 05U AN
Fa) = I(ras) = 2000 um Uy = (FE) L ez )

where I(a,b;z) is the (regularized) incomplete beta function — or incomplete beta ratio —
representing the CDF of the beta distribution (henceforth denoted B(a,b)). We define
X
Bla,b;x) = /ta_l(l ) ldt, a>0,6>00<z<1,
0

as the incomplete beta function, and

B(a,b) = /1 =11 — b1 g — LWL
0

as the beta function (Abramowitz and Stegun 1972).
The PDF corresponding to the CDF F(z) above is

() VL)
0B(a, T)[L+ ((x — p)/0)]*+7
We can rewrite this equation as follows:
_oyu(d —w)® _ Y _ (m—u)” -
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which highlights a link between the Feller-Pareto distribution and the beta (of the first kind).
Indeed, it is also well known that if U ~ G(7,1), V ~ G(a, 1) and U and V are independent,
then B=V/(V 4+ U) ~ B(a, 7). We can rewrite (1) as

f(x) x> p. (3)

X =p+ 6B —1)', (4)
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thereby defining the Feller-Pareto as a transformation of a beta distribution. It is actually
under this form that Feller (1968) and Johnson, Kotz, and Balakrishnan (1994b); Johnson
et al. (1994a) introduce the Feller-Pareto.

One final remark that will prove useful in the sequel. Another well known result about beta
distributions is that if B has a B(c, 7) distribution, then the reflected variable B = 1 — B has
a B(t, «) distribution. Therefore, by a simple manipulation of (4), we can equivalently define
the Feller-Pareto as the distribution of the random variable

X=p+6(B =17/, (5)

where B ~ B(1, a).

2.2. Moments

The computation of moments plays a central role in actuarial applications. The first raw
moment — or expected value — is tightly linked to the concept of insurance premium, whereas
the second central moment — or variance — measures the risk associated with this premium.

A general formula for the (raw) moment of order k
m =E {X k} ,

is easy to derive for the Feller-Pareto distribution with g = 0 using definition (1) as a ratio
of independent gamma distributions. Indeed, in that case,

my = E [e’“ (g)m] =o€ [v—h e [umi].

As Arnold (2015) and Klugman, Panjer, and Willmot (2019) show, we readily obtain

_ OFT (1 + k/y)T (o — k/7)
['(a)I'(7) ’

my -1y <k < oy. (6)

For the more general case u # 0, one derives the moment of order k using the binomial

expansion |
o)) =S (e ()]

The resulting general equation for the raw moment of order k& of the Feller-Pareto is:

- (F\ MO+ /)T — /)
me= 32 ()

E

(7)
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Note, however, that due to constraints on the validity of the binomial expansion, the above
result is only valid for nonnegative integral values of k < ay (Arnold 2015).

2.3. Limited moments

Limited moments play an important role in actuarial science, especially the limited expected
value as the (pure) premium for an insurance contract subject to a maximal insurable loss as
is common in homeowners insurance (Klugman et al. 2019, Chapter 3).
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Let a Ab = min(a, b) denote the minimum of @ and b. We define the limited moment of order
k of a random variable X as

E {(X A x)k} =E {min(X,x)k} .

The limited expected value is the special case with k = 1.

Like raw moments, the limited moments of the Feller-Pareto are simpler to derive in the case
@ = 0. Klugman et al. (2019, p. 463) already provide

E[(xX A o] = O*T (1 + k/y)T (o — k/7)

(o) T () I(T+ /v, —j/v;u) ()

+at (1 I(7, a5 u)),
for > 0, k > —717, and with, as in Section 2.1, v = y/(1 + y) and y = ((x — p)/0)7. (We
will further discuss in Section 3.4 how I'(a)I'(b)I(a, b; z) may also be valid for b < 0.)

Using again binomial expansion, we can similarly generalize the above formula for the limited
moment of order k when p # 0:

k k—ipni . .
AR e AV N Gl ViDL Gl Via) B P A
E (X na)'] _jzo<j> ()T (7) I(1 + /v, 00— j/v;u) ©

—i—:pk(l — I(7, ;5 u)),

for x > p and, this time, nonnegative integral values of k.

