
Hydra: A Java library for Markov Chain Monte Carlo

Gregory R. Warnes 1

Technical Report no. 394

Department of Statistics

University of Washington

April 2001

(Revised March 2002)

1Gregory R. Warnes is a Coordinator, Non-Clinical Statistics, Pfizer Global Research
and Development, MS 8260-2104, Eastern Point Road, Groton, CT 06340. E-mail:
gregory r warnes@groton.pfizer.com. The author would like to thank Adrian E. Raftery,
Thomas Lumley, and Anthony Rossini of the Department of Statistics and Department of Bio-
statistics of the University of Washington for helpful discussions and guidance. This research was
supported in part by NIH/NIAID Grant no. 5 T32 AI07450-09, NIH Grant no. 1 PO1 CA76466,
NIH Grant no. 1 PO1 CA76466, and ONR Grant no. N00014-96-1-0192.

Abstract

Hydra is an open-source, platform-neutral library for performing Markov Chain Monte

Carlo. It implements the logic of standard MCMC samplers within a framework designed to

be easy to use, extend, and integrate with other software tools. In this paper, we describe

the problem that motivated our work, outline our goals for the Hydra project, and describe

the current features of the Hydra library. We then provide a step-by-step example of

using Hydra to simulate from a mixture model drawn from cancer genetics, first using a

variable-at-a-time Metropolis sampler and then a Normal Kernel Coupler. We conclude with

a discussion of future directions for Hydra.

Keywords: Markov Chain Monte-Carlo, Gibbs Sampling, Software Library

Contents

1 Introduction 3

2 Our Approach 4

3 Constructing Metropolis-Hastings Samplers

Using Hydra 6

3.1 The UnnormalizedDensity Interface for Target Distributions 7

3.2 The GeneralProposal Interface for Proposal Distributions 8

3.3 The MCMCListener Interface for Listener Objects . 8

4 Example 9

4.1 Overview . 11

4.2 Creating a Target Distribution . 11

4.3 Creating a Variable-at-a-time Metropolis Sampler . 13

4.4 Running the Variable-at-a-time Metropolis Sampler 15

4.5 Enhancing the Variable-at-a-time Metropolis Sampler 16

4.6 Implementing the Normal Kernel Coupler . 19

5 Conclusions and Future Directions 20

A Installing Hydra 22

A.1 Installing the jar File . 23

A.2 Installing the Full Source . 23

1

A.3 Other Packages . 23

B Predefined Proposal Distributions 25

C Predefined Listeners 27

D Output from Binomial BetaBinomial Example.java 28

List of Tables

1 Intepretation of the fields of the DetailChainStepEvent 9

2 Class implementing the hierarchical Binomial Beta-Binomial model for the LOH

data. 10

3 Class implementing a variable-at-a-time Metropolis sampler for the LOH model. . . 13

4 Class implementing a Normal Kernel Coupler for the LOH model. 18

List of Figures

1 CODA plots for 10,000 MCMC iterations. 17

2

1 Introduction

Markov Chain Monte Carlo (MCMC) is a method of performing numerical integration on

functions that can expressed as distributions (Metropolis et al., 1953; Hastings, 1970). The

strength of MCMC is that it can simulate from distributions without requiring the densities

to be properly normalized. This makes it an indispensible tool for Bayesian statistical models,

where properly normalizing posterior densities is often impractical or impossible.

After an initial burn-in period, a properly constructed MCMC sampler will generate a

sequence of (non-independent) samples, X0, X1, . . . , XN from a specified probability distri-

bution, Π. Using these samples, the expectations under Π of any function g can be estimated

by computing the sample path average Ê(g) = 1
N

∑N
t=0 g(Xt).

While most Markov Chain Monte Carlo algorithms are delightfully simple, there are, as

of this writing, only two software packages that implement general MCMC algorithms for

statistical applications, WinBUGS and FBM. Both of these have important limitations.

WinBUGS (Gilks et al., 1992; Gilks et al., 1994b) is a software package for performing

Bayesian inference using Gibbs sampling. It provides tools for specifying the model, running

the Gibbs sampler, and monitoring convergence using a “point-and-click” graphical interface.

A noteworthy feature is that it allows models to be specified using either a text-based notation

or a graphical model created with the DoodleBUGS interface (Spiegelhalter et al., 1999).

While WinBUGS is mature and is available free of charge from the MRC Biostatistics

Unit web site (Stevens, 2000), it has several drawbacks. First, WinBUGS is designed to per-

form only Gibbs and componentwise Metropolis sampling and does not allow specification

of alternative sampling methods. As a consequence, WinBUGS cannot be used when Gibbs

sampling or Metropolis-within-Gibbs are inappropriate. Second, the source code to WinBUGS

is not available to the user. This makes it impossible for users to add features to WinBUGS.

Thus, users who require features (such as statistical distributions or sampling methods) not

provided by WinBUGS are forced to abandon the package entirely. In addition the inability to

access the source code prohibits the use of WinBUGS for experimentation with or customiza-

tion of sampling algorithms. This prevents WinBUGS from being used as a tool for research

on MCMC methods.

Radford Neal’s FBM (“Flexible Bayesian Modeling”) software (Neal, 2000), first released

in 1995, is a less well known package that implements a variety of MCMC methods and

includes the C source code. While FBM is more flexible than WinBUGS, the FBM documentation

3

and interface are considerably more difficult to understand.

Both WinBUGS and FBM are restricted to specific operating systems. While older versions

of BUGS were available for Unix systems, the current version is available only for systems

running versions of Microsoft Windows. FBM, on the other hand, is available only for Unix

systems. In addition, neither package is integrated with standard statistical tools. This

requires the user to learn the interface of an additional software package in order to use

MCMC.

These drawbacks appear to have discouraged or prevented many users from taking advan-

tage of the considerable effort and expertise represented by WinBUGS and FBM. As evidence of

the general dissatisfaction with the available tools, all of the statisticians we have observed

using or researching MCMC write their own custom software. This results in considerable

duplication of effort. Worse, since properly debugging and verifying software algorithms

is a difficult and time-consuming task, it is likely that many of the hand-written software

programs contain undetected errors. This can lead to the presentation of faulty analyses.

Finally, lack of integrated software support for MCMC has led many applied researchers to

avoid Bayesian statistical methods entirely.

2 Our Approach

Clearly, there is a need for better MCMC software. Our goal is is to produce a software tool

that

1. implements standard MCMC techniques,

2. is easy to use,

3. is reliable,

4. is applicable to a wide variety of problems,

5. allows access to the underlying algorithms,

6. can be easily customized and extended,

7. is integrated with traditional statistical packages, and

4

8. is available on all common computer platforms.

