CmdStan Interface

User’s Guide

Stan Development Team

CmdStan Version 2.14.0

Monday 26" December, 2016

http://mc-stan.org/

http://mc-stan.org/

Stan Development Team. 2016. CmdStan: User’s Guide. Version 2.14.0

Copyright © 2011-2016, Stan Development Team.

This document is distributed under the Creative Commons Attribute
4.0 Unported License (CC BY 4.0). For full details, see

https://creativecommons.org/licenses/by/4.0/Tegalcode

https://creativecommons.org/licenses/by/4.0/legalcode

Contents

I Introduction

1. Overview

N

Getting Started

II CmdStan Tools
Overview

3

4. stanc: Translating Stan to C++

5 print: Output Analysis (deprecated)
6

stansummary: Output Analysis

III CmdStan Executables
7. Compiling CmdStan Exectuables

8. Running a CmdStan Program

Appendices

A. Licensing

B. Installation and Compatibility
C. Dump Data Format

Bibliography

iii

21
22
23
27
28

31
32
34

67
68
70
84
91

iv

Part I

Introduction

1. Overview

This document is a user’s guide for the CmdStan interface to the Stan statistical mod-
eling language. CmdStan takes Stan programs and generates executables that can be
run directly from the command line. CmdStan is one of several interfaces to Stan;
there are also R, Python, Matlab, Julia, and Stata interfaces.

1.1. Stan Home Page

For links to up-to-date code, examples, manuals, bug reports, feature requests, and
everything else Stan related, see the Stan home page:

http://mc-stan.org/

1.2. Licensing

CmdStan, Stan, and the Stan Math Library are licensed under the new BSD license
(3-clause). See Appendix A for details, including licensing terms for the dependent
packages Boost, Eigen, and CVODES.

1.3. Modeling Language User’s Guide and Reference

Stan’s modeling language is shared across all of its interfaces. Stan’s language, along
with a programming guide and many example models, is detailed in the Stan Modeling
Language User’s Guide and Reference Manual, which is available from the Stan home
page (see Section 1.1).

1.4. Example Models

There are many example models for Stan, in addition to those in the user’s guide and
reference. These are all linked from the Stan home page (see Section 1.1).

1.5. Benefits of CmdStan

Although CmdStan has the least amount of functionality among the Stan interfaces,
the minimal nature of CmdStan makes it trivial to install and use the latest develop-
ment version of the Stan library. It also has the fewest dependencies, which makes
it easier to run in limited environments such as clusters. The output generated is in
CSV format and can be post-processed using other Stan interfaces or general tools.

http://mc-stan.org/

2. Getting Started

This chapter is designed to help users get acquainted with the CmdStan interface.
Later chapters are devoted to expanding on the material in this chapter with full ref-
erence documentation. See the Stan user’s manual for details about the Stan language.

2.1. Installation

Installation of CmdStan is simple. CmdStan requires:

- The CmdStan source code and all its libraries.
This is included in the release tarball or zip file as a single download.

- The make utility program.
This is not strictly necessary, but will make the build process easy. The rest of
the documentation assumes make is available.

- A C++ compiler.

For information about supported versions of Windows, Mac, and Linux platforms see
Appendix B. For step-by-step installation instructions of the prerequisites, see

- Windows: Appendix B.3
- Mac: Appendix B.4

- Linux: Appendix B.5.

2.2. Building CmdStan

Building CmdStan involves building two executable programs:
- stanc: the Stan compiler (translates Stan language to C++)
- stansummary: a basic posterior analysis tool

The build process utilizes the make command-line utility and these instructions are
applicable for any of our supported platforms.
Steps to build CmdStan:

1. Open a command-line terminal window and change directories to the CmdStan
directory. From here on, we’ll refer to this location as <cmdstan-home>.

> cd <cmdstan-home>

A listing of the files and directory of this folder should show these files:

> 1s
LICENSE makefile
README . md runCmdStanTests.py
doc src
examples stan
make test-all.sh
2. Optional: Set local make wvariables by editing the file
~/.config/cmdstan/make.local or <cmdstan-home>/make/local. See

Appendix B.6 for a list of available options. For most installations, this step
can be skipped; the default configuration should work for most users.