2.4. Generation of random variates

The definitions of Section 2.1 provide us with three straightforward algorithms to generate
random variates from the Feller-Pareto distribution.

The first algorithm relies on definition (1) of the Feller-Pareto as a ratio of Gamma random
variables.

Algorithm 1. Simulate variates from a FP(u,«,7,7,6) with PDF (3), u € R and «, 7,7,
0> 0.

1. Generate u from a G(7,1).
2. Generate v from a G(a, 1).

3. Return g + (u/v)'/7.

The second and third algorithms are very similar in that they both use transformations of a
beta of the first kind, one using definition (4), the other using definition (5). We introduce
the third algorithm here since it was actually the one used in actuar — with 4 = 0 — to
simulate variates from the transformed beta distribution.

Algorithm 2. Simulate variates from a FP(u,«,7,7,6) with PDF (3), u € R and «, 7,7,
0> 0.

1. Generate x from a B(a, 7).
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2. Return g+ 0(1/z — 1)Y/7.

Algorithm 3. Simulate variates from a FP(u,«,7,7,6) with PDF (3), u € R and «, 7,7,
0> 0.

1. Generate = from a B(7, a).

2. Return p + 6(1/z — 1)1/,

2.5. Historical remarks

The later part of the twentieth century saw a lot of simultaneous independent work on prob-
ability distributions to model income and loss cost. On the one side, economists proposed
distributions to model income — such as the Singh-Maddala or Dagum distributions — until
McDonald (1984) introduced a four-parameter generalized beta of the second kind distribution

with PDF

axap—l

~ vPB(p, ) (1+ (/b))
This is exactly a Feller-Pareto with 4t =0,b=60,b =", p=7 and ¢ = a. See Atkinson and

Bourguignon (2015) for a thorough discussion of income distributions and Cummins et al.
(1990, Table 2) for the interpretation as a mixture.

f(x)

a,b,p,g >0, xz>0. (10)

On the other side, as reported by Kleiber and Kotz (2003), actuaries also proposed various
distributions to model insurance loss cost — such as the Fisk or Lomax distributions —
until Venter (1983) proposed a distribution with a PDF identical to (10) and called it the
transformed beta distribution.

2.6. Special cases

One will find many variants of the Pareto distribution in the literature, most of which can be
considered special cases of the Feller-Pareto. We review some of them below. For the reader
interested to know more, we highly recommend the extensive work of Arnold (2015) on the
Pareto family of distributions.

As a first case of the Feller-Pareto distribution, let us consider the aptly named Pareto I, or
Single Parameter Pareto (Klugman et al. 2019). We obtain this distribution by setting the
location parameter i equal to the scale parameter 8, and by setting the shape parameters ~
and 7 equal to 1. The resulting CDF is

Flz)=1— ma r> 0. (11)

Even though this distribution appears to have two parameters, its name stems from the fact

that only « is an actual parameter for estimation purposes, # being a known threshold.

Next, the Pareto II distribution is obtained by setting v = 7 = 1 in the Feller-Pareto. The

CDF is then

T—p
0

When i = 0, we obtain what is generally simply called the Pareto distribution.

F(;v)zl—[l—i— ya, > p. (12)
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Then we have the Pareto III distribution, for which we can find many different definitions
in the literature. The definition of Arnold (2015) is in line with the Pareto II, but with a
different shape parameter. The CDF is

F(x):1{1+(x;“>ql, x> p, (13)

which is a Feller-Pareto with shape parameters a = 7 = 1. Johnson et al. (1994b,a), on the
other hand, use the original definition of Pareto himself

Ce b=
F(x)=1- @ e

However, as explained in Kleiber and Kotz (2003), parameter estimation is hard with this
definition of the Pareto III. For this reason, we will keep the above Arnold (2015) definition.