The Hydra MCMC library is a first step toward providing software that achieves these

goals. Hydra is an object-oriented library that implements the logic of standard MCMC

methods. Although Hydra can be used directly in custom MCMC programs, it is designed

to be used as a basis for MCMC software which provides a more user-friendly interface and

which is integrated with standard statistical packages.

Hydra is implemented using Java, a platform independent object-oriented language de-

signed for general programming tasks. We selected Java (Joy et al., 2000) because it enabled

the library to meet a number of our stated goals. First, Java’s support of formal interfaces

facilitated the construction of a library that is easy to use without sacrificing flexibility and

ease of extension. In particular, the use of interfaces permits users to reploace exisiting com-

ponents of the MCMC algorithm with versions which are tuned to the specific problem. This

allows the user to extend the Hydra package to support new problems or MCMC techniques

without changing the existing code. Second, Java provides features that reduce common pro-

gramming errors and is supported by a wealth of standard libraries and programming tools.

Not only do Java’s features make it easier to write code that is error-free, but they also make

it easier to locate and correct bugs that do exist. This supports construction of a reliable

library and frees time otherwise spent debugging for the development of additional features.

Third, Java provides a clear interface for interacting with other languages. This gives a well

defined method for Hydra to be used with existing programming languages and software

applications. Although early versions of Java suffered from performance problems, recent

versions of the Java virtual machine (runtime) can provide speed comparable to C and C++

for numerical computations (Rijk, 2000; Lewis, 2000; Zachmann, 2000; Schulman, 1997).

The remainder of this text assumes a basic familiarity with the Java language at the level

of Java in a Nutshell(Flanagan, 1997).

5

3 Constructing Metropolis-Hastings Samplers

Using Hydra

Hydra supports the full generality of Markov Chain Monte Carlo by providing a hierarchy of

classes that implement the most common MCMC techniques. Classes implement the general

Metropolis-Hastings algorithm, the Metropolis sampler, and the Gibbs sampler. Hydra also

implements the multi-state Adaptive Metropolis Sampling (Gilks & Roberts, 1996) algorithm

that forms the basis of Adaptive Direction Sampling (Gilks et al., 1994a) and Normal Kernel

Coupling (Warnes, 2000). We will focus on the implementation of the Metropolis-Hastings

method since it includes the others as special cases.

The Metropolis-Hastings algorithm is remarkably simple. Given a target distribution

of interest Π, corresponding to the statistical model, an initial starting location X0, and a

proposal distribution Q(Xt), each iteration of the sampler consists of four steps:

1. Propose a candidate state Y using the proposal distributionQ(Xt), which may depend

on the current state Xt:

Y ← Q(Xt)

2. Compute the Metropolis-Hastings acceptance probability

α(Xt, Y) = min

{
1,
π(Y) q(Y → Xt)

π(Xt) q(Xt → Y)

}
= min

{
1,
p(Y) q(Y → Xt)

p(Xt) q(Xt → Y)

}

where π is a density corresponding to the target distribution Π, p(x) ∝ π(x) is an

unnormalized density, and q(Y → Xt) = q(Y |Xt) is the conditional density of Y under

Q(Xt).

6

3. Accept the proposed point Y and set

Xt+1 ← Y

with probability α(Xt, Y), otherwise

Reject the proposed point and set

Xt+1 ← Xt.

4. Increment time: t← t+ 1.

The sequence of X values generated by this algorithm converges to a (dependent) sample

from Π provided the proposal distribution Q meets certain conditions (Tierney, 1996).

The CustomMetropolisHastingsSampler class implements the logic of Metropolis-Hastings

samplers using a target distribution (model), initial state, and proposal distribution spec-

ified by the user. This is made possible by requiring the objects representing the target

and proposal distributions to provide certain methods. These methods are defined by

the UnnormalizedDensity and GeneralProposal interfaces, respectively. No restriction

is placed on the initial state, provided it is compatible with the user-specified target and

proposal distributions.

To allow flexible reporting of the progress of the MCMC sampler, the CustomMetropolis-

HastingsSampler maintains a list of user defined objects that are notified at the completion

of the acceptance step of each iteration. When detailed reporting is selected, these “listeners”

receive an object containing a great deal of information about each MCMC iteration.

3.1 The UnnormalizedDensity Interface for Target Distributions

Target distributions implement the UnnormalizedDensity interface, which defines two meth-

ods:

public double unnormalizedPDF (Object s t a t e) ;
public double logUnnormalizedPDF (Object s t a t e) ;

7

These methods compute the (log) unnormalized density of the model for the state passed as

a parameter.

3.2 The GeneralProposal Interface for Proposal Distributions

Proposal distributions implement the GeneralProposal interface, which has 4 methods:

public double conditionalPDF (Object next , Object cur r ent) ;
public double logConditionalPDF (Object next , Object cur r ent) ;

public double t r a n s i t i o n P r o b a b i l i t y (Object from , Object to) ;
public double l o g T r a n s i t i o n P r o b a b i l i t y (Object from , Object to) ;

The methods conditionalPDF and logConditionalPDF compute the probability of gener-

ating the object next when the current state is current. The second two methods perform

the same computation, but reverse the arguments1.

3.3 The MCMCListener Interface for Listener Objects

Objects that are notified at the completion of each MCMC iteration implement the MCMCListener

interface, which defines one method:

public void n o t i f y (MCMCEvent event) ;

The parameter of the notify method is an object containing information about the MCMC

iteration. This information can be used by the object in various ways. Possibilities include

storing the current state to a file, displaying it on a plot, and computing cumulative statistics.

When detailed reporting is disabled, the object passed to notify is a GenericChainStepEvent.

This object has a single field:

public Object cur rent ;

which contains the current state (Xt) of the sampler.

When detailed reporting is enabled, the object passed to notify is a DetailChainStep-

Event which has the additional fields:

1The transitionProbability and logTransitionProbability are depreciated and will not be required
in a future release of the software.

8

Table 1: Intepretation of the fields of the DetailChainStepEvent

Field Intepretation
public Object current; Xt

public Object proposed; Y
public double proposedProb; p(Y)
public Object last; Xt−1

public double lastProb; p(Xt−1)
public double forwardProb; q(Y |Xt−1)
public double reverseProb; q(Xt−1|Y)
public double probAccept; α(Xt−1, Y)
public double acceptRand; uniform value used to accept/reject
public boolean accepted; was Y accepted?
public double acceptRate; average value of α(Xt−1, Y)

public Object proposed ;
public Object l a s t ;
public double l a s tProb ;
public double proposedProb ;
public double forwardProb ;
public double reverseProb ;
public double probAccept ;
public double acceptRand ;
public boolean accepted ;
public double acceptRate ;

These fields provide a great deal of information about the MCMC iteration and are useful

for debugging and for evaluating the performance of different proposal distributions. The

interpretation of each field is given in Table 1.