3. Use make to build CmdStan. When multiple CPU cores are available on the
system, the call to make can be parallelized. It can either be specified directly
when calling make with the -jN option, where Nis the number of CPU cores. For
instance, to run on 4 cores, use

> make build -j4

Warning: The make program may take 10+ minutes and consume 2+ GB of
memory to build CmdStan.

When CmdStan is successfully built, the make program will report (after other lines
of output)

--- CmdStan v2.14.0 built ---

and there will be two executables in the <cmdstan-home>/bin/ folder:

- stanc, the Stan compiler. The Stan compiler translates a Stan program into C++
code. See Chapter 4 for details.

- stansummary, a posterior analysis tool. The stansummary command summa-
rizes the comma-separated values files that are generated from Stan program
runs. For each parameter within the Stan program, stansummary reports the
mean, standard deviation, quantiles, R, and other values. See Chapter 6 for
details.

2.3. Compiling and Executing a Stan Program

The rest of this quick-start guide explains how to code and run a very simple Bayesian
model.

A Simple Bernoulli Model

The following is a simple, complete Stan program for a Bernoulli model of binary
data.!

data {
int<lower=0> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(l,1);
for (n in 1:N)
y[n] ~ bernoulli(theta);
}

The model assumes the binary observed data y[1], ...,y[N] are ii.d. with Bernoulli
chance-of-success theta. The prior on theta is beta(l,1) (i.e., uniform).

Data Set

A data set of N = 10 observations is coded as follows. 2

N <- 10
y <- ¢(0,1,0,0,0,0,0,0,0,1)

This defines the contents of two variables, N and y, using an R-like syntax (see Chap-
ter C for more information).

Change directories to <cmdstan-home>

Before building any Stan program, change directories to <cmdstan-home>.

1The model is distributed with Stan’s example models repository, https://github.com/stan-dev/
example-models/blob/master/basic_estimators/bernoulli.stan, and is also available with the
CmdStan distribution at the path examples/bernoulli/bernoulli.stan.

2 The data is also available from the example-models repository on GitHub, https://github.com/
stan-dev/example-models/blob/master/basic_estimators/bernoulli.data.R. It is also included
with the CmdStan distribution and can be found at path stan/example-models/basic_estimators/
bernoulli.data.R.

https://github.com/stan-dev/example-models/blob/master/basic_estimators/bernoulli.stan
https://github.com/stan-dev/example-models/blob/master/basic_estimators/bernoulli.stan
https://github.com/stan-dev/example-models/blob/master/basic_estimators/bernoulli.data.R
https://github.com/stan-dev/example-models/blob/master/basic_estimators/bernoulli.data.R

Compiling a Stan Program

A single call to make is all that’s necessary to translate a Stan program to an executable
for the command line. (This call will first translate the Stan program to C++ then
compile the C++ code to an executable.)

A Stan program must be in a file with the file extension .stan. To create an
executable from a Stan program, make will be called with the name of the executable
as its argument. For Mac and Linux, it is the name of the Stan program with the .stan
omitted. For Windows, replace .stan with . exe.

To build the Bernoulli example, use the following command for Mac and Linux:

> make examples/bernoulli/bernoulli

For Windows, the command is the same with the addition of .exe at the end of the
target:

> make examples/bernoulli/bernoulli.exe

The generated C++ code (bernoulli.hpp) and the compiled executable will be
placed in the same directory as the Stan program.

Note: you must start in the <cmdstan-home> directory. The Stan program can be
in a different path, but the path to the Stan program must not contain a space. (This is
a limitation that’s introduced by make.) Relative paths are ok; the relative path must
not contain a space.

Sampling from the Stan Program

The program can be executed from the directory in which it resides.

> cd examples/bernoulli

To execute sampling of the model under Linux or Mac, use

> ./bernoulli sample data file=bernoulli.data.R

In Windows, the ./ prefix is not needed, resulting in the following command.