Finally, the Pareto IV is a Feller-Pareto where only the shape parameter 7 is set equal to 1.
The CDF is

F(x):1—[1+<m;“ﬂ_a, z> . (14)

The Feller-Pareto generalizes other common continuous extreme value distributions found in
Appendix A of Klugman et al. (2019): the case u = 0 is the transformed beta distribution, as
mentioned above; the case p = 0, 7 = 1 is the Burr distribution type 12; the case p =0, 7 =1,
a =1 is the loglogistic distribution; the case y = 0, « = 1 is the inverse Burr or Burr type 3
distribution. Figure 1 shows the relationships between the Feller-Pareto and the distributions
of the transformed beta family of Klugman et al. (2019). One may connect the diagram
of Figure 1 to the impressive diagram of relationships between univariate distributions of
Leemis and McQueston (2008), starting with the Pareto or generalized Pareto distributions.
(Cummins et al. 1990) also propose a diagram for the relationships between the members of
generalized beta of the second kind family.

2.7. R implementation

As already mentioned in the introduction of this paper, R includes functions to compute the
PDF, the CDF and the quantile function of standard probability laws, as well as functions to
generate variates from these laws. For some root foo (e.g., pois for the Poisson distribution
or gamma for the gamma distribution), the support functions are named dfoo, pfoo, qfoo and
rfoo, respectively.

Since version 0.9-4, released in 2007, the actuar package provides d, p, q and r functions for all
the probability laws useful for loss severity modeling found in Appendix A of Klugman et al.
(2019) and not already present in base R, excluding the log-t but including the Loggamma
distribution of Hogg and Klugman (1984). Version 2.0-0 of the package also added support for
the Inverse Gaussian distribution. The package vignette “distributions” keeps the up-to-date
list of supported distributions and root names of the R functions.

In addition to the d, p, q and r functions, actuar provides m, lev and mgf functions to compute,
respectively, theoretical raw moments my, theoretical limited moments E [(X A x)k} and the

moment generating function
Mx(t) = E "],
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Figure 1: Interrelations between distributions of the Feller-Pareto and transformed beta fam-
ilies. This diagram is an extension of Figure 5.2 of Klugman et al. (2019).

Parameter Argument

min
shapel
shape2
shape3
=1/0 rate
scale

> 2 Q0T

Table 1: Correspondence between the parameters of the Feller-Pareto distribution and the
arguments of the fpareto family of R functions.

when the latter exists. The moment generating function of the Feller-Pareto distribution does
not exist since the density (3) does not decrease at an exponential rate.

With version 3.0-0, released alongside this paper, actuar adds support for the Feller-Pareto,
Pareto IV, Pareto III and Pareto II distributions. The Pareto I and the standard Pareto
distribution without a location parameter were already supported by actuar. The root of the
support functions are, respectively, fpareto, pareto4, pareto3 and pareto2. Therefore, for
the Feller-Pareto, the package now provides the functions dfpareto, pfpareto, qfpareto,
rfpareto, mfpareto and levfpareto. Table 1 shows the correspondence between the pa-
rameters of the Feller-Pareto as defined in Section 2.1 and the arguments of the R functions.

In the sequel, we only discuss the implementation of the Feller-Pareto functions since the
Pareto IV, III and II functions are merely special cases.
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3. Computational challenges

This section discusses numerical and performance issues we encountered while implementing
in R some of the functions of the fpareto family.

3.1. Cumulative distribution function

We first look at the implementation of pfpareto to compute the CDF (2) of the Feller-Pareto
distributions. This requires to evaluate the incomplete beta ratio I(a,b;z). Since this is just
the CDF of the beta distribution, we have at our disposal the function pbeta in base R to
carry the computation efficiently.

Actually, it proves not so simple. In our accuracy tests, we observed that when y = [(x—pu)/60]7
gets “large”, then u = y/(1 + y) becomes numerically equal to 1 and, accordingly, pbeta
returns 1. This can represent a significant jump in the CDF of the Feller-Pareto; see the
dashed line in Figure 2. In actuarial applications, events in the right tail of a heavy tailed
probability distribution are the most critical ones for an insurance company: although very
unlikely, they represent a huge financial exposure.