4 Example

The classes provided by Hydra can be used directly in compiled Java programs or interac-

tively with various Java-based tools, such as JPython and the Omegahat statistical language.

For ease of presentation, we will focus on the pure Java interface.

We will give an example by using Hydra to construct two different samplers for a

Binomial-BetaBinomial mixture model for the loss of genetic material in esopageal can-

9

Table 2: Class implementing the hierarchical Binomial Beta-Binomial model for the LOH
data.

1 package org . omegahat . S imulat ion .MCMC. Examples ;
2

3 import java . lang . Math ;
4 import org . omegahat . G U t i l i t i e s . ArrayTools ;
5 import org . omegahat . P r o b a b i l i t y . D i s t r i b u t i o n s . UnnormalizedDensity ;
6

7 public class Binomia l BetaBinomia l S impleLike l ihood implements UnnormalizedDensity
8 {
9 int l oh [] = { 7 , 3 , 4 , 3 , 5 , 4 , 5 , 3 , 6 , 1 2 , 5 , 3 , 1 , 3 , 5 , 3 , 1 1 , 2 , 2 , 2 , 3 , 5 , 3 ,

10 4 , 6 , 3 , 1 , 4 , 5 , 1 9 , 5 , 5 , 6 , 5 , 6 , 2 , 0 , 0 , 6 , 4 } ;
11 int n [] = { 1 7 , 1 5 , 1 7 , 1 8 , 1 5 , 1 5 , 1 5 , 1 9 , 1 6 , 1 5 , 1 8 , 1 9 , 1 8 , 1 9 , 1 9 , 2 1 , 1 7 , 1 6 ,
12 1 2 , 1 7 , 1 8 , 1 8 , 1 9 , 1 9 , 1 5 , 1 2 , 1 6 , 1 9 , 1 6 , 1 9 , 2 1 , 1 5 , 1 3 , 2 0 , 1 6 , 1 7 ,
13 8 , 7 , 1 8 , 1 5 } ;
14

15 // unnormalized binomial dens i ty
16 double udb (int x , int n , double pi) { return Math . pow(p i , x)∗Math . pow(1.0− pi , n−x) ; }
17

18 // unnormalized beta−binomial dens i ty
19 double udbb (int x , int n , double pi , double omega) {
20 int r ; double tmp0 = 1 . 0 ; double tmp1 = 1 . 0 ; double tmp2 = 1 . 0 ;
21

22 for (r =0; r <= (x − 1) ; r++) tmp0 ∗= (pi + ((double) r) ∗ omega) ;
23 for (r =0; r <= (n − x − 1) ; r++) tmp1 ∗= (1 .0 − pi + ((double) r) ∗ omega) ;
24 for (r =0; r <= (n − 1) ; r++) tmp2 ∗= (1 .0 + ((double) r) ∗ omega) ;
25 return (tmp0 ∗ tmp1 / tmp2) ;
26 }
27

28 // unnormalized binomial−betabinomia l mixture dens i ty
29 double ud b bb (int x [] , int n [] , double eta ,
30 double pi0 , double pi1 , double omega1) {
31 double r e t v a l = 1 . 0 ;
32

33 for (int i =0; i < x . l ength ; i++)
34 r e t v a l ∗= (eta) ∗ udb (x [i] , n [i] , p i0) +
35 (1 . 0 − eta) ∗ udbb (x [i] , n [i] , p i1 , omega1) ;
36 return r e t v a l ;
37 }
38

39 // Constructor //
40 public Binomia l BetaBinomia l S impleLike l ihood () {}
41

42 // Log Unnormalized Density //
43 public double logUnnormalizedPDF (Object parms) {
44 return Math . l og (unnormalizedPDF (parms)) ; }
45

46 // Unnormalized Density //
47 public double unnormalizedPDF (Object paramObj) {
48 double [] parms = ArrayTools . Otod (paramObj) ;
49 double eta=parms [0] , p i0=parms [1] , p i1=parms [2] , omega1=parms [3] ;
50

51 // check range
52 i f ((eta < 0 . 0) | | (p i0 < 0 . 0) | | (p i1 < 0 . 0) | | (omega1< 0 . 0) | |
53 (eta > 1 . 0) | | (p i0 > 1 . 0) | | (p i1 > 1 . 0) | | (omega1>0 .5))
54 return 0 . 0 ;
55 else
56 return ud b bb (loh , n , eta , p i0 , p i1 , omega1) ;
57 }
58 }

10

cers. We first show how to implement the unnormalized density corresponding to Binomial-

BetaBinomial mixture model in Java so that it can be used with Hydra. Using this model

we create a variable-at-a-time Metropolis sampler, and then a Normal Kernel Coupler.

4.1 Overview

There are four user-specified components of a Metropolis-Hastings sampler: target distri-

bution (model), initial state, proposal distribution, and uniform random number generator.

The Hydra library provides a reliable random number generator and a selection of standard

proposal distributions, leaving the user to construct the target distribution and initial state.

4.2 Creating a Target Distribution

To create an object representing the target distribution (model), the user needs to write a

Java class that implements the UnnormalizedDensity interface. For our example problem,

we wish to implement a class for the Bayesian hierarchical model

Xi ∼ η Binomial(Ni, π1)
+(1− η) Beta-Binomial(Ni, π2, ω2)

η ∼ Unif(0, 1)
π1 ∼ Unif(0, 1)
π2 ∼ Unif(0, 1)
ω2 ∼ Unif(0, 1/2)

where the density of the Beta-Binomial distribution is defined as

f(Xi|Ni, π2, ω2) =
(
n
x

) Γ(1
ω2

)

Γ(
π2
ω2

)Γ(
1−π2
ω2

)

Γ(x+
π2
ω2

)

Γ(n−x+
1−π2
ω2

)Γ(n+ 1
ω2

)

A Java class implementing the density for this model is provided in table 2. We shall

highlight the programming details that allow use of this class as a target distribution.

First, we need to indicate to the Java compiler where to find the UnnormalizedDensity

interface that this class will implement. This is accomplished by the line:

5 import org . omegahat . P r o b a b i l i t y . D i s t r i b u t i o n s . UnnormalizedDensity ;

11

Now we declare the class and indicate that it implements the UnnormalizedDensity

interface.

7 public class Binomia l BetaBinomia l S impleLike l ihood implements UnnormalizedDensity

Next, the class needs a constructor that will accomplish any required initialization, such

as loading the observed data. In this case, no initialization is required since the data is

hard-coded into the class, so that the line

40 public Binomia l BetaBinomia l S impleLike l ihood () {}

is sufficient.

Now our class must provide the unnormalizedPDF and logUnnormalizedPDF methods.

These methods are used by the Metropolis-Hastings sampler to compute the acceptance

probability for a proposed state.

