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Abstract

Conditional autoregressive models are commonly used to represent spatial autocorre-
lation in data relating to a set of non-overlapping areal units, which arise in a wide variety
of applications including agriculture, education, epidemiology and image analysis. Such
models are typically specified in a hierarchical Bayesian framework, with inference based
on Markov Chain Monte Carlo (MCMC) simulation. The most widely used software to
fit such models is WinBUGS or OpenBUGS, but in this paper we introduce the R pack-
age CARBayes. The main advantage of CARBayes compared with the BUGS software
is its ease of use, because: (1) the spatial adjacency information is easy to specify as a
binary neighbourhood matrix; and (2) given the neighbourhood matrix the models can
be implemented by a single function call in R. This paper outlines the general class of
Bayesian hierarchical models that can be implemented in the CARBayes software, de-
scribes their implementation via MCMC simulation techniques, and illustrates their use
with two worked examples in the fields of house price analysis and disease mapping.

Keywords: Bayesian models, conditional autoregressive priors, R package CARBayes.

1. Introduction

Data relating to a set of non-overlapping spatial areal units are prevalent in many fields, in-
cluding agriculture (Besag and Higdon (1999)), ecology (Brewer and Nolan (2007)), education
(Wall (2004)), epidemiology (Lee (2011)) and image analysis (Gavin and Jennison (1997)).
There are numerous motivations for modelling such data, including ecological regression (see
Wakefield (2007) and Lee, Ferguson, and Mitchell (2009)), disease mapping (see Green and
Richardson (2002) and Lee (2011)) and Wombling (see Lu, Reilly, Banerjee, and Carlin (2007),
Ma and Carlin (2007)). The set of areal units on which data are recorded can form a regular
lattice or differ largely in both shape and size, with examples of the latter including the set
of electoral wards or census tracts corresponding to a city or county. In either case such data
typically exhibit spatial autocorrelation, with observations from areal units close together
tending to have similar values. A proportion of this spatial autocorrelation may be modelled
by including known covariate risk factors in a regression model, but it is common for spatial
structure to remain in the residuals after accounting for these covariate effects. This residual
spatial autocorrelation can be induced by a number of factors, and violates the assumption of
independence that is common in many regression models. One possible cause is unmeasured
confounding, which occurs when an important spatially correlated covariate is either unmea-
sured or unknown. The spatial structure in this covariate induces spatial autocorrelation
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into the response, which hence cannot be accounted for in a regression model. Other possible
causes of residual spatial autocorrelation are neighbourhood effects, where subjects behaviour
is influenced by that of neighbouring subjects, and grouping effects, where subjects choose to
be close to similar subjects.

The most common remedy for this residual autocorrelation is to augment the linear predictor
with a set of spatially correlated random effects, as part of a Bayesian hierarchical model.
These random effects are typically represented with a Conditional AutoRegressive (CAR,
Besag, York, and Mollié (1991)) model, which induces spatial autocorrelation through the
adjacency structure of the areal units. A number of CAR priors have been proposed in the
literature, including the intrinsic and Besag-York-Mollié (BYM) models (both Besag et al.
(1991)), as well as alternatives developed by Leroux, Lei, and Breslow (1999) and Stern and
Cressie (1999). However, the CAR priors listed above force the random effects to exhibit a
single global level of spatial autocorrelation, ranging from independence through to strong
spatial smoothing. Such a uniform level of spatial smoothness for the entire region is unre-
alistic for real data, which are instead likely to exhibit sub-areas of spatial autocorrelation
separated by discontinuities. Such localised spatial smoothing may occur where rich and poor
communities live side-by-side, and in this context the response variable is likely to evolve
smoothly within each community with a sudden change in its value at the border where the
two communities meet. A number of approaches have been proposed for extending the class
of CAR priors to deal with localised spatial smoothing, including papers by Lawson and Clark
(2002) (combining the intrinsic model with a ‘jump’ component for discontinuities), Brewer
and Nolan (2007) (variable smoothing via a spatially varying variance), Lu et al. (2007) (mod-
elling the adjacency structure of the areal units using logistic regression), Reich and Hodges
(2008) (varible smoothing via a spatially varying variance in a spatio-temporal setting) and
Lee and Mitchell (2012) (modelling the partial correlation between random effects in adjacent
areal units as a function of their dissimilarity).

The models described above are typically implemented in a Bayesian setting, where inference
is based on Markov Chain Monte Carlo (MCMC) simulation. The most commonly used soft-
ware to implement this class of models is the BUGS project (Lunn, Spiegelhalter, Thomas,
and Best (2009), WinBUGS and OpenBUGS), which has in-built functions car.normal and
car.proper to implement the intrinsic, BYM and Stern and Cressie (1999) models, as well
as allowing users to write code to implement their own spatial random effects models. The
intrinsic and BYM models can also be implemented in BayesX (Belitz, C and Brezger, A
and Kneib, T and Lang, S (2009)), while the R software (R Core Team (2013)) has packages
CARramps (for Gaussian data), hSDM (for binomial data), spatcounts (for count data in-
cluding Poisson and zero-inflated Poisson distributions) and spdep (for Gaussian data) that
can also implement a restricted set of CAR models. These models can also be implemented
in R using Integrated Nested Laplace Approximations (INLA, http://www.r-inla.org/ ), using
the package INLA.

However, each of these software packages either can only fit a limited set of CAR models or
require a degree of programming to implement them, which is the motivation for creating
the R package CARBayes. The main advantage of this package is its ease of use in fitting
CAR models, because: (1) the spatial adjacency information is easy to specify as a binary
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neighbourhood matrix; and (2) given the neighbourhood matrix the models can be imple-
mented by a single function call in R. In addition, CARBayes can implement a much wider
class of CAR models than is possible using the other R packages listed above, as the response
data can follow binomial, Gaussian or Poisson distributions. We note that CARBayes is only
designed to fit CAR models (for a full list of models see Sections 2 and 3), and is in no way
a competitor to the general purpose BUGS software for Bayesian modelling.