We needed a fix for the computation of the probabilities — or, equivalently, of the quantiles —
in the far right tail of the distribution. It came from the symmetry property of the incomplete
beta ratio. As stated in Abramowitz and Stegun (1972, Section 6.6.3):

I(a,b;z) =1—1(b,a;1 —z). (15)

Therefore, we can also write the CDF (2) of the Feller-Pareto distribution as

_ vy

Now, the value 1 — u = 1/(1 4+ y) underflows to zero much later than y/(1 + y) “overflows”
to one for large values of y. Using the approach in (16) coupled with the standard argument
lower.tail = FALSE of pbeta to compute 1— I(a,b;x), we are able to compute probabilities
accurately much farther in the right tail of the distribution; see the solid line in Figure 2.

The previous discussion also holds for very small values of y — although to a lesser extend
since the set of representable floating point numbers is much more dense near zero (Goldberg
1991). Since any accuracy improvement in the right tail of the distribution should not be
canceled by a deterioration in the left tail (near u), our implementation of pfpareto actually
computes the CDF with (2) when v = y/(1 +y) < 0.5, and with (16) otherwise.

3.2. Generation of random variates

The other main issue we faced in our R implementation was with the rfpareto function to
generate random variates from the Feller-Pareto distribution. Section 2.4 outlined the three
simulation algorithms at our disposal.

When comparing simulation algorithms, we are mostly interested in their relative speed and
ability to reproduce the underlying distribution, especially for limit cases. We use functions
rgamma and rbeta of base R to generate gamma and beta variates, respectively. Therefore,
we leave aside considerations of randomness and efficiency since we are building on well
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Figure 2: Cumulative distribution function of the Feller-Pareto distribution in the far right
tail as computed with pbeta using (2) (red dashed line) and using (16) (black solid line).

Test Replications Relative time
rbeta(n, shapel, shape2) 100 1.000
rgamma(2 * n, shape) 100 1.312

Table 2: Relative time required to simulate n = 10 beta variates and 2n gamma variates (on
average over the number of replications). Parameters shape, shapel and shape2 uniformly
distributed on (0, 100).

established algorithms and routines to generate variates from these distributions (Cheng 1978;
Ahrens and Dieter 1982).

One will first note that Algorithm 1 requires two gamma variates to generate a single Feller-
Pareto variate, whereas Algorithms 2 and 3 require only one beta variate. This is an advantage
for the beta-based algorithms, but not in a 2 : 1 ratio. Indeed, rgamma takes less time
to generate a variate than rbeta. As Table 2 shows, generating two gamma variates is
actually only about 30% slower that generating a single beta variate. These performance
measurements carry over to the generation of Feller-Pareto variates, as shown in Table 3.
(We obtained benchmarking times with the very convenient function benchmark of package
rbenchmark (Kusnierczyk 2012).)

The other issue we investigated was performance of the algorithms in the main limit cases.
First, when o — 0 and 7 — oo, variates from a B(7, «) tend to 1. Due to the negative power in
its second step, Algorithm 3 tends, in such a situation, to yield indeterminate values — “not
a number”, or NaN in R terminology. Algorithm 2 does not exhibit this behavior. Figure 3
(left graphic) shows the effect on the empirical CDF of samples generated with Algorithms 2
and 3 for a small value of o and a large value of 7. Algorithm 2 is clearly preferable.

The indeterminate value issue of Algorithm 3 also arises in Algorithm 1 when @ — 7 — 0 and



Journal of Statistical Software

Test Replications Relative time
Algorithm 3 100 1.000
Algorithm 2 100 1.011
Algorithm 1 100 1.307

Table 3: Relative time required to simulate 10° Feller-Pareto variates with three different
algorithms (on average over the number of replications). Location parameter p = 0; scale pa-
rameter § = 1; shape parameters « and  uniformly distributed on (0, 100); shape parameter
7 uniformly distributed on (100, 1000).