42 // Log Unnormalized Density //
43 public double logUnnormalizedPDF (Object parms) {
44 return Math . l og (unnormalizedPDF (parms)) ; }
45

46 // Unnormalized Density //
47 public double unnormalizedPDF (Object paramObj) {
48 double [] parms = ArrayTools . Otod (paramObj) ;
49 double eta=parms [0] , p i0=parms [1] , p i1=parms [2] , omega1=parms [3] ;
50

51 // check range
52 i f ((eta < 0 . 0) | | (p i0 < 0 . 0) | | (p i1 < 0 . 0) | | (omega1< 0 . 0) | |
53 (eta > 1 . 0) | | (p i0 > 1 . 0) | | (p i1 > 1 . 0) | | (omega1>0 .5))
54 return 0 . 0 ;
55 else
56 return ud b bb (loh , n , eta , p i0 , p i1 , omega1) ;
57 }

In this example, we have written separate functions that compute the unnormalized density,

so these methods simply convert the arguments to the appropriate type (doubles), check

their range, call the appropriate function.

Note that the interface defines the argument passed to the unnormalizedPDF and logUnnormalized-

PDF as an Object. The user must decide what type of object will represent the model param-

eters. For most purposes, an array of doubles (double[]) is an appropriate choice. For this

reason, the predefined proposal methods (see Appendix B) all operate on arrays of doubles.

Any other type of object may be used, however, this will require the user to implement an

appropriate proposal distribution.

12

4.3 Creating a Variable-at-a-time Metropolis Sampler

Now that we have a class that implements the unnormalized density for the Binomial-

BetaBinomial model, we can construct a MCMC sampler. We first implement a variable-

at-a-time Metropolis sampler. The complete class file for this sampler is shown in table

3.

Table 3: Class implementing a variable-at-a-time Metropolis sampler for the LOH model.

1 package org . omegahat . S imulat ion .MCMC. Examples ;
2

3 import org . omegahat . S imulat ion .MCMC. ∗ ;
4 import org . omegahat . S imulat ion .MCMC. Proposa l s . ∗ ;
5 import org . omegahat . S imulat ion .MCMC. L i s t e n e r s . ∗ ;
6 import org . omegahat . S imulat ion . RandomGenerators . ∗ ;
7 import org . omegahat . P r o b a b i l i t y . D i s t r i b u t i o n s . ∗ ;
8

9 public class Binomial BetaBinomial SimpleExample {
10 stat ic public void main (St r ing [] argv) throws Throwable {
11

12 CollingsPRNGAdministrator a = new CollingsPRNGAdministrator () ;
13 PRNG prng = new CollingsPRNG (a . registerPRNGState ()) ;
14

15 UnnormalizedDensity t a r g e t = new Binomia l BetaBinomia l S impleLike l ihood () ;
16

17 double [] diagVar = new double [] { 0 . 0 8 3 , 0 . 0 8 3 , 0 . 0 8 3 , 0 . 0 4 2 } ;
18

19 SymmetricProposal proposa l =
20 new NormalMetropolisComponentProposal (diagVar , prng) ;
21

22 double [] s t a t e = new double [] { 0 . 9 0 , 0 . 2 3 , 0 . 7 1 , 0 . 4 9 } ;
23

24 CustomMetropol isHastingsSampler mcmc =
25 new CustomMetropol isHastingsSampler (s t a t e , t a r g e t , proposa l ,
26 prng , true) ;
27

28 MCMCListener l = new L i s t e n e r P r i n t e r () ;
29 MCMCListenerHandle lh = mcmc . r e g i s t e r L i s t e n e r (l) ;
30

31 mcmc. i t e r a t e (1 0) ;
32

33 }
34 }

Again we provide the Java compiler with the locations of the classes we will be using.

This time there are five import statements:

import org . omegahat . S imulat ion .MCMC. ∗ ;
import org . omegahat . S imulat ion .MCMC. Proposa l s . ∗ ;
import org . omegahat . S imulat ion .MCMC. L i s t e n e r s . ∗ ;
import org . omegahat . S imulat ion . RandomGenerators . ∗ ;
import org . omegahat . P r o b a b i l i t y . D i s t r i b u t i o n s . ∗ ;

13

After declaring the object, we create a main function that will do the work of creating and

running the MCMC sampler. Within main, the first object we need to create is a pseudo-

random number generator. The Hydra library provides an implementation of the Collings

random number generator (Collings, 1987), which can be created using the 2 lines:

12 CollingsPRNGAdministrator a = new CollingsPRNGAdministrator () ;
13 PRNG prng = new CollingsPRNG (a . registerPRNGState ()) ;

Next, we need to instantiate (create) a copy of our class that implements the unnormalized

density of the model. This is accomplished by

15 UnnormalizedDensity t a r g e t = new Binomia l BetaBinomia l L ike l ihood () ;

Now we instantiate the proposal distribution. For a Metropolis-Hastings sampler, there

are several choices (see Appendix B), including a variable-at-a-time random-walk proposal

using a normal distribution. This is implemented by the NormalMetropolisComponentProposal

class. Its constructor allows the specification of a proposal variance for each parameter. We’ll

use the variance of the parameters under the prior:

22 double [] diagVar = new double [] { 0 . 0 8 3 , 0 . 0 8 3 , 0 . 0 8 3 , 0 . 0 4 2 } ;
23

24 SymmetricProposal proposa l =
25 new NormalMetropolisComponentProposal (diagVar , prng) ;

Now we need to define an initial state for the sampler. We’ll use the MLE, which is

η = 0.90, π1 = 0.23, π2 = 0.71, ω2 = 0.49:

22 double [] s t a t e = new double [] { 0 . 9 0 , 0 . 2 3 , 0 . 7 1 , 0 . 4 9 } ;

With the random number generator, initial state, target distribution, and the proposal

distribution defined, we can create the actual sampler:

24 CustomMetropol isHastingsSampler mcmc =
25 new CustomMetropol isHastingsSampler (s t a t e , t a r g e t , proposa l ,
26 prng , true) ;

This gives us a working MCMC sampler. The final parameter is an optional flag indicating

whether the sampler should report all of the details about the MCMC iteration when it calls

the listeners, or whether to just report the new state. We wish to see all of the details, so

we provide the value true.

We need to attach a listener to the MCMC sampler so that we can see the results of each

iteration. There is a variety of predefined listeners (see Appendix C), but we’ll start with

the simplest listener. Its notify method simply displays the object it receives.