Therefore the aim of this paper is to present the software CARBayes, by outlining the class
of models that it can implement and illustrating its use by means of two worked examples.
The remainder of this paper is organised as follows. Section two outlines the general Bayesian
hierarchical model that can be implemented in the CARBayes package, while Section three
gives details about the software. Sections four and five give two worked examples of using
the software, including how to create the neighbourhood matrix and produce spatial maps of
the results. Finally, Section six contains a concluding discussion, and outlines areas for future
development.

2. Bayesian hierarchical models for spatial areal unit data

This section outlines the general Bayesian hierarchical model for spatial areal unit data that
can be implemented in the CARBayes package.

2.1. Level 1 - data likelihood

The study region S is partitioned into n non-overlapping areal units S = {S1, . . . ,Sn}, which
are linked to a corresponding set of responses Y = (Y1, . . . , Yn)T, and a vector of known
offsets O = (O1, . . . , On)T. The spatial pattern in the response is modelled by a matrix of
covariates X = (xT

1 , . . . ,x
T
n)T and a set of random effects φ = (φ1, . . . , φn), the latter of which

are included to model any spatial autocorrelation that remains in the data after the covariate
effects have been accounted for. The vector of covariates for areal unit Sk are denoted by
xT
k = (1, xk1, . . . , xkp), the first of which corresponds to an intercept term. The general model

that CARBayes can implement is an extension of a generalised linear model and is given by

Yk|µk ∼ f(yk|µk, ν2) for k = 1, . . . , n, (1)

g(µk) = xT
kβ + φk +Ok.

The responses Yk come from an exponential family of distributions f(yk|µk, ν2), and in CAR-
Bayes these can be the binomial, Gaussian or Poisson families. The expected value of Yk
is denoted by E(Yk) = µk, while ν2 is an additional scale parameter that is required if the
Gaussian family is used. The expected values of the responses are related to the linear pre-
dictor via an invertible link function g(.), which in this software is one of the logit (binomial
family), identity (Gaussian family) and natural log (Poisson family) functions. The vector of
regression parameters are denoted by β = (β0, . . . , βp), and non-linear covariate effects can
be incorporated into the above model by including natural cubic spline or polynomial basis
functions in X.
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2.2. Level 2 - prior distributions

An independent Gaussian prior is specified for each regression parameter βj , that is βj ∼
N(mj , vj) for j = 0, . . . , p, and the default values specified by the software are (mj = 0, vj =
1000). The scale parameter ν2 for the Gaussian likelihood is assigned a uniform prior distri-
bution, that is ν2 ∼ U(0,Mν), where the diffuse specification Mν = 1000 is the default value.
We note that a commonly used alternative prior for variance parameters is the conjugate
inverse-gamma distribution, but it is not used here because it is difficult to choose the hyper-
parameters so that it is non-informative for very small values of ν2 (for details see Gelman
(2006)).

CARBayes can implement a number of different random effects models, with the simplest
being the independence prior

θk ∼ N(0, σ2), (2)

σ2 ∼ Uniform(0,Mσ),

where θk replaces φk in the data likelihood (1). The variance parameter is assigned a uniform
prior on the interval (0,Mσ), where as before the default value is Mσ = 1000. This specifi-
cation is appropriate if the covariates included in model (1) have removed all of the spatial
structure in the response, leaving the random effects to account for the possible effects of
over-dispersion (for binomial and Poisson models). However, for most data sets there is likely
to be residual spatial autocorrelation, in which case one of the global or local CAR priors
described below is required.

Global CAR priors

Four different conditional autoregressive priors are commonly used for modelling spatial au-
tocorrelation in the statistics literature, the intrinsic and BYM models (both Besag et al.
(1991)), as well as the alternatives developed by Leroux et al. (1999) and Stern and Cressie
(1999). Each model is a special case of a Gaussian Markov Random Field (GMRF), and can
be written in the general form φ ∼ N(0, τ2Q−1), where Q is a precision matrix that may be
singular (intrinsic model). This matrix controls the spatial autocorrelation structure of the
random effects, and is based on a non-negative symmetric n × n neighbourhood or weight
matrix W . A binary specification based on geographical contiguity is most commonly used,
where wkj = 1 if areal units (Sk,Sj) share a common border (denoted k ∼ j), and is zero
otherwise. This specification forces (φk, φj) relating to geographically adjacent areas (that
is wkj = 1) to be correlated, whereas random effects relating to non-contiguous areal unit
are conditionally independent given the values of the remaining random effects. CAR priors
are commonly specified as a set of n univariate full conditional distributions f(φk|φ−k) for
k = 1, . . . , n (where φ−k = (φ1, . . . , φk−1, φk+1, . . . , φn)), rather than via the multivariate
specification described above. The first CAR prior to be proposed was the intrinsic model
(Besag et al. (1991)), which is given by

φk|φ−k ∼ N

(∑n
i=1wkiφi∑n
i=1wki

,
τ2∑n
i=1wki

)
. (3)
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The conditional expectation is the average of the random effects in neighbouring areas, while
the conditional variance is inversely proportional to the number of neighbours. The latter is
appropriate because if the random effects are spatially correlated, then the more neighbours
an area has the more information there is from its neighbours about the value of its random
effect. In common with the other variance parameters, τ2 is assigned a uniform prior on the
interval (0,Mτ ), with the default value being Mτ = 1000. The limitation with this model
is that it can only represent strong spatial autocorrelation, and is well known to produce
random effects that are overly smooth. Therefore, the same authors proposed an extension to
allow for both weak and strong spatial autocorrelation, by replacing φk in (1) with θk + φk,
which are respectively defined by (2) and (3). This model is known as the BYM or convolution
model, and is the most commonly used conditional autoregressive model in practice. However,
it requires two random effects to be estimated for each data point, whereas only their sum
is identifiable from the data. Therefore, Leroux et al. (1999) and Stern and Cressie (1999)
proposed alternative CAR priors for modelling varying strengths of spatial autocorrelation,
using only a single set of random effects. The model by Leroux et al. (1999) is given by