N
o o
- ] n 7
o
® _| -
o o
Q 4
o
© _|
=z ° % 8
- < 1
L < L o
S
o
o
o~ < T
S o
o)
o o
c ST
I I I I I I o I I I I I
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X X

Figure 3: Comparison of the true CDF of the Feller-Pareto with empirical CDFs using three
different simulation algorithms. Left: true CDF and Algorithm 2 (black solid line) vs Al-
gorithm 3 (red dashed line) for &« — 0 and 7 — oco. Right: true CDF (black solid line) wvs
Algorithm 2 (red dashed line) vs Algorithm 1 (green dotted line) for &« — 7 — 0. In both
graphics 4 =0, vy=10 and 0 = 1.

both gamma variates may be numerically equal to 0. Figure 3 (right graphic) compares the
theoretical CDF with typical empirical CDF of samples generated with Algorithms 1 and 2
(notice on the y-axis how this graphic is zoomed in). In our various tests, the empirical
CDF with Algorithm 1 was almost consistently farther from the true CDF than the one with
Algorithm 2.

As a result of the above observations, we recommend Algorithm 2 to generate Feller-Pareto
random variates. This is the the algorithm we implemented in actuar. Accordingly, we also

changed the algorithm used in the simulation of transformed beta variates from Algorithm 3
to Algorithm 2.

3.3. Moments

Numerical computation of raw moments does not pose significant difficulties. It is worth
noting, though, that the function mfpareto computes the ratio of gamma functions in (6)

11
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and (7) as a ratio of beta functions since

D(t+k/y)T(a—k/v) _ D(t+k/y)T(a—k/y) T(a+71)
I'(a)T(1) a4+ 7) T'(a)T(7)
_Blr+k/ya—k/7)

Ble,T)

This way, we take advantage of the optimizations and careful handling of limit cases of routine
beta of the C API of R (R Core Team 2022b).

Furthermore, in order to reduce the number of operations, we actually compute the moment
of order k in the case u # 0 with the following expression that is algebraically equivalent to
(7):

ok wb L (k 9 J . o
my = 1 +5(a’7);<].>< ) B(T+ /v, o= 3/7).

I

3.4. Limited moments

Before we turn to the computation of limited moments of the Feller-Pareto family of distri-
butions, we must first study an alternative definition of the (regularized) incomplete beta
function

/t“‘l(l—t)b‘ldt, a>0,b>00<z<1, (17)

1
I(a,b;z) = Bab) J

that is valid for negative values of the parameters. Klugman et al. (2019) introduce the
alternative definition to extend the range of admissible values for limited expected value
functions.

As seen in Abramowitz and Stegun (1972, Section 6.6), we have the following relation for the
integral on the right hand side of (17):

T
a

/ta_l(l — ) ldt = x—F(a, 1—bya+1;2),
a

0

where
I(c) <Tla+kIb+k)

F(a)l“(b)kz:% T(ct+k) kU

F(a,b;c;2) =

is the Gauss hypergeometric series. With the above definition, the incomplete beta function
also admits negative, non integral values for parameters a and b.

Now, let

B(a,b;z) =T'(a +b) /Om 1 — 1) dt, (18)

fora>0,b# —1,-2,... and 0 < z < 1. Clearly, when b > 0

B(a,b;x) =T(a)T'(b)I(a,b; x).
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Of more interest here is the case where b < 0, b # —1,—2,... and a > 1 + |—b]. Integration
by parts of (18) yields

1:“_1(1 — x)b (a — 1)56“_2(1 — :c)b‘H

B(a,b;z) = ~T'(a+b) 5 + b(b+ 1)
(a _ 1) o (a o ’I")l’a_r_l(l _ :L,)b-i-r
Tt b(b+1)---(b+r) (19)

(a—1)---(a—r—1)
b(b+1)---(b+7r)
xIb+r+1I(a—r—1b+r+1;x),

I'a—r—1)

where r = | —b|. Following the terminology of actuar, we will call (18) the beta integral. (It
is also known in the literature as the normalized incomplete beta function.) The package
includes a C routine betaint — and a non exported R interface of the same name — that is a
rather straightforward C implementation of (19). Its sole usage in the package is to evaluate
the limited moments of distributions of the Feller-Pareto family.

Given the above, we rewrite the general expression (9) of the limited moment of order k as

J ['(a)I'(7)
+ xk(l —I(1,a5u))

E[(X A2)t] = Xk: <k> pIB(r + /v 0 = /W)

J=0

or, equivalently,

kB(T,a;u)
E[(XAx)ﬂ:“PmW
o E (R 0N ‘ o
+ T & (J) () BO+irma—im

+ 281 — I(1, a;u)).