14

28 MCMCListener l = new L i s t e n e r P r i n t e r () ;
29 MCMCListenerHandle lh = mcmc . r e g i s t e r L i s t e n e r (l) ;

Finally, with the MCMC sampler defined and a listener attached, we are ready to run

the MCMC sampler. This is accomplished by calling the MCMC sampler’s iterate method

with the number of iterations to perform:

31 mcmc. i t e r a t e (1 0) ;

4.4 Running the Variable-at-a-time Metropolis Sampler

When combined with the Hydra library, the two classes we’ve created form a complete Java

program. On Unix-like systems with the standard Sun Java tools installed, the classes can

be compiled using the javac command:

> javac Binomia l BetaBinomia l S impleLike l ihood . java
> javac Binomial BetaBinomial SimpleExample . java

Once the classes are compiled, the MCMC sampler can be run using the Java interpreter

by

> java org . omegahat . S imulat ion .MCMC. Examples . Binomial BetaBinomial SimpleExample

This will cause the MCMC sampler to print detailed information about each of the ten

iterations to the screen. The output for the first iteration is:

Chain Step Event (with d e t a i l s)
Last = Conta inerState : [0 . 9 0 . 2 3 0 . 7 1 0 . 4 9]
Last Prob = −359.046964566765
Proposed State = Conta inerState : [0 . 9 0 . 4 7 5 1 0 6 8 4 1 5 5 0 6 0 6 1 0 . 7 1 0 . 4 9]
Proposed Prob = −423.26454869568283
Current State = Conta inerState : [0 . 9 0 . 2 3 0 . 7 1 0 . 4 9]
Forward Prob = −0.0369493853787235
Reverse Prob = −0.0369493853787235
Acceptance Prob = −64.21758412891785
Acceptance Val = 0.658405257229882
Accepted ? = f a l s e
Acceptance Rate = 0 .0

This gives the current and proposed states, the value of the unnormalized density, the forward

and reverse proposal probabilities, the acceptance probability, a flag indicating whether or

not the proposed state was accepted, the new state, and the cumulative acceptance rate.

Note that the unnormalized density and probabilities are reported on the log scale. The

output for all 10 iterations is given in Appendix D

15

4.5 Enhancing the Variable-at-a-time Metropolis Sampler

This example can be enhanced in a number of ways. First, the class can be modified to use a

different proposal method. To use a (complete-state) random-walk Metropolis sampler, sim-

ply replace the NormalMetropolisComponentProposal with a NormalMetropolisProposal.

Alternatively, the user could define a custom proposal distribution and use it instead.

Second, it is impractical to store and interpret all of the detailed information produced

by using the StepListenerPrinter listener for more than a few iterations. Instead, we

would like to store just the current state to a disk file. This is accomplished by replacing

the StepListenerPrinter object with a StrippedListenerWriter. Change lines 28 and

29 to

28 Li s t ene rWr i t e r l = new St r ippedL i s t ene rWr i t e r (”MCMC. output ”) ;
29 MCMCListenerHandle lh = mcmc . r e g i s t e r L i s t e n e r (l) ;

and replace line 32 with

32 l . c l o s e () ;

The l.close(); command makes sure that the file that is used to store the MCMC output

is properly closed once the MCMC iterations are complete.

Now that the output is being stored to a disk file, it is reasonable to increase the number

of iterations. Naturally, this is done by changing the value in the mcmc.iterate call to the

desired value, say 10,000.

Compiling and running the modified class now generates a data file containing 10,000

MCMC iterations. This output can be read into a standard statistical package for compu-

tation of diagnostics and to perform inference. For this, we have found the CODA2 package

of MCMC diagnostics, which exists in versions for both R and S-PLUS, particularly helpful.

For either version, the commands

l i b r a r y (coda)
mcmc . data <− mcmc(as . matrix (read . t a b l e (”MCMC. output ”)) ;

will load the CODA library (provided it is installed) and properly import the MCMC data.

A selection of diagnostics, plots, and summaries is then available. For instance, the default

CODA plots and summary statistics for our 10,000 iterations are shown in Figure 1.

2See Appendix A.3 for information on obtaining CODA.

16

0 2000 4000 6000 8000 10000

0.
6

0.
8

1.
0

Iterations

Trace of V1

0.5 0.6 0.7 0.8 0.9 1.0

0
2

4
6

N = 10000 Bandwidth = 0.01267

Density of V1

0 2000 4000 6000 8000 10000

0.
18

0.
24

Iterations

Trace of V2

0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30

0
10

20

N = 10000 Bandwidth = 0.003038

Density of V2

0 2000 4000 6000 8000 10000

0.
2

0.
6

1.
0

Iterations

Trace of V3

0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

N = 10000 Bandwidth = 0.02709

Density of V3

0 2000 4000 6000 8000 10000

0.
0

0.
4

0.
8

Iterations

Trace of V4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

N = 30000 Bandwidth = 0.03909

Density of V4

Figure 1: CODA plots for 10,000 MCMC iterations.

17

Table 4: Class implementing a Normal Kernel Coupler for the LOH model.

1 package org . omegahat . S imulat ion .MCMC. Examples ;
2

3 import org . omegahat . S imulat ion .MCMC. ∗ ;
4 import org . omegahat . S imulat ion .MCMC. Proposa l s . ∗ ;
5 import org . omegahat . S imulat ion .MCMC. L i s t e n e r s . ∗ ;
6 import org . omegahat . S imulat ion . RandomGenerators . ∗ ;
7 import org . omegahat . P r o b a b i l i t y . D i s t r i b u t i o n s . ∗ ;
8

9 public class Binomial BetaBinomial SimpleExample NKC {
10 stat ic public void main (St r ing [] argv) throws Throwable {
11

12 CollingsPRNGAdministrator a = new CollingsPRNGAdministrator () ;
13 PRNG prng = new CollingsPRNG (a . registerPRNGState ()) ;
14

15 UnnormalizedDensity t a r g e t = new Binomia l BetaBinomia l S impleLike l ihood () ;
16

17 double [] [] Var = { { 0 . 0 0 3 , 0 . 0 , 0 . 0 , 0 . 0 } ,
18 { 0 . 0 , 0 . 0 0 1 , 0 . 0 , 0 . 0 } ,
19 { 0 . 0 , 0 . 0 , 0 . 0 1 2 , 0 . 0 } ,
20 { 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 0 7 } } ;
21

22 Hast ingsCoupledProposal proposa l = new NormalKernelProposal (Var , prng) ;
23

24 int numComponents = 200 ;
25

26 MultiDoubleState s t a t e 0 = new MultiDoubleState (numComponents) ;
27 for (int i =0; i < numComponents / 2 ; i++)
28 s t a t e 0 . add (new double [] { 0 . 9 0 3 , 0 . 2 2 8 , 0 . 7 0 8 , 0 . 4 8 6 }) ;
29

30 for (int i=numComponents / 2 ; i < numComponents ; i++)
31 s t a t e 0 . add (new double [] { 0 . 0 7 8 , 0 . 8 3 1 , 0 . 2 3 0 , 4 . 5 e−9 }) ;
32

33 CustomHastingsCoupledSampler mcmc =
34 mcmc = new CustomHastingsCoupledSampler (s t a t e 0 , numComponents ,
35 t a r g e t , proposa l , prng ,
36 fa l se) ;
37

38 ThinningProxyListener pL = new ThinningProxyListener (numComponents) ;
39 MCMCListenerHandle pLh = mcmc . r e g i s t e r L i s t e n e r (pL) ;
40

41 MCMCListenerWriter l = new St r ippedL i s t ene rWr i t e r (”NKC. output ”) ;
42 MCMCListenerHandle lh = pL . r e g i s t e r L i s t e n e r (l 1) ;
43

44 mcmc. i t e r a t e (1 0 0 0 0) ;
45

46 l . c l o s e () ;
47 }
48 }

18

4.6 Implementing the Normal Kernel Coupler

To implement the Normal Kernel Coupler (NKC) introduced by Warnes (2000), only a three

changes need to be made to our example class. First, we use a different proposal distribution.