φk|φ−k ∼ N

(
ρ
∑n

i=1wkiφi
ρ
∑n

i=1wki + 1− ρ
,

τ2

ρ
∑n

i=1wki + 1− ρ

)
, (4)

while the proposal of Stern and Cressie (1999) is

φk|φ−k ∼ N

(
ρ
∑n

i=1wkiφi∑n
i=1wki

,
τ2∑n
i=1wki

)
. (5)

In both cases ρ is a spatial autocorrelation parameter, with ρ = 0 corresponding to inde-
pendence, while ρ = 1 corresponds to strong spatial autocorrelation. A uniform prior on
the unit interval is specified for ρ, that is ρ ∼ U(0, 1), while the usual uniform prior on the
interval (0,Mτ ) is adopted for τ2. In both cases when ρ = 1 the intrinsic model proposed
by Besag et al. (1991) is obtained, while when ρ = 0 the only difference is the denominator
in the conditional variance. These global CAR models were compared in a recent review by
Lee (2011), who concluded that the model proposed by Leroux et al. (1999) was the most
appealing from both theoretical and practical standpoints.

Local CAR priors

The CAR priors described above enforce a single global level of spatial smoothing for the set
of random effects, which for model (4) is controlled by ρ. This is illustrated by the partial
correlation structure implied by that model, which for (φk, φj) is given by

COR(φk, φj |φ−kj) =
ρwkj√

(ρ
∑n

i=1wki + 1− ρ)(ρ
∑n

i=1wji + 1− ρ)
. (6)

For non-neighbouring areas (where wkj = 0) the random effects are conditionally indepen-
dent, while for neighbouring areas their partial correlation is controlled by ρ. However, this
representation of spatial smoothness is likely to be overly simplistic in practice, as the random
effects surface is likely to include sub-regions of smooth evolution as well as boundaries where
abrupt step changes occur. The paper by Lee and Mitchell (2012) proposes a method for
capturing such localised spatial structure, including the identification of boundaries in the
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random effects surface. The underlying idea is to model the elements of W corresponding
to geographically adjacent areas as binary random quantities, rather than assuming they are
fixed at one. Conversely, if areal units (Sk,Sj) do not share a common border then wkj is
fixed at zero. From (6), it is straightforward to see that if wkj is estimated as one then (φk, φj)
are spatially correlated, and are smoothed over in the modelling process. In contrast, if wkj
is estimated as zero then no smoothing is imparted between (φk, φj), as they are modelled
as conditionally independent. In this case a boundary is said to exist in the random effects
surface between areal units (Sk,Sj). We note that if covariates are excluded from (1) then
any boundaries identified also relate to the mean surface µ = (µ1, . . . , µn) in the absence of an
offset term, because it has the same spatial structure as the random effects as g(µk) = β0+φk.

The model proposed by Lee and Mitchell (2012) is based on the Poisson log-linear specification
of (1) and the CAR prior (4), with the restriction that ρ is fixed at 0.99 (although CARBayes
can also estimate ρ in this model). This restriction was made by Lee and Mitchell (2012) to
ensure that the random effects exhibit strong spatial smoothing globally, which can be altered
locally by estimating {wkj |k ∼ j}. They model each wkj as a function of the dissimilarity
between areal units (Sk,Sj), because large differences in the response are likely to occur where
neighbouring populations are very different. This dissimilarity is captured by q non-negative
dissimilarity metrics zkj = (zkj1, . . . , zkjq), which could include social or physical factors,
such as the absolute difference in smoking rates, or the proportion of the shared border that
is blocked by a physical barrier (such as a river or railway line) and cannot be crossed. Using
these measures of dissimilarity, {wkj |k ∼ j} are collectively modelled as

wkj(α) =

{
1 if exp(−

∑q
i=1 zkjiαi) ≥ 0.5 and k ∼ j

0 otherwise
, (7)

αi ∼ Uniform(0,Mi) for i = 1, . . . , q.

The q regression parameters α = (α1, . . . , αq) determine the effects of the dissimilarity met-
rics on {wkj |k ∼ j}, and if αi < − ln(0.5)/max{zkji}, then the ith dissimilarity metric has
not solely identified any boundaries because exp(−αizkji) > 0.5 for all k ∼ j. The aim of Lee
and Mitchell (2012) was to identify the locations of any boundaries (abrupt step changes) in
disease risk surfaces, so the available covariates were used to construct dissimilarity metrics
rather than being incorporated into the linear predictor. In contrast, if the aim of the analysis
was to explain the spatial pattern in the response, then covariates would be included in (1),
and only metrics directly describing the dissimilarity between two areas, such as the existence
of a physical boundary or the distance between the areas centroids, would be included in (7).

3. CARBayes

3.1. Obtaining the software

The CARBayes software is an add-on package to the statistical software R (≥ 2.10.0), and
is freely available to download from CRAN (http://cran.r-project.org/). The package can be
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downloaded for Windows, Linux and Apple platforms, and in addition to the base implemen-
tation of R, it requires the MASS, coda, evd, lattice, MCMCpack, spam, stats4 and truncdist
packages. Once R and the required packages have been installed, CARBayes can be loaded
using the following code.

R> library(''CARBayes'')

Note, the packages listed in the previous paragraph are automatically loaded upon loading
CARBayes, as they are the only ones required for CARBayes to implement the Bayesian
spatial models described in the previous section. However, a complete spatial analysis will
typically also include the creation of the neighbourhood matrix W from a shapefile, the
production of spatial maps of the fitted values and residuals, and tests for the presence of
spatial autocorrelation. To achieve these tasks the following additional packages are also
required, which need to be loaded into R using the library() command as above: boot,
deldir, foreign, grid, maptools, Matrix, nlme, shapefiles,sp, spdep and splines. These packages
have also been loaded for the analyses presented in Sections four and five.

3.2. Functionality

CARBayes can fit the general exponential family Bayesian hierarchical model outlined in the
previous section, where the response data can be binomial, Gaussian or Poisson. The names
of the functions have the form of ‘poisson.lerouxCAR’, where the first part specifies the
likelihood model while the second part after the ‘.’ specifies the random effects prior model.
The prior models listed below can be implemented by the software, where the ‘XXX’ in the
function name should be replaced by one of ‘binomial’, ‘gaussian’ or ‘poisson’.