Note that for the expression above to be valid, & —j /7, j = 0,1,..., k must not be a negative
integer. This is the expression that we implemented in the C routine levfpareto.

For the case pn = 0 — distributions of the transformed beta family — we use (8) rewritten as

_ 0" B(r +k/v, 0= k/v;u)

E[(X Aa)f] = O +ab (1= I(r, a5 u)),

still with o — &/~ not a negative integer.

It is worth noting that the C routines behind limited moments functions carry a lot of com-
putations in the log scale to delay numerical overflow and, therefore, to gain accuracy in the
tails. For example, levfpareto and related routines compute

Yy 1 (w—ﬂ>'*
u = = s =
1ty 1+y 1 7 9
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Figure 4: True limited moments as computed with levtrbeta in versions of actuar prior
to 3.0-0 (black solid line) compared to their empirical counterparts (red dashed line). Left:
first moment involving only positive values of b in the beta integral. Right: fourth moment
involving negative values of b.

as u = e°8% with

logu = —log(1 4 e~ 1°8¥)
logy = y(log(z — p) — log 0).

The routines make use of function loglpexp of the C API of R to compute log(1l + €*)
accurately, notably for large x.

Upon analyzing the accuracy of the levtrbeta function in a previous version of actuar, we
discovered discrepancies in the tail of the limited expected value function which in practice
may lead to erroneous premium computation; see Section 4.2. Figure 4 shows the problem
whether the beta integral (18) is called with a positive (left graphic) or negative (right graphic)
value of its second parameter b. The cause is exactly the same as in Section 3.1: u gets
numerically equal to 1 when y gets large. The cure is also the same: compute any instance
of I(a,b;u) as 1 —I(b,a;1 —wu) using 1 —u = (1 +%)~! when u > 0.5. This also led us to add
an argument to the betaint routine in order to pass the numerically accurate value of 1 — x
to the incomplete beta function in (19) and, simultaneously, to all instances of this term in
the sum.

The limited moments functions for all distributions of the Feller-Pareto family and the beta
integral function incorporate the above improvements in version 3.0-0 of actuar. Figure 5
shows that their behavior in the tail is now consistent with the theoretical expressions.

4. Case study

We illustrate in this section how the Feller-Pareto distribution — and the functions we provide
in actuar — can prove useful to model insurance loss costs, evaluate premiums and simulate
data.

To this end, we use a dataset well known in actuarial circles as the Danish dataset. Collected
by Copenhagen Reinsurance, it consists of aggregate claim amounts for 2,492 fire losses over
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Figure 5: True limited moments as computed with levtrbeta in version 3.0-0 of actuar (black
solid line) compared to their empirical counterparts (red dashed line).
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Figure 6: Empirical cumulative distribution function (left) and empirical survival function in
log scale (right) for the Danish dataset.

the period 1980 to 1990, adjusted for inflation to reflect 1985 values. The values are expressed
in millions of Danish Krone (DKK). The dataset has been studied by, e.g., Embrechts et al.
(1997); McNeil (1997); Resnick (1997); Davison (2003). The R package SMPracticals (Davison
2019) provides the Danish dataset in the time series object danish. Since the dates of the
events are irrelevant in our analysis, we use the data as a simple atomic vector.

R> data("danish", package = "SMPracticals")
R> danish.loss <- as.numeric(danish)

As Figure 6 shows, the Danish loss amounts exhibit a heavy, Pareto type, tail. McNeil (1997);
Resnick (1997) propose alternative depictions of this behavior using a QQ-plot against the
exponential distribution, a mean excess plot and a Hill plot. Summary statistics and right
tail quantiles are also quite revealing.