Second, we initialize a set of initial values rather than a single value. Third, we use the

CustomHastingsCoupledSampler class instead of the CustomMetropolisHastingsSampler

class. The complete source code for the modified class is given in table 4.

The proposal distribution for the NKC is implemented by the class NormalKernel-

Proposal. Its constructor requires two arguments, a random number generator, and a

matrix that specifies the variance for the normal kernel. For our example, the proposal is

instantiated by the lines:

17 double [] [] Var = { { 0 . 0 0 3 , 0 . 0 , 0 . 0 , 0 . 0 } ,
18 { 0 . 0 , 0 . 0 0 1 , 0 . 0 , 0 . 0 } ,
19 { 0 . 0 , 0 . 0 , 0 . 0 1 2 , 0 . 0 } ,
20 { 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 0 7 } } ;
21

22 Hast ingsCoupledProposal proposa l = new NormalKernelProposal (Var , prng) ;

The NKC maintains a set of current states that must be initialized. We use a MultiDoubleState,

which holds a list of double values, to hold the initial values.

24 int numComponents = 200 ;
25

26 MultiDoubleState s t a t e 0 = new MultiDoubleState (numComponents) ;
27 for (int i =0; i < numComponents / 2 ; i++)
28 s t a t e 0 . add (new double [] { 0 . 9 0 3 , 0 . 2 2 8 , 0 . 7 0 8 , 0 . 4 8 6 }) ;
29

30 for (int i=numComponents / 2 ; i < numComponents ; i++)
31 s t a t e 0 . add (new double [] { 0 . 0 7 8 , 0 . 8 3 1 , 0 . 2 3 0 , 4 . 5 e−9 }) ;

In this case, we’ve initialized half of the values to each of the two local maxima.

The logic of multi-state MCMC samplers is implemented by the CustomHastingsCoupled-

Sampler class. This class is instantiated using 6 parameters, the set of initial states, the

number of current states to maintain, the target (model) distribution, the proposal distri-

bution, a random number generator, and a flag indicating whether to report the details of

the iteration:

33 CustomHastingsCoupledSampler mcmc =
34 mcmc = new CustomHastingsCoupledSampler (s t a t e 0 , numComponents ,
35 t a r g e t , proposa l , prng ,
36 true) ;

Although we could have simply used a StrippedListenerWriter this would generate a

very large output file by writing out the entire set of 200 current states at each iteration.

19

Instead, we use a ThinningProxyListener class, which “thins” the events it receives by a

specified factor before passing them on:

38 ThinningProxyListener pL = new ThinningProxyListener (numComponents) ;
39 MCMCListenerHandle pLh = mcmc . r e g i s t e r L i s t e n e r (pL) ;
40

41 MCMCListenerWriter l = new St r ippedL i s t ene rWr i t e r (”NKC. output ”) ;
42 MCMCListenerHandle lh = pL . r e g i s t e r L i s t e n e r (l 1) ;

Running the sampler now will output the complete state once every 200 iterations.

5 Conclusions and Future Directions

Our example has shown that the Hydra MCMC library makes it easy to create differ-

ent Metropolis-Hastings samplers without extensive programming. This should encourage

additional statisticians to experiment with and use the Metropolis-Hastings method.

We hope that the Hydra library will form the basis of a set of MCMC tools that

are easy to use, robust, and complete. In particular we intend to integrate Hydra with

the statistical tools R, Splus, and SAS, as well as the new Omegahat statistical computing

language (Temple Lang, 2000; Chambers, 2000; Bates et al., 2000). These interfaces promise

to provide flexible and powerful interactive environments for MCMC.

Other goals for the Hydra library include

• visual tools for specifying and monitoring MCMC simulations

• support for distributed/parallel computing

• a library of target distributions corresponding to common statistical models, such as

GLM’s and mixture models.

20

References

Bates, D., Chambers, J., Cook, D., Dalgaard, P., Gentleman, R., Hornik,

K., Ihaka, R., Leisch, F., Lumley, T., M achler, M., Masarotto, G.,

Murrell, P., Narasimhan, B., Ripley, B., Sawitzki, G., Temple Lang, D.,

Tierney, L., & Venables, B. (2000). The Omega project for statistical computing.

web site. http://www.omegahat.org/.

Chambers, J. M. (2000). Users, programmers, and statistical software. Journal of

Computational and Graphical Statistics .

Collings, B. J. (1987). Compound random number generators. Journal of the

American Statistical Association 82, 525–527.

Flanagan, D. (1997). Java in a Nutshell. O’Reilly & Associates, second edition.

Gilks, W. R. & Roberts, G. O. (1996). Strategies for improving MCMC. In Markov

Chain Monte Carlo in Practice, pages 89–114. Chapman & Hall.

Gilks, W. R., Roberts, G. O., & George, E. I. (1994a). Adaptive direction

sampling. The Statistician 43, 179–189.

Gilks, W. R., Thomas, A., & Spiegelhalter, D. J. (1992). Software for the Gibbs

sampler. In Computing Science and Statistics. Proceedings of the 24rd Symposium on the

Interface, pages 439–448. Interface Foundation of North America (Fairfax Station, VA).

Gilks, W. R., Thomas, A., & Spiegelhalter, D. J. (1994b). A language and

program for complex Bayesian modeling. The Statistician 43, 169–177.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their

applications. Biometrika 57, 97–109.

Joy, B., Steele, G., Gosling, J., & Bracha, G. (2000). The Java Language

Specification. Addison-Wesley, second edition. also at

http://java.sun.com/docs/books/jls.

Lewis, J. P. (2000). Java versus C/C++ benchmarks. web site.

http://www.idiom.com/~zilla/Computer/javaCbenchmark.html.

21

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., & Teller, A. H.

(1953). Equations of state calculations by fast computing machine. Journal of Chemical

Physics 21, 1087–1091.

Neal, R. (2000). Software for flexible Bayesian modeling and Markov chain sampling.