1. XXX.independent() - the independence model given by (2).

2. XXX.iarCAR() - the intrinsic autoregressive model proposed by Besag et al. (1991) and
given by (3).

3. XXX.bymCAR() - the BYM model proposed by Besag et al. (1991) and given by a linear
combination of (2) and (3).

4. XXX.lerouxCAR() - the CAR prior proposed by Leroux et al. (1999) and given by (4).

5. XXX.properCAR() - the CAR prior proposed by Stern and Cressie (1999) and given by
(5).

6. XXX.dissimilarityCAR() - the local spatial smoothing model proposed by Lee and
Mitchell (2012) and given by (4) and (7).

The linear predictor for each of the Bayesian hierarchical models is specified as an R formula

object, in common with the glm() and gam() functions. The spatial neighbourhood infor-
mation required to run the CAR models needs to be provided as an n × n neighbourhood
matrix W , which is simpler to construct than the series of list objects required by the BUGS
software. A full list of arguments for each function can be found in the manual accompany-
ing the package. In addition to the functions listed above, the package contains two further
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functions combine.data.shapefile() and highlight.borders(). These functions aid in
plotting spatial maps of the data, and their use is illustrated in Sections 4 and 5 of this paper.
Finally, the package also contains the data files needed to recreate these analyses.

3.3. Inference

Inference for all of the Bayesian hierarchical models is based on MCMC simulation, using
a combination of Gibbs sampling and Metropolis steps. The variance parameters are Gibbs
sampled from their full conditional truncated inverse gamma distributions, while the remain-
ing parameters are updated using Metropolis steps with univariate or multivariate random
walk proposal distributions. The exception to this is for Gaussian response data, where the
covariate regression parameters and the random effects can also be Gibbs sampled. The soft-
ware prints a message to the R console after every 1,000 MCMC iterations, which allows the
user to monitor the function’s progress. Once a model has been fitted the software prints out
a summary results table to the console, which includes details of the model fitted, parameter
estimates and uncertainty intervals.

4. Example 1 - property prices in Greater Glasgow

The utility of the CARBayes software is illustrated by modelling the spatial pattern in average
property prices across Greater Glasgow, Scotland, in 2008. This is an ecological regression
analysis, whose aim is to identify the factors that affect property prices and quantify their
effects.

4.1. Data and exploratory analysis

The data come from the Scottish Neighbourhood Statistics (SNS) database (http://www.sns.gov.uk/ ),
but are also included with the CARBayes software. The study region is the Greater Glasgow
and Clyde health board, which is split into 271 intermediate geographies (IG). These IGs are
small areas that have a median area of 124 hectares and a median population of 4,239. The
data come in two parts. The first is a comma separated variable (csv) file housedata.csv,
which contains the response and covariate data as well as a column containing the unique
identifier (IG) for each area. The second part of the data is a shapefile, which comprises
shp.shp containing the polygons, and dbf.dbf containing the lookup file linking each area
(via IG) to a polygon. These data can be read into R using the following code, provided that
the working directory has been set to the location of the data.

R> housedata <- read.csv(file="housedata.csv", row.names=1)

R> shp <- read.shp(shp.name="shp.shp")

R> dbf <- read.dbf(dbf.name="dbf.dbf")

Note, as these data are all included in the CARBayes package they can each be loaded into
R using the data() function instead (that is using the code data(housedata), data(shp),
data(dbf)). The structure of housedata is shown below using the head() function, and
from the above read.csv() command, the unique identifier (IG) has been turned into the
row names of the data frame.
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Variable Percentiles
0% 25% 50% 75% 100%

House price (in thousands) 50.0 95.0 122.0 158.4 372.8
Crime rate (per 10,000) 85.0 303.5 519.0 733.0 8009.0
Number of rooms (median) 3.0 3.0 4.0 4.0 6.0
Property sales (%) 0.2 2.3 3.1 4.1 10.6
Drive time to a shop (minutes) 0.3 0.9 1.3 1.9 8.5

Table 1: Summary of the distribution of the data.

R> head(housedata)

price crime rooms sales driveshop type

S02000260 112.250 390 3 68 1.2 flat

S02000261 156.875 116 5 26 2.0 semi

S02000262 178.111 196 5 34 1.7 semi

S02000263 249.725 146 5 80 1.5 detached

S02000264 174.500 288 4 60 0.8 semi

S02000265 163.521 342 4 24 2.5 semi

These data are summarised in Table 1, which displays the percentiles of their distribution.
The response variable in this study is the median price (in thousands) of all properties sold
in 2008 in each IG, with that year being chosen because covariate data for later years are
not available. The table shows large variation in this variable, with average prices ranging
between £50, 000 and £372, 800 across the study region. The first covariate in this study is
the crime rate in each IG, because areas with higher crime rates are likely to be less desirable
to live in. Crime rate is measured as the total number of recorded crimes in each IG per
10,000 people that live there, and the values range between 85 and 1994 with the addition of
a single large outlier of 8009. The location of this outlier is the city centre of Glasgow, and
the high crime rate is likely to be caused by the large numbers of visitors to this part of the
city both during the day and at night. Therefore, as this area has an artificially high crime
rate, it is removed from the data set using the following code.

R> housedata <- housedata[!rownames(housedata)=="S02000655", ]

Other covariates included in this study are the median number of rooms in a property, the
percentage of properties that sold in a year, and the average time taken to drive to the nearest
shopping centre. Finally, a categorical variable measuring the most prevalent property type in
each area is available, with levels; ‘flat’ (68% of areas), ‘terraced’ (7%), ‘semi-detached’ (13%)
and ‘detached’ (12%). The next step in the analysis is to combine the data with the shapefile
using the CARBayes function combine.data.shapefile(), which allows spatial maps of the
variables in the data.frame housedata to be produced. The function requires the row names
of housedata to appear in the first column of the lookup table in the dbf part of the shapefile.
We note that housedata only relates to a subset of the areas in the shapefile, which contains
intermediate geographies for the whole of Scotland. The data and shapefile can be combined
with the code
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Figure 1: Map displaying median property prices in Greater Glasgow (in thousands).