R> summary(danish.loss)
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Min. 1st Qu. Median Mean 3rd Qu. Max.
0.3134 1.1572 1.6339 3.0627 2.6455 263.2504

c(0.9, 0.95, 0.99, 1))

R> quantile(danish.loss, probs

90% 95% 99% 100%
5.080440 8.406298 24.613784 263.250366

(McNeil 1997) fitted three distributions on the loss amounts: a Pareto I, a shifted lognormal
and a generalized Pareto, the latter being a Pareto II distribution with a different parametriza-
tion widely used in extreme value theory (see, e.g., Embrechts et al. 1997). None of these
distributions catch the steep curvature of the cumulative distribution function, although (Mc-
Neil 1997) shows the generalized Pareto successfully catches the tail behavior for losses over
DKK 20,000,000.

4.1. Loss modeling

The first step in our case study will be to fit the Feller-Pareto distribution to the data using
maximum likelihood estimation (MLE). Our main R tool will be function fitdist from
package fitdistrplus (Delignette-Muller and Dutang 2015), which wraps and extends the well
known function fitdistr from package MASS (Venables and Ripley 2002).

Since the Danish dataset contains positive loss amounts, we have a natural value of u = 0 for
the location parameter of the Feller-Pareto. We could try to estimate this parameter along
with the shape parameters and the scale parameter, but this proves numerically cumbersome.
Brazauskas (2002) provides explicit formulas for the Fisher information matrix when the
location parameter is set to 0. However, for the current example, we simply rely on the
numerical values provided by the R optimization routines.

We use the bounded BFGS optimization algorithm to restrict the parameters to positive
values (Bonnans, Gilbert, Lemaréchal, and Sagastizdbal 2006). For numerical reasons, we
actually restrict the shape and scale parameters to [e,00), where ¢ = 2752 is the machine
epsilon in double precision.

R> (fit.fp <- fitdist(danish.loss, "fpareto", optim.method = "L-BFGS-B",
+ fix.arg = list(min = 0), start = list(shapel = 1, shape2 = 1,
+ shape3 = 1, scale = 1), lower = .Machine$double.eps))

Fitting of the distribution ' fpareto ' by maximum likelihood
Parameters:
estimate Std. Error

shapel 0.07304845 0.01880457
shape2 17.75618267 4.31435803
shape3 0.80165273 0.22356892
scale  0.93134995 0.01474232
Fixed parameters:

value
min 0
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Figure 7: Comparison of CDF: empirical (solid black line), fitted Feller-Pareto (red dashed
line), fitted Weibull — Inverse Weibull composite (green dotted line). Left: complete range of
the distributions. Right: upper tails.

The graphics of Figure 7 compare the empirical and fitted CDFs. The fit of the Feller-Pareto is
good through values of around DKK 20,000,000. Passed this point, the Feller-Pareto provides
a heavier tail than the actual data.

In addition to the analysis of the goodness-of-fit plots, we can also check statistical measures
or criteria (Klugman et al. 2019, Chapter 15) as provided by function gofstat of fitdistrplus.

R> gofstat(fit.fp)

Goodness-of-fit statistics

1-mle-fpareto
Kolmogorov-Smirnov statistic 0.04202179
Cramer-von Mises statistic 0.84124463
Anderson-Darling statistic 4.17626761

Goodness-of-fit criteria

1-mle-fpareto
Akaike's Information Criterion 7677.535
Bayesian Information Criterion 7700.818

Our intent here is merely to illustrate how the numerical tools we provide may prove useful
to fit Feller-Pareto distributions to loss data. Still, the above statistics show that the model
fares very well against the Weibull-Inverse Weibull mixture determined as best among 256
composite models by Griin and Miljkovic (2019) for the same dataset.

4.2. Expected losses

Our Feller-Pareto model has ary = 1.297. By (6), its expected value exists. We may therefore
easily compute the expected losses (in million DKK) for the Danish dataset using function
mfpareto.
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Figure 8: Expected loss cost of an excess-of-loss reinsurance contract as a function of the
deductible for different cover values: ¢ = 4 (solid black line), ¢ = 3 (red dashed line), ¢ = 2
(green dotted line), ¢ = 1 (blue dot-dashed line).