Web Site. http://www.cs.toronto.edu/~radford/fbm.software.html.

Rijk, C. (2000). Binaries vs byte–codes. Ace’s Hardware (web site)

http://www.aceshardware.com/Spades/read.php?article_id=153.

Schulman, A. (1997). Java on the fly. Webreview.com (web site)

http://webreview.com/wr/pub/97/07/25/grok/.

Spiegelhalter, D. J., Thomas, A., & Best, N. G. (1999). WinBUGS Version 1.2

User Manual. MRC Biostatistics Unit.

Stevens, A. (2000). The BUGS project. Web Site.

http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml.

Temple Lang, D. (2000). The Omega project: New possibilities for statistical software.

Journal of Computational and Graphical Statistics .

Tierney, L. (1996). Introduction to general state–space markov chain theory. In Markov

Chain Monte Carlo in Practice, pages 59–74. Chapman & Hall.

Warnes, G. R. (2000). The Normal Kernel Coupler: An adaptive Markov Chain Monte

Carlo method for efficiently sampling from multi-modal distributions. PhD thesis,

University of Washington.

Zachmann, G. (2000). Java/C++ benchmark. web site.

http://www.igd.fhg.de/~zach/benchmarks/.

A Installing Hydra

The Hydra Java package is available in two forms, as a Jar file (Hydra.jar) containing

only the compiled classes and as a gzipped tar file (Hydra.current.tar.gz) containing the

22

full source code as well as the compiled classes. Both files are available from the Hydra

web page located at http://www.warnes.net/Hydra.

A.1 Installing the jar File

Download Hydra.jar and append the full path to the jar file to the CLASSPATH. For

example, if Hydra.jar has been placed in the directory /home/user/jars/, the proper

command for setting the CLASSPATH using sh compatible shells is

> CLASSPATH=$CLASSPATH: / home/ user / j a r s /Hydra . j a r
> export CLASSPATH

and using csh compatible shells

> se tenv CLASSPATH $CLASSPATH: / home/ user / j a r s /Hydra . j a r

A.2 Installing the Full Source

Download Hydra.current.tar.gz. It can then be unpacked using GNU tar via

> ta r −xvz f Hydra . cur r ent . ta r . gz

which will unpack a directory tree with root “Hydra”. The Java files and source code are

contained in directories under Hydra/org/omegahat

The location of this directory then needs to be added to the Java class path. If the direc-

tory tree was unpacked in /home/user/jsrc/ this can be accomplished using sh compatible

shells by

> CLASSPATH=$CLASSPATH: / home/ user / j s r c /Hydra
> export CLASSPATH

and using csh compatible shells

> se tenv CLASSPATH $CLASSPATH: / home/ user / j s r c /Hydra

A.3 Other Packages

Two additional Java packages may be required to use particular features of the Hydra

library, Visual Numerics’ JNL and Omegahat. In addition, the CODA package, in conjunction

23

with either R or SPLUS statistical packages, provides a useful suite of tools for evaluating and

making inference using MCMC output.

• Visual Numerics’ JNL library is required for several of the Hydra classes, in particular

those used in the Binomial-BetaBinomial example given below. JNL is available free of

charge from the Visual Numerics web site:

http://www.vni.com/products/wpd/jnl/.

• The Hydra MCMC classes were designed to be compatible with the Omegahat statisti-

cal programming system. Omegahat provides an interactive environment for statistical

programming and analysis and is under active development by the Omegahat project,

http://www.omegahat.org.

• The statistical package R is a free re-implementation of the S language and may be

obtained free of charge from http://www.r-project.org.

• The CODA package of MCMC diagnostics and other tools for Splus can be obtained

from

http://www.mrc-bsu.cam.ac.uk/bugs/classic/coda04/readme.shtml.

A version for R can be obtained from http://www-fis.iarc.fr/coda.

24

B Predefined Proposal Distributions

Hydra provides a selection of predefined proposal methods for the Metropolis, Metropolis-

Hastings, and Hastings-Coupled techniques.

Metropolis Samplers

Class Name Description
NormalMetropolisProposal normal random-walk proposal
NormalMetropolisComponentProposal variable-at-a-time random-walk

proposal

Metropolis-Hastings Samplers

Class Name Description
NormalProposal (fixed) normal proposal
NormalMetropolisProposal normal random-walk proposal
NormalMetropolisComponentProposal variable-at-a-time random-walk

proposal
MixtureProposal finite mixture proposal using

specified components

25

Hastings-Coupled (Multi-Chain) Samplers

Class Name Description
IndependentHastingsCoupledProposal Wrapper for independent

Metropolis-Hastings Samplers
AdaptiveNormalMetropolisProposal (Variance) Adaptive Normal

Metropolis Proposal
AdaptiveNormalProposal (Mean, Variance) Adaptive

Normal Proposal
NormalKernelProposal Normal Kernel Coupler
AdaptiveNormalKernelProposal (Variance) Adaptive Normal

Kernel Coupler
LocallyAdaptiveNormalKernelProposal Locally-Adaptive Normal Kernel

Coupler
KernelDirectionSampler Kernel Direction Sampler

26

C Predefined Listeners

A variety of predefined listeners are available. These allow monitoring various features of

the MCMC simulation and give several storage methods.

Class Name Description
AcceptanceWriter Stores the cumulative acceptance rate to a file
CovarianceWriter Stores the cumulative covariance matrix to a file
DistanceListener Computes the observed and expected acceptance rate,

step distance, step distance conditional on acceptance
DistanceWriter Stores the observed and expected acceptance rate,

step distance, step distance conditional on acceptance
to a file

HistogramWriter Stores a cumulative histogram of the current states a file
ListenerGzipWriter Stores the current state to GZIP compressed file
ListenerPrinter Prints the event passed to notify()
ListenerWriter Stores the event passed to notify() to a file
MeanWriter Stores the cumulative mean vector to a file
PosteriorProbWriter Stores the (unnormalized) posterior probability of the

current state to a file
QuantileWriter Stores the cumulative quantiles to a file
StepListenerPrinter Prints MCMCStepEvents
StrippedListenerGzipWriter Stores the current state to a GZIP compressed file
StrippedListenerWriter Stores the current state to a file
ThinningProxyListener A proxy for other listeners that thins the reported events

by a specified factor, eg 1 out of every 100

27

D Output from Binomial BetaBinomial Example.java

> java org . omegahat . S imulat ion .MCMC. Examples . Binomial BetaBinomial Example