R> data.combined <- combine.data.shapefile(data=housedata, shp=shp, dbf=dbf)

which produces an object data.combined of class "SpatialPolygonsDataFrame", which is
an object type from the sp package. A spatial map of this response variable can be plotted
using the functionality of the sp package, using the following R code.

R> northarrow <- list("SpatialPolygonsRescale", layout.north.arrow(),

offset = c(220000,647000), scale = 4000)

R> scalebar <- list("SpatialPolygonsRescale", layout.scale.bar(),

offset = c(225000,647000), scale = 10000, fill=c("transparent","black"))

R> text1 <- list("sp.text", c(225000,649000), "0")

R> text2 <- list("sp.text", c(230000,649000), "5000 m")

R> spplot(data.combined, c("price"), sp.layout=list(northarrow, scalebar,

text1, text2), at=seq(min(housedata$price)-1, max(housedata$price)+1,

length.out=8), col.regions=c("#FEE5D9", "#FCBBA1", "#FC9272", "#FB6A4A",

"#EF3B2C", "#CB181D", "#99000D"))

The plotting is achieved by the spplot() function, with the preceding lines adding a north
arrow, a scale bar and accompanying text. The resulting plot is shown in Figure 1, which
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suggests that Glasgow has a number of property sub-markets, whose prices are not related
to those in neighbouring areas. An example of this is the two groups of darker red regions
(more expensive properties) north of the river Clyde (the thin white line running south east),
which are the highly sought after Westerton / Bearsden (northerly cluster) and Dowanhill /
Hyndland (central cluster) districts.

4.2. Non-spatial modelling

The natural log of the median property price variable is treated as the response and assumed
to be Gaussian, and an initial covariate only model is built in a frequentist framework using
linear models. Initial plots of the data using the pairs() command suggest that the natural
logs of both the crime rate and the drive time to a shopping centre are linearly related to
the response, and the transformation of all three variables is achieved using the following
commands.

R> housedata$logprice <- log(housedata$price)

R> housedata$logcrime <- log(housedata$crime)

R> housedata$logdriveshop <- log(housedata$driveshop)

From fitting this model all of the numeric covariates are significantly related to the response
at the 5% level, suggesting they all play an important role in explaining the spatial pattern in
median property price. The predominant property type variable also appears to be important,
with areas where the level is ‘detached’ (the baseline level) having significantly higher property
prices than the other three levels. This covariate model can be fitted to the data using the
following R code:

R> form <- housedata$logprice ~ housedata$logcrime + housedata$rooms

+ housedata$sales + factor(housedata$type) + housedata$logdriveshop

R> model <- lm(formula=form)

A Moran’s I permutation test for spatial autocorrelation was then applied to the residuals
from this model based on 10,000 random permutations, using the functionality of the spdep
package, The Moran’s I statistic equals 0.2768 with a corresponding p-value of 0.000099, which
suggests that the residuals contain substantial positive spatial autocorrelation. Code to im-
plement the test is shown below. The first two lines turn the "SpatialPolygonsDataFrame"

object data.combined into an "nb" and then a "listw" "nb" object, which is required by
the moran.mc() function.

R> W.nb <- poly2nb(data.combined, row.names = rownames(housedata))

R> W.list <- nb2listw(W.nb, style="B")

R> resid.model <- residuals(model)

R> moran.mc(x=resid.model, listw=W.list, nsim=10000)

Monte-Carlo simulation of Moran's I

data: resid.model

weights: W.list

number of simulations + 1: 10001
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statistic = 0.2768, observed rank = 10001, p-value = 9.999e-05

alternative hypothesis: greater

4.3. Spatial modelling with CARBayes

The residual spatial autocorrelation can be accounted for by adding a set of random effects to
the model, using the functions outlined in the previous section. We illustrate this by applying
model (5) to the data, because it allows a direct comparison of the CARBayes and BUGS
software packages, as the latter has the inbuilt function car.proper to implement this model.
The code to implement this model in CARBayes is shown below, where the first line creates
the binary neighbourhood matrix W.mat from the W.nb object.

R> W.mat <- nb2mat(W.nb, style="B")

R> model.spatial <- gaussian.properCAR(formula=form, W=W.mat, burnin=20000,

n.sample=100000, thin=10)

Inference for this model is based on 8,000 MCMC samples, which were obtained by running
the chain for 100,000 samples, with 20,000 being discarded as the burn-in period and the
remaining 80,000 being thinned by 10 to reduce the autocorrelation. When the function
finished running it produces the summary output shown below. The first part of the output
is a description of the model that was fitted, including the likelihood and random effects
specifications, as well as the covariates included in the linear predictor. The second part
summarises the parameters (except the random effects) by means of posterior medians, 95%
credible intervals, and acceptance rates.

Likelihood model - Gaussian (identity link function)

Random effects model - Proper CAR

Regression equation - housedata$logprice ~ housedata$logcrime +

housedata$rooms + housedata$sales + factor(housedata$type) +

housedata$logdriveshop

Posterior quantiles and acceptance rates

Median 2.5% 97.5% n.sample % accept

(Intercept) 4.7512 4.2803 5.2346 8000 100.0

housedata$logcrime -0.1111 -0.1731 -0.0504 8000 100.0

housedata$rooms 0.2224 0.1714 0.2719 8000 100.0

housedata$sales 0.0023 0.0016 0.0029 8000 100.0

factor(housedata$type)flat -0.2542 -0.3679 -0.1392 8000 100.0

factor(housedata$type)semi -0.1626 -0.2624 -0.0629 8000 100.0

factor(housedata$type)terrace -0.2913 -0.4160 -0.1664 8000 100.0

housedata$logdriveshop -0.0013 -0.0593 0.0564 8000 100.0

nu2 0.0237 0.0142 0.0330 8000 100.0

tau2 0.0518 0.0242 0.1000 8000 100.0
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rho 0.9852 0.9416 0.9981 8000 59.7

Acceptance rate for the random effects is 100%

DIC = -155.7279 p.d = 96.94488

Model output

In addition to producing the summary table above, fitting the model returns a list object
with the following components, which can be viewed using the summary() function as shown
below.