R> par.fp <- fit.fp$estimate
R> mfpareto(l1, min = 0, shapel = par.fp["shapel"], shape2 = par.fp["shape2"],
+ shape3 = par.fp["shape3"], scale = par.fp["scale"])

[1] 3.977563

After McNeil (1997), we also compute the expected losses for an excess-of-loss reinsurance
contract where the reinsurer is responsible for losses between d and d + ¢, where d is the
deductible value and ¢, the cover. Let X be the original loss amount and X,e, the reinsurance
cost. We have X, = min(max(X — d,0),¢) = min(X,d + ¢) — min(X, d).

The expected loss cost for the reinsurer is E [X;c| = E [min(X, d + ¢)] — E [min(X, d)]. We used
function levfpareto to compute these expected values and to draw Figure 8, which displays
the expected cost E [X}e] as a function of the deductible d for different values of covers ¢. One
can see the drastic effect of the deductible and the cover on expected costs.

4.3. Simulation of aggregate claim amounts

For pricing and risk evaluation purposes, actuaries usually need to take into account not
only the severity of losses, but also their frequency. Let random variable .S represent the
aggregate claim amount (or total amount of claims) of a portfolio of independent risks over
a fixed period of time, random variable N represent the number of claims (or frequency) in
the portfolio over that period, and random variable X; represent the amount of claim j (or
severity). Then, we have the random sum

S=X1+-+Xn, (20)
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where we assume that X7, X, ... are mutually independent and identically distributed ran-
dom variables each independent of N. When N has a Poisson distribution, we say that the
distribution of S is a compound Poisson, see, e.g., Klugman et al. (2019).

But for a few simple cases, finding the distribution of the random variable S is a difficult
task. However, one may turn to simulation to get good estimates of quantities related to this
distribution.

Let us simulate a large sample from a compound Poisson distribution where the severity of
losses is distributed according to our Feller-Pareto. This is straightforward using function
rcomppois from package actuar. (See Goulet and Pouliot (2008) for an explanation of the
syntax to specify simulation models.)

R> x <- rcomppois(le6, lambda = 10, rfpareto(min = 0,
+ shapel = par.fp["shapel"], shape2 = par.fp["shape2"],
+ shape3 = par.fp["shape3"], scale = par.fp["scale"]))

We may now, for example, get fairly good approximations of the upper tail quantiles of the
distribution of S. Since the sample size of x is one million, we can reasonably assess quantiles
up to probability level p = 0.999999 = 1 — 10~ % based on the non-parametric estimator
provided by base R function quantile. Otherwise, we will need either to have a higher
number of simulations or to use the extreme value theory, e.g., McNeil (1997).

R> quantile(x, c(0.75, 0.9, 0.95, 0.99))

75% 90% 95% 99%
37.52340 58.95447 84.155666 221.73017

5. Accessing the C routines

The actual workhorses behind the R functions of actuar presented in this paper are C routines.
Package developers who need one or many of these routines in their C code can take advantage
of them through the new package API of actuar. The header file inst/include/actuarAPI.h
in the package installation directory contains the declarations of the more than 200 routines
part of the APIL.

We direct the interested reader to the “distributions” package vignette for further instructions
to access the C routines through the API. The companion package expint (Goulet 2022) ships
with a complete test package implementing these instructions. See the vignette of the latter
package for more information.

6. Conclusion

This paper introduced the implementation of the Feller-Pareto distribution and related Pareto
distributions with a location parameter in version 3.0-0 of the R package actuar. The Feller-
Pareto defines a large family of distributions encompassing the transformed beta family and
many variants of the Pareto distribution.

19
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A large proportion of the numerical challenges discussed in the paper are related to the fact
that, for most distributions of the Feller-Pareto family, we need to evaluate the incomplete
beta function for a value that can jump to 1 if not carefully computed to avoid numerical
overflows. By applying a simple correction to many functions present in previous versions of
actuar, we were able to fix long standing discrepancies in CDF and limited moment functions,
as well as to provide robust new functions for the Feller-Pareto distribution. We also improved
the simulation algorithm for all distributions of the Feller-Pareto family.

A case study based on a famous heavy tailed insurance dataset showed how one can use the
various support functions for the Feller-Pareto distribution in modeling, graphics or simula-
tion.
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