Chain Step Event (with d e t a i l s)
Last = Conta inerState : [0 . 9 0 . 2 3 0 . 7 1 0 . 4 9]
Last Prob = −359.046964566765
Proposed State = Conta inerState : [0 . 9 0 . 4 7 5 1 0 6 8 4 1 5 5 0 6 0 6 1 0 . 7 1 0 . 4 9]
Proposed Prob = −423.26454869568283
Current State = Conta inerState : [0 . 9 0 . 2 3 0 . 7 1 0 . 4 9]
Forward Prob = −0.0369493853787235
Reverse Prob = −0.0369493853787235
Acceptance Prob = −64.21758412891785
Acceptance Val = 0.658405257229882
Accepted ? = f a l s e
Acceptance Rate = 0 .0

Chain Step Event (with d e t a i l s)
Last = Conta inerState : [0 . 9 0 . 2 3 0 . 7 1 0 . 4 9]
Last Prob = −359.046964566765
Proposed State = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 4 9]
Proposed Prob = −360.0165066537818
Current State = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 4 9]
Forward Prob = −0.06327351354448152
Reverse Prob = −0.06327351354448152
Acceptance Prob = −0.969542087016805
Acceptance Val = 0.31056162077494043
Accepted ? = true
Acceptance Rate = 0 .5

Chain Step Event (with d e t a i l s)
Last = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 4 9]
Last Prob = −360.0165066537818
Proposed State = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 4 2 2 5 1 8 9 5 7 4 1 5 2 1 9 6]
Proposed Prob = −360.1951841070053
Current State = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 4 2 2 5 1 8 9 5 7 4 1 5 2 1 9 6]
Forward Prob = 0.6154440530408976
Reverse Prob = 0.6154440530408976
Acceptance Prob = −0.17867745322348583
Acceptance Val = 0.13272539253007873
Accepted ? = true
Acceptance Rate = 0.6666666666666666

Chain Step Event (with d e t a i l s)
Last = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 4 2 2 5 1 8 9 5 7 4 1 5 2 1 9 6]
Last Prob = −360.1951841070053
Proposed State = Conta inerState : [1 . 0245145624463277 0 . 23 0 . 45610096830883196
0 .4225189574152196]
Proposed Prob = − I n f i n i t y
Current State = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 4 2 2 5 1 8 9 5 7 4 1 5 2 1 9 6]
Forward Prob = 0.23049155040119496
Reverse Prob = 0.23049155040119496
Acceptance Prob = − I n f i n i t y
Acceptance Val = 0.335025050367706
Accepted ? = f a l s e
Acceptance Rate = 0 .5

Chain Step Event (with d e t a i l s)
Last = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 4 2 2 5 1 8 9 5 7 4 1 5 2 1 9 6]

28

Last Prob = −360.1951841070053
Proposed State = Conta inerState : [0 . 9 0 . 1856011046441249 0 . 45610096830883196
0 .4225189574152196]
Proposed Prob = −363.1065248979661
Current State = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 4 2 2 5 1 8 9 5 7 4 1 5 2 1 9 6]
Forward Prob = 0.3116872397632934
Reverse Prob = 0.3116872397632934
Acceptance Prob = −2.9113407909608213
Acceptance Val = 0.14726731467399157
Accepted ? = f a l s e
Acceptance Rate = 0 .4

Chain Step Event (with d e t a i l s)
Last = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 4 2 2 5 1 8 9 5 7 4 1 5 2 1 9 6]
Last Prob = −360.1951841070053
Proposed State = Conta inerState : [0 . 9 0 . 2 3 0 . 1 8 2 5 2 5 6 9 8 0 6 2 8 8 8 1 0 . 4 2 2 5 1 8 9 5 7 4 1 5 2 1 9 6]
Proposed Prob = −364.9924350935826
Current State = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 4 2 2 5 1 8 9 5 7 4 1 5 2 1 9 6]
Forward Prob = −0.1255457772139429
Reverse Prob = −0.1255457772139429
Acceptance Prob = −4.797250986577353
Acceptance Val = 0.4310649477090058
Accepted ? = f a l s e
Acceptance Rate = 0.3333333333333333

Chain Step Event (with d e t a i l s)
Last = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 4 2 2 5 1 8 9 5 7 4 1 5 2 1 9 6]
Last Prob = −360.1951841070053
Proposed State = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 5 8 7 9 7 0 3 5 3 3 0 0 0 0 5 5]
Proposed Prob = −359.85442835072524
Current State = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 5 8 7 9 7 0 3 5 3 3 0 0 0 0 5 5]
Forward Prob = 0.3415983954458079
Reverse Prob = 0.3415983954458079
Acceptance Prob = 0.0
Acceptance Val = 0.36058319097411967
Accepted ? = true
Acceptance Rate = 0.42857142857142855

Chain Step Event (with d e t a i l s)
Last = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 5 8 7 9 7 0 3 5 3 3 0 0 0 0 5 5]
Last Prob = −359.85442835072524
Proposed State = Conta inerState : [0 . 6696587069504394 0 . 23 0 . 45610096830883196
0 .5879703533000055]
Proposed Prob = −361.2666064185844
Current State = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 5 8 7 9 7 0 3 5 3 3 0 0 0 0 5 5]
Forward Prob = 0.00517213125315924
Reverse Prob = 0.00517213125315924
Acceptance Prob = −1.412178067859145
Acceptance Val = 0.9268299028867995
Accepted ? = f a l s e
Acceptance Rate = 0.375

Chain Step Event (with d e t a i l s)
Last = Conta inerState : [0 . 9 0 . 2 3 0 . 4 5 6 1 0 0 9 6 8 3 0 8 8 3 1 9 6 0 . 5 8 7 9 7 0 3 5 3 3 0 0 0 0 5 5]
Last Prob = −359.85442835072524
Proposed State = Conta inerState : [0 . 9 0 . 2099774552506214 0 . 45610096830883196
0 .5879703533000055]
Proposed Prob = −360.42346255905113
Current State = Conta inerState : [0 . 9 0 . 2099774552506214 0 . 45610096830883196
0 .5879703533000055]
Forward Prob = 0.32110939780366615

29

Reverse Prob = 0.32110939780366615
Acceptance Prob = −0.5690342083258884
Acceptance Val = 0.3311132575995816
Accepted ? = true
Acceptance Rate = 0.4444444444444444

Chain Step Event (with d e t a i l s)
Last = Conta inerState : [0 . 9 0 . 2099774552506214 0 . 45610096830883196
0 .5879703533000055]
Last Prob = −360.42346255905113
Proposed State = Conta inerState : [0 . 9 0 . 2099774552506214 0 . 15833697164158184
0 .5879703533000055]
Proposed Prob = −365.44521171685466
Current State = Conta inerState : [0 . 9 0 . 2099774552506214 0 . 45610096830883196
0 .5879703533000055]
Forward Prob = −0.2084655958574132
Reverse Prob = −0.2084655958574132
Acceptance Prob = −5.0217491578035265
Acceptance Val = 0.7418864833851747
Accepted ? = f a l s e
Acceptance Rate = 0 .4

30