R> summary(model.spatial)

Length Class Mode

formula 3 formula call

samples.beta 64000 mcmc numeric

samples.phi 2160000 mcmc numeric

samples.nu2 8000 mcmc numeric

samples.tau2 8000 mcmc numeric

samples.rho 8000 mcmc numeric

fitted.values 1350 -none- numeric

random.effects 1350 -none- numeric

residuals 1350 -none- numeric

DIC 1 -none- numeric

p.d 1 -none- numeric

The first element of this list is the fixed effects regression model specified by the formula
argument. The next five elements are matrices containing the thinned and post burnin-in
MCMC samples for each set of parameters. For example, model.spatial$samples.beta is
an 8,000×8 matrix containing the MCMC samples for all the regression parameters. The
next three elements in the list fitted.values, random.effects and residuals comprise
matrices of dimension n × 5 (here n = 270), which summarise the posterior distribution of
the fitted values, random effects and residuals respectively. Each row corresponds to a single
area, while the columns represent the posterior mean, standard deviation and 50th, 2.5th and
97.5th percentiles of the distribution. The DIC element displays the Deviance Information
Criterion (DIC, Spiegelhalter, Best, Carlin, and Van der Linde (2002)), which is a Bayesian
measure of overall model fit used for model comparison. This quantity trades off the overall
fit to the data against the effective number of parameters in the model, in a similar way to the
AIC and BIC criteria. The list also contains p.d, which is the estimated effective number of
parameters in the model. The DIC criterion is used for comparing the overall fit of multiple
models applied to the same data, and lower values indicate a better fitting model. For further
details about Bayesian modelling see Gelman, Carlin, Stern, and Rubin (2003).

Parameter estimates

The summary output above shows that all covariates exhibit substantial effects on the response
except the natural log of the time taken to drive to a shopping centre, as their 95% credible
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intervals do not include zero. For example, increasing the average number of rooms by one is
estimated to increase the average property price by 24.9%, because the ratio of the average
property prices that differ only in having m and m+ 1 rooms is equal to exp(0.2224) = 1.249.
Similarly, IGs that predominately comprise flats have lower median property prices by around
22.4% (1 − exp(−0.2542) = 0.224), compared with the baseline category of ‘detached’. The
above output also shows that the random effects have modelled substantial spatial autocor-
relation, as the posterior median for the spatial autocorrelation parameter ρ is 0.9852. The
entire posterior distribution (as summarised by the MCMC output) can be viewed using the
code

R> plot(model.spatial$samples.rho)

and the resulting plot is displayed in Figure 2. The matrix of MCMC samples is output as
an "mcmc" object, which comes from the coda package. Plotting this object thus yields a
trace plot (left panel) and a density estimate (right panel), and further MCMC diagnostics
are available from the coda package. The estimated parameters are not highly correlated with
each other, for example, the correlations between the regression parameters range between
-0.87 and 0.63, with the middle 50% ranging between -0.09 and 0.17. The validity of the
parameter estimates from the CARBayes software were assessed by fitting the same model
in the BUGS software. The results of this comparison are displayed in Table 2, which shows
the point estimates (posterior medians) from the two software packages as well as the per-
centage absolute difference relative to the larger of the two estimates. Results are shown for
the covariate effects (β), both variance parameters (τ2, ν2), and the correlation parameter
(ρ). Overall, the table shows good agreement between the two sets of point estimates, with
percentage absolute differences less than two for seven out of the ten parameters. The large
disparity between the two software packages over the estimation of the regression coefficient
for drive time to a shopping centre is artificial, as both estimates are very close to zero (they
differ in the sign). These estimates are accompanied by relatively wide 95% credible inter-
vals, and both software packages suggest that this covariate has no effect on the response.
The other biggest difference between the software packages concerns their estimation of the
random effects variance τ2, which is just under 14% larger using CARBayes. Currently, the
CARBayes package is much slower than the BUGS software (the model ran in this section
runs 17 times faster inBUGS), but a re-engineering of CARBayes using C++ is planned for
the near future, which will make the speeds more comparable.

Acceptance rates for the MCMC algorithm

The acceptance rate for ρ quantifies the proportion of times the value proposed by the
Metropolis updating step was accepted as the new value of the Markov chain. In contrast, due
to the conjugacy between the Gaussian likelihood and the prior distributions for (β,φ, ν2, τ2),
Gibbs sampling is employed for updating these parameters, which is the reason for the 100%
acceptance rate. If the likelihood was either binomial or Poisson then Metropolis updating
steps would be used for (β,φ) instead, and the acceptance rates would then be of interest to
the analyst. The obvious acceptance rate of 100% is shown here for consistency of presentation
with the summary output across different models.
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Figure 2: Posterior samples and density plot for ρ.

Parameter CARBayes BUGS % difference

logcrime -0.1111 -0.1132 1.8%
rooms 0.2224 0.2221 0.1%
sales 0.0023 0.0023 0%
flat -0.2542 -0.2501 1.6%
semi -0.1626 -0.1596 1.8%
terrace -0.2913 -0.2893 0.7%
driveshop -0.0013 0.0024 154.2%
nu2 0.0237 0.0247 4.0%
tau2 0.0518 0.0447 13.7%
rho 0.9852 0.9901 0.5%

Table 2: Comparison of the parameter estimates (posterior medians) from the CARBayes
and the BUGS software packages. The final column displays the absolute percentage difference
in the estimates relative to the larger of the two estimates.
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5. Example 2 - identifying high-risk disease clusters

The second example illustrates the utility of the local CAR model proposed by Lee and
Mitchell (2012), which can identify boundaries that represent step changes in the (random
effects) response surface between geographically adjacent areal units. The aim in this analysis
is to identify boundaries in the risk surface of respiratory disease in Greater Glasgow, Scotland
in 2010, so that the spatial extent of high-risk clusters can be identified. The identification of
boundaries in spatial data is affectionately known as Wombling, after the seminal paper by
Womble (1951).