> bernoulli.exe sample data file=bernoulli.data.R

The output is the same across all supported platforms. First, the configuration of the
program is echoed to the standard output:

10

method
samp
nu

nu

sa

th

ad

al

id =0
data
file
init =
random
seed
output
file
diag
refr

= sample (Default)

le

m_samples = 1000 (Default)

m_warmup = 1000 (Default)

ve_warmup = 0 (Default)

in = 1 (Default)

apt

engaged = 1 (Default)

gamma = 0.050000000000000003 (Default)
delta = 0.80000000000000004 (Default)
kappa = 0.75 (Default)

t0 = 10 (Default)

init_buffer = 75 (Default)
term_buffer = 50 (Default)

window = 25 (Default)

gorithm = hmc (Default)
hmc
engine = nuts (Default)

nuts
max_depth = 10 (Default)
metric = diag_e (Default)
stepsize = 1 (Default)
stepsize_jitter = 0 (Default)
(Default)

bernoulli.data.R
2 (Default)

4294967295 (Default)

= output.csv (Default)
nostic_file = (Default)
esh = 100 (Default)

After the configuration has been displayed, a short timing message is given.

Gradien
1000 tr
take
Adjust

t evaluation took 4e-06 seconds

ansitions using 10 leapfrog steps per transition would
0.04 seconds.

your expectations accordingly!

Next, the sampler reports the iteration number, reporting the percentage complete.

Iterati
Iterati

on: 1/ 2000 [0%] (Warmup)
on: 100 / 2000 [5%] (Warmup)

11

Iteration: 2000 / 2000 [100%] (Sampling)

Sampler Output

Each execution of the model results in draws from a single Markov chain being written
to a file in comma-separated value (CSV) format. The default name of the output file
is output.csv.

The first part of the output file records the version of the underlying Stan library
and the configuration as comments (i.e., lines beginning with the pound sign (#)).

stan_version_major = 2

stan_version_minor = 12

stan_version_patch = 0

model = bernoulli_model

method = sample (Default)

sample

num_samples = 1000 (Default)
num_warmup = 1000 (Default)
save_warmup = 0 (Default)
thin = 1 (Default)

* R Rk H

This is followed by a CSV header indicating the names of the values sampled.
Tp__,accept_stat__,stepsize__,treedepth__,n_leapfrog__,divergent__,energy__,theta

The first column reports the unnormalized log probability of the model. The next
columns provide sampler-dependent information; here, it is columns two through
five. For basic Hamiltonian Monte Carlo (HMC) and its adaptive variant, the No-U-
Turn sampler (NUTS), the sampler-depedent parameters are described in the following
table.

Sampler \ Parameter \ Description

NUTS accept_stat__ Metropolis acceptance probability
averaged over samples in the slice

NUTS stepsize__ Integrator step size

NUTS treedepth__ Tree depth

NUTS n_Tleapfrog__ Number of leapfrog calculations

NUTS divergent__ 1 if trajectory diverged

NUTS energy__ Hamiltonian value

HMC accept_stat__ Metropolis acceptance probability

HMC stepsize__ Integrator step size

HMC int_time__ Total integration time

NUTS energy__ Hamiltonian value

12

The remaining columns correspond to model parameters. For the Bernoulli model, it
is just the sixth column, theta. The header line is streamed to the output file before
warmup begins.

The next section describes the results of adaptation taking place during the
warmup phase.

Adaptation terminated

Step size = 1.81311

Diagonal elements of inverse mass matrix:
0.415719

The default sampler is NUTS with an adapted step size and a diagonal inverse mass
matrix. For this example, the step size is 1.81311, and the inverse mass contains the
single entry 0.415719 corresponding to the parameter theta.

Draws from the posterior distribution are printed out next, each line containing a
single draw with the columns corresponding to the header. 3

-6.78148,0.958918,0.997192,2,3,0,7.3034,0.283226
-6.74932,0.99923,0.997192,2,3,0,6.77915,0.243658
-6.88104,0.944956,0.997192,2,3,0,7.02671,0.317841
-6.74805,1,0.997192,2,3,0,6.84913,0.249106
-10.0366,0.49441,0.997192,2,3,0,10.1243,0.0398088

The output ends with timing details,

Elapsed Time: 0.006811 seconds (Warm-up)
0.011645 seconds (Sampling)
0.018456 seconds (Total)

Summarizing Sampler Output

The command-line program bin/stansummary will display summary information
about the run (for more information, see Chapter 6). To run stansummary on the
output file generated for bernoul1i on Linux or Mac, type

> <cmdstan-home>/bin/stansummary output.csv
For Windows, use backslashes to call the stansummary . exe.

