
> plot(exp.btgpllm, main = "treed GP LLM,", proj = c(1))

> plot(exp.btgpllm, main = "treed GP LLM,", proj = c(2))
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Figure 12: 1-d projections of the posterior predictive surface (left) and normed predictive
intervals (right) of the 1-d tree GP LLM analysis of the synthetic exponential data. The top

plots show projection onto the first input, and the bottom ones show the second.

Finally, viewing 1-d projections of tgp-class output is possible by supplying
a scalar proj argument to the plot.tgp. Figure 12 shows the two projections
for exp.btgpllm. In the left surface plots the open circles indicate the mean of
posterior predictive distribution. Red lines show the 90% intervals, the norm of
which are shown on the right.

3.4 Motorcycle Accident Data

The Motorcycle Accident Dataset [28] is a classic nonstationary data set used in
recent literature [24] to demonstrate the success of nonstationary models. The
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data consists of measurements of the acceleration of the head of a motorcycle
rider as a function of time in the first moments after an impact. In addition
to being nonstationary, the data has input–dependent noise (heteroskedasticity)
which makes it useful for illustrating how the treed GP model handles this nu-
ance. There are at least two—perhaps three—three regions where the response
exhibits different behavior both in terms of the correlation structure and noise
level.

The data is included as part of the MASS library in R.

> library(MASS)

> X <- data.frame(times = mcycle[, 1])

> Z <- data.frame(accel = mcycle[, 2])

Figure 13 shows how a stationary GP is able to capture the nonlinearity in the
response but fails to capture the input dependent noise and increased smooth-
ness (perhaps linearity) in parts of the input space.

> moto.bgp <- bgp(X = X, Z = Z, m0r1 = TRUE, verb = 0)

Since the responses in this data have a wide range, it helps to translate and
rescale them so that they have a mean of zero and a range of one. The m0r1

argument to b* functions automates this procedure. Progress indicators are
suppressed.

> plot(moto.bgp, main = "GP,", layout = "surf")

10 20 30 40 50

−
10

0
−

50
0

50

GP, accel mean

times

ac
ce

l

Figure 13: Posterior predictive distribution using bgp on the motorcycle accident data: mean
and 90% credible interval

A Bayesian Linear CART model is able to capture the input dependent
noise but fails to capture the waviness of the “whiplash”—center— segment of
the response.
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> moto.btlm <- btlm(X = X, Z = Z, m0r1 = TRUE, verb = 0)

Figure 14 shows the resulting piecewise linear predictive surface and MAP par-
tition (T̂ ).

> plot(moto.btlm, main = "Bayesian CART,", layout = "surf")
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Figure 14: Posterior predictive distribution using btlm on the motorcycle accident data: mean
and 90% credible interval

A treed GP model seems appropriate because it can model input dependent
smoothness and noise. A treed GP LLM is probably most appropriate since the
left-hand part of the input space is likely linear. One might further hypothe-
size that the right–hand region is also linear, perhaps with the same mean as
the left–hand region, only with higher noise. The b* functions can force an
i.i.d. hierarchical linear model by setting bprior="b0".

> moto.btgpllm <- btgpllm(X = X, Z = Z, bprior = "b0",

+ m0r1 = TRUE, verb = 0)

> moto.btgpllm.p <- predict(moto.btgpllm)

The predict.tgp function obtains posterior predictive estimates from the MAP
parameterization (a.k.a., kriging). The resulting posterior predictive surface is
shown in the top–left of Figure 15. The bottom–left of the figure shows the norm
(difference) in predictive quantiles, clearly illustrating the treed GP’s ability to
capture input-specific noise in the posterior predictive distribution. The right–
hand side of the figure shows the MAP surfaces obtained from the output of the
predict.tgp function.

The tgp–default bprior="bflat" implies an improper prior on the regres-
sion coefficients β. It essentially forces W = ∞, thus eliminating the need to
specify priors on β0 and W

−1 in (1). This was chosen as the default because
it works well in many examples, and leads to a simpler overall model and a
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> par(mfrow = c(1, 2))

> plot(moto.btgpllm, main = "treed GP LLM,", layout = "surf")

> plot(moto.btgpllm.p, center = "km", layout = "surf")
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> par(mfrow = c(1, 2))

> plot(moto.btgpllm, main = "treed GP LLM,", layout = "as")

> plot(moto.btgpllm.p, as = "ks2", layout = "as")
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Figure 15: Top: Posterior predictive distribution using treed GP LLM on the motorcycle
accident data. The left–hand panes how mean and 90% credible interval; bottom: Quantile-
norm (90%-5%) showing input-dependent noise. The right–hand panes show similar kriging

surfaces for the MAP parameterization.

faster implementation. However, the Motorcycle data is an exception. More-
over, when the response data is very noisy (i.e., low signal–to–noise ratio), tgp
can be expected to partition heavily under the bprior="bflat" prior. In such
cases, one of the other proper priors like the full hierarchical bprior="b0" or
bprior="bmzt" might be preferred.

An anonymous reviewer pointed out a shortcoming of the treed GP model
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on this data. The sharp spike in predictive variance near the first regime shift
suggests that the symmetric Gaussian noise model may be inappropriate. A
log Gaussian process might offer an improvement, at least locally. Running the
treed GP MCMC for longer will eventually result in the finding of a partition
near time=17, just after the first regime change. The variance is still poorly
modeled in this region. Since it is isolated by the tree it could potentially be fit
with a different noise model.

3.5 Friedman data

This Friedman data set is the first one of a suite that was used to illustrate
MARS (Multivariate Adaptive Regression Splines) [11]. There are 10 covariates
in the data (x = {x1, x2, . . . , x10}). The function that describes the responses
(Z), observed with standard Normal noise, has mean

E(Z|x) = µ = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5, (18)

but depends only on {x1, . . . , x5}, thus combining nonlinear, linear, and irrele-
vant effects. Comparisons are made on this data to results provided for several
other models in recent literature. Chipman et al. [5] used this data to compare
their treed LM algorithm to four other methods of varying parameterization:
linear regression, greedy tree, MARS, and neural networks. The statistic they
use for comparison is root mean-square error (RMSE)

MSE =
∑

n

i=1
(µi − ẑi)

2/n RMSE =
√

MSE

where ẑi is the model–predicted response for input xi. The x’s are randomly
distributed on the unit interval.

Input data, responses, and predictive locations of size N = 200 and N ′ =
1000, respectively, can be obtained by a function included in the tgp package.

> f <- friedman.1.data(200)

> ff <- friedman.1.data(1000)

> X <- f[, 1:10]

> Z <- f$Y

> XX <- ff[, 1:10]

This example compares Bayesian treed LMs with Bayesian GP LLM (not treed),
following the RMSE experiments of Chipman et al. It helps to scale the re-
sponses so that they have a mean of zero and a range of one. First, fit the
Bayesian treed LM, and obtain the RMSE.

> fr.btlm <- btlm(X = X, Z = Z, XX = XX, tree = c(0.95,

+ 2), pred.n = FALSE, m0r1 = TRUE, verb = 0)

> fr.btlm.mse <- sqrt(mean((fr.btlm$ZZ.mean - ff$Ytrue)^2))

> fr.btlm.mse

[1] 1.939446
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