5.1. Data and exploratory analysis

The data again relate to the Greater Glasgow and Clyde health board, and are also freely
available to download from http://www.sns.gov.uk/ (and are included with the CARBayes
software). However, the river Clyde partitions the study region into a northern and a southern
sub-region, and no areal units on opposite banks of the river border each other. This means
that boundaries could not be identified across the river, and therefore here we only consider
those areal units that are on the northern side of the study region. This leaves 134 areal
units in the new smaller study region, and the data on respiratory disease risk are contained
in respiratorydata.csv, Note, the shapefiles are those used for the property price analysis.
These data sets can be read in using similar code to that presented in Section 4, and the
respiratory disease data are read into a data frame called respdata. They can be viewed
using head(respdata), which gives the following output.

observed2010 expected2010 incomedep2010

S02000618 105 105.12944 15

S02000613 85 69.41011 22

S02000623 37 87.85767 8

S02000626 90 89.41669 26

S02000636 41 97.55097 8

S02000645 47 84.86336 8

In common with the previous example these data are contained in the CARBayes package,
and can be loaded into R using the data() function. They contain the numbers of hospital
admissions in 2010 in each IG due to respiratory disease (International Classification of Disease
tenth revision codes J00-J99), which is stored in the observed2010 column. However, these
observed numbers will depend on the size and demographic structure of the populations living
in each IG, and these factors need to be adjusted for before estimating disease risk. This is
typically achieved by computing the expected numbers of hospital admissions in each IG
based on this demographic information, using either internal or external standardisation. For
these data we use external standardisation, based on age and sex standardised rates for the
whole of Scotland. These expected numbers are stored in the expected2010 column, and
the simplest measure of disease risk is the Standardised Incidence Ratio (SIR), which is the
ratio of the observed to the expected numbers of hospital admissions. The SIR is added to
respdata using the code below, which also creates the spatial objects that are required for
the analysis (see Section 4 for details).

R> respdata$SIR2010 <- respdata$observed2010 / respdata$expected2010
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Figure 3: Map displaying the SIR for respiratory disease risk in the northern half of Greater
Glasgow in 2010.
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R> data.combined <- combine.data.shapefile(data=respdata, shp=shp, dbf=dbf)

R> W.nb <- poly2nb(data.combined, row.names = rownames(respdata))

R> W.mat <- nb2mat(W.nb, style="B")

A map of the SIR for these data is displayed in Figure 3, which was created using similar code
to that provided in Section 4 for mapping the median property price data. Values of the SIR
above one relate to areas exhibiting above average risks, while values below one correspond
to below average risks. The figure shows evidence of localised spatial structure in these
disease data, with numerous different locations where high and low risk areas border each
other. This in turn suggests that boundaries are likely to be present in these data, and their
identification is the goal of this analysis. The method proposed by Lee and Mitchell (2012)
identifies these boundaries using dissimilarity metrics, which are non-negative measures of
the dissimilarity between all pairs of adjacent areas. In this example we use the absolute
difference in the percentage of people in each IG who are defined to be income deprived (are
in receipt of a combination of means tested benefits), because it is well known that socio-
economic deprivation plays a large role in determining people’s health. The income data for
each IG are contained in the incomedep2010 column in respdata.

5.2. Spatial modelling with CARBayes

Let the observed and expected numbers of hospital admissions be denoted by Y = (Y1, . . . , Yn)
and E = (E1, . . . , En) respectively. Then as the observed numbers of hospital admissions
are counts, a Poisson likelihood model given by Yk ∼ Poisson(EkRk) is appropriate, where
Rk represents disease risk in areal unit Sk. A log-linear model is specified for Rk, that is,
ln(Rk) = β0 +φk, and for a general review of disease mapping see Wakefield (2007). We note
that in fitting this model in CARBayes, the offset is specified on the linear predictor scale
rather than the expected value scale, so in this analysis the offset is log(E) rather than E.
The dissimilarity metric used here is the absolute difference in the level of income deprivation,
which can be created from the vector of area level income deprivation scores using the following
code.

R> Z.income <- as.matrix(dist(cbind(respdata$incomedep2010,

respdata$incomedep2010), method="manhattan", diag=TRUE, upper=TRUE)) *

W.mat/2

The function to implement the localised CAR model is called poisson.dissimilarityCAR(),
and it takes the same arguments as the global CAR models except that it additionally requires
the dissimilarity metrics. These are required in the form of a list of n× n matrices, and the
model is run using the following code.

R> form <- respdata$observed2010 ~ offset(log(respdata$expected2010))

R> model.dissimilarity <- poisson.dissimilarityCAR(formula=form, W=W.mat,

Z=list(Z.income=Z.income), rho=0.99, fix.rho=TRUE, burnin=20000,

n.sample=100000, thin=10)

Inference for this model is based on 8,000 MCMC samples, which were obtained by running
the chain for 100,000 samples, with 20,000 being discarded as the burn-in period and the
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remaining 80,000 being thinned by 10 to reduce the autocorrelation. The first line of the
above code specifies the formula with an offset (the natural log of the expected numbers
of cases) but no covariates, the latter being required so that boundaries identified in the
random effects surface can also be interpreted as boundaries in the risk surface (that is
R = (R1, . . . , Rn)). The arguments rho=0.99 and fix.rho=TRUE fix ρ to enforce strong
global spatial autocorrelation, which is altered locally by estimating the elements of W as
zero, for further details see Lee and Mitchell (2012). When the function finished it produced
the following summary output.