> <cmdstan-home>\bin\stansummary.exe output.csv

3There are repeated entries due to the Metropolis accept step in the No-U-Turn sampling algorithm.

13

The output of the command will display information about the run followed by infor-
mation for each parameter and generated quantity. For bernoul1i, we ran 1 chain
and saved 1000 iterations. The information is echoed to the standard output stream.
The output is

Inference for Stan model: bernoulli_model
1 chains: each with iter=(1000); warmup=(0); thin=(1); 1000 iterations saved.

Warmup took (0.014) seconds, 0.014 seconds total
SampTling took (0.027) seconds, 0.027 seconds total

Mean MCSE StdDev 5% 50% 95% N_Eff N_Eff/s R_hat
Tp_— -7.2 3.0e-02 6.6e-01 -8.5 -7.0 -6.7 479 29120 1.0e+00
accept_stat__ 0.91 4.5e-03 1.4e-01 0.61 0.97 1.0 1000 60846 1.0e+00
stepsize__ 1.00 3.8e-15 2.7e-15 1.00 1.00 1.00 0.50 30 1.0e+00
treedepth__ 1.7 1.6e-02 4.7e-01 1.0 2.0 2.0 812 49412 1.0e+00
n_leapfrog__ 2.4 3.3e-02 9.5e-01 1.0 3.0 3.0 813 49439 1.0e+00
divergent__ 0.00 0.0e+00 0.0e+00 0.00 0.00 0.00 1000 60846 nan
energy__ 7.7 4.6e-02 1.0e+00 6.8 7.4 9.6 491 29856 1.0e+00
theta 0.25 6.0e-03 1.1e-01 0.084 0.24 0.46 361 21985 1.0e+00

Samples were drawn using hmc with nuts.

For each parameter, N_Eff is a crude measure of effective sample size,
and R_hat 1is the potential scale reduction factor on split chains (at
convergence, R_hat=1).

In addition to the general information about the runs, stansummary displays sum-
mary statistics for each parameter and generated quantity.

In the bernoul1i model, there is a single parameter, theta. The mean, standard
error of the mean, standard deviation, the 5%, 50%, and 95% quantiles, number of
effective samples (total and per second), and R value are displayed. These quantities
and their uses are described in detail in the introductory Markov chain Monte Carlo
(MCMC) chapter of the language user’s guide and reference manual.

The command bin/stansummary can be called with more than one csv file by
separating filenames with spaces. It will also take wildcards in specifying filenames.
A typical usage of Stan from the command line would first create one or more Markov
chains by calling the model executable, typically in parallel, writing the output CSV
file for each into its own directory. After all of the processes are finished, the results
would be analyzed using stansummary to assess convergence and inspect the means
and quantiles of the fitted variables. Additionally, downstream inferences may be
performed using the draws (e.g., to make decisions or predictions for unseen data).

Optimization

CmdStan can be used for finding posterior modes as well as sampling from the pos-
terior distribution. The executable does not need to be recompiled in order to switch

14

from sampling to optimization, and the data input format is the same. The following
is a minimal call to Stan’s optimizer using defaults for everything but the location of
the data file. See Section 8.3 for more details.

> ./bernoulli optimize data file=bernoulli.data.R

Executing this command prints the following.

method = optimize
optimize
algorithm = 1bfgs (Default)
Tbfgs
init_alpha = 0.001 (Default)
tol_obj = 9.9999999999999998e-13 (Default)
tol_rel_obj = 10000 (Default)
tol_grad = 1e-08 (Default)
tol_rel_grad = 10000000 (Default)
tol_param = 1le-08 (Default)
history_size = 5 (Default)
iter = 2000 (Default)
save_iterations = 0 (Default)
id = 0 (Default)
data
file = bernoulli.data.R
init = 2 (Default)
random
seed
output
file = output.csv (Default)
diagnostic_file = (Default)
refresh = 100 (Default)

4294967295 (Default)

initial Tog joint probability = -5.18908
Iter Tog prob | 1dx] | | lgrad]|| alpha alpha0 # evals Notes
4 -5.00402 0.00400907 7.80306e-05 1 1 7
Optimization terminated normally:
Convergence detected: relative gradient magnitude is below tolerance

The first part of the output reports on the configuration used, here indicating the
default L-BFGS optimizer, with default initial stepsize and tolerances for monitoring
convergence. The second part of the output indicates how well the algorithm fared,
here converging and terminating normally. The numbers reported indicate that it
took 4 iterations and 7 gradient evaluations, resulting in a final state state where the
change in parameters was roughly 0.004 and the length of the gradient roughly 8e-5.
The alpha value is for step size used. This is, not surprisingly, far fewer iterations
than required for sampling; even fewer iterations would be used with less stringent
user-specified convergence tolerances.