Likelihood model - Poisson (log link function)

Random effects model - Localised CAR binary weights

Regression equation - respdata$observed2010 ~

offset(log(respdata$expected2010))

Dissimilarity metrics - Z.incomedep

Posterior quantiles and acceptance rates

Median 2.5% 97.5% n.sample % accept alpha.min

(Intercept) -0.2202 -0.2413 -0.1991 8000 60.3 NA

tau2 0.1374 0.0803 0.1994 8000 100.0 NA

Z.incomedep 0.0258 0.0234 0.0310 8000 61.6 0.0079

The global spatial correlation parameter rho is fixed at 0.99

Acceptance rate for the random effects is 35.1%

DIC = 1056.481 p.d = 98.88026

The main difference between this and the corresponding output from the property price
analysis is the addition of a column in the parameter summary table headed alpha.min.
This column only applies to the dissimilarity metrics, which is why it is NA for the remaining
parameters. The value of alpha.min is the threshold value for the regression parameter α,
below which the dissimilarity metric has had no effect in identifying boundaries in the response
(random effects) surface. A brief description is given in Section 2.2, while full details are given
in Lee and Mitchell (2012). For these data the posterior median and 95% credible interval lie
completely above this threshold, suggesting that the income deprivation dissimilarity metric
has identified a number of boundaries. The number and locations of these boundaries are
summarised in the element of the output list called W.posterior (obtained with the code
model.dissimilarity$W.posterior), which is an n × n symmetric matrix containing the
posterior median for the set {wkj |k ∼ j}. Values equal to zero represent a boundary, values
equal to one correspond to no boundary, while NA values correspond to non-adjacent areas.
The locations of these boundaries can be overlaid on a map of the estimated disease risk (that
is the posterior median of R) using the following code.

R> border.locations <- model.dissimilarity$W.posterior

R> risk.estimates <- model.dissimilarity$fitted.values[ ,3] /
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Figure 4: Map displaying the estimated spatial pattern in disease risk and the location of the
boundaries

respdata$expected2010

R> data.combined@data <- data.frame(data.combined@data, risk.estimates)

R> boundary.final <- highlight.borders(border.locations=border.locations,

ID=rownames(respdata), shp=shp, dbf=dbf)

R> boundaries = list("sp.points", boundary.final, col="white", pch=19,

cex=0.2)

R> northarrow <- list("SpatialPolygonsRescale", layout.north.arrow(),

offset = c(220000,647000), scale = 4000)

R> scalebar <- list("SpatialPolygonsRescale", layout.scale.bar(),

offset = c(225000,647000), scale = 10000, fill=c("transparent","black"))

R> text1 <- list("sp.text", c(225000,649000), "0")

R> text2 <- list("sp.text", c(230000,649000), "5000 m")

R> spplot(data.combined, c("risk.estimates"), sp.layout=list(northarrow,

scalebar, text1, text2, boundaries), scales=list(draw = TRUE),

at=seq(min(risk.estimates)-0.1, max(risk.estimates)+0.1, length.out=8),

col.regions=c("#FFFFB2", "#FED976", "#FEB24C", "#FD8D3C", "#FC4E2A",

"#E31A1C", "#B10026"))

The first line saves the matrix of border locations, while the second and third add the esti-
mated risk values to the data.combined object. The next two lines identify the boundary
points (using the CARBayes function highlight.borders()), and format them to enable
plotting. The remaining commands relate to the plotting, and are similar to those used to
produce the earlier spatial maps. The result of these commands are displayed in Figure 4,
which shows the fitted risk surface and the locations of the boundaries (denoted by white
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dots). The model has identified 103 boundaries in the risk surface, which is 28.6% of the total
number of borders in the study region. The majority of these visually seem to correspond
to sizeable changes in the risk surface, suggesting that the model has the power to distin-
guish between boundaries and non-boundaries. The notable boundaries are the demarkation
between the low risk city centre / west end of Glasgow in the middle of the region and the
deprived neighbouring areas on both sides, which include Easterhouse / Parkhead in the east
and Knightswood / Drumchapel in the west. The other interesting feature of this map is that
the boundaries are not closed, suggesting that the spatial pattern in risk is more complex
than being partitioned into groups of non-overlapping areas of similar risk.

6. Discussion

This paper has presented the R package CARBayes, which can fit a number of commonly
used conditional autoregressive models to spatial areal unit data, as well as the localised
spatial smoothing model proposed by Lee and Mitchell (2012). The response data can be
binomial, Gaussian or Poisson, with the canonical link functions logit, the identity and nat-
ural log respectively. The availability of areal unit data has grown dramatically in recent
times, due to the launch of freely available online databases such as Neighbourhood Statis-
tics in the UK (see http://www.neighbourhood.statistics.gov.uk and http://www.sns.gov.uk/ ),
and Surveillance Epidemiology and End Results (SEER, http://seer.cancer.gov/ ) in the USA.
This increased availability of spatial data has fuelled a growth in modelling in this area, lead-
ing to the need for user friendly software such as CARBayes for use by both statisticians and
non-statisticians alike.

A number of other software packages can also fit conditional autoregressive models to spatial
data, including BUGS, BayesX and R packages CARramps, hSDM, INLA, spatcounts and
spdep. However, these software packages either can only fit a limited selection of CAR mod-
els, or require a degree of programming which may be beyond some users of spatial data.
Thus a gap in the market exists for user friendly software that can fit a wide class of CAR
models, which was the motivation behind the CARBayes software. The user friendly features
of CARBayes have been illustrated by the two worked examples presented in Sections 4 and
5, which include: (i) models can be implemented using a single function call; (ii) the spatial
information required by the models is straightforward to create from a shapefile; (iii) only
a small number of arguments are required to run a default analysis; and (iv) the software
reports on the progress of model fitting, and produces a summary table of the results when
it has finished.

As previously mentioned, future development for the software will re-engineer it in C++
(currently it is written exclusively in R), which should result in a dramatic reduction in the
computing time required to fit the models. In addition, the software will focus on moving into
the spatio-temporal domain, because there is relatively little existing software (especially in
R) that can fit spatio-temporal models for areal unit data (an example for geostatistical data
is spTimer). The development of statistical modelling techniques for such data is also in its
infancy, with prominent early examples being Bernardinelli, Clayton, Pascutto, Montomoli,
Ghislandi, and Songini (1995) and Knorr-Held (2000).
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