15

Optimization Output

The output from optimization is written into the file output.csv by default. The
output follows the same pattern as the output for sampling, first dumping the entire
set of parameters used.

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#

stan_version_major = 2
stan_version_minor = 7
stan_version_patch = 0

model = bernoulli_model
method = optimize
optimize

algorithm = 1bfgs (Default)

Tbfgs

init_alpha = 0.001 (Default)

tol_obj = 9.9999999999999998e-13 (Default)
tol_rel_obj = 10000 (Default)

tol_grad = 1e-08 (Default)

tol_rel_grad = 10000000 (Default)
tol_param = 1le-08 (Default)

history_size = 5 (Default)

iter = 2000 (Default)
save_iterations = 0 (Default)

id =0
data
file
init =
random
seed
output
file

(Default)

bernoulli.data.R
2 (Default)

458923754

= output.csv (Default)

diagnostic_file = (Default)
refresh = 100 (Default)
1p__, theta

-5.00402,0.200008

Note that everything is a comment other than a line for the header, and a line for the
values. Here, the header indicates the unnormalized log probability with Tp__ and
the model parameter theta. The maximum log probability is -5.0 and the posterior
mode for theta is 0.20. The mode exactly matches what we would expect from the
data.* Because the prior was uniform, the result 0.20 represents the maximum likeli-

4The Jacobian adjustment included for the sampler’s log probability function is not applied during
optimization, because it can change the shape of the posterior and hence the solution.

16

hood estimate (MLE) for the very simple Bernoulli model. Note that no uncertainty is
reported.

Variational Inference

CmdStan can approximate the posterior distribution using variational inference. The
executable does not need to be recompiled in order to switch to variational inference,
and the data input format is the same. The following is a minimal call to Stan’s
variational inference algorithm using defaults for everything but the location of the
data file. See Section 8.3 for more details.

> ./bernoulli variational data file=bernoulli.data.R

Executing this command prints the following.

method = variational
variational
algorithm = meanfield (Default)
meanfield
iter = 10000 (Default)
grad_samples = 1 (Default)
elbo_samples = 100 (Default)
eta = 1 (Default)
adapt
engaged = 1 (Default)
iter = 50 (Default)
tol_rel_obj = 0.01 (Default)
eval_elbo = 100 (Default)
output_samples = 1000 (Default)
id = 0 (Default)
data
file = bernoulli.data.R
init = 2 (Default)
random
seed
output
file = output.csv (Default)
diagnostic_file = (Default)
refresh = 100 (Default)

1196271396

This is Automatic Differentiation Variational Inference.
(EXPERIMENTAL ALGORITHM: expect frequent updates to the procedure.)
Gradient evaluation took 6e-06 seconds

1000 iterations under these settings should take 0.006 seconds.

Adjust your expectations accordingly!

Begin eta adaptation.

17

Iteration:
Iteration:
Iteration:
Iteration:
Iteration:

Success!

1/ 250
50 / 250
100 / 250
150 / 250
200 / 250
Found best value [eta = 1] earlier than

[0%] (Adaptation)
[20%] (Adaptation)
[40%] (Adaptation)
[60%] (Adaptation)
[80%] (Adaptation)

Begin stochastic gradient ascent.

iter
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100

Drawing 1000 samples from the approximate posterior...

EL

-6.

BO
-6
3

-6.2

-6.
-6.
-6.
-6.
-6.
-6.
-6.
-6.
-6.
-6.
-6.
-6.
-6.
-6.
-6.

-6

-6.
-6.

N WNWWWWNRENWRANWWNNDN

delta_ELBO_mean delta_ELBO_l
.000
.000
.021
.021
.014
.014

1.000
.511
.344
.261
.211
.178
154
.135
.121
.112
.015
.014
.014
015
.015
.014
.013
.013
013
.011
.008

[==leNeloNeoNeoR-E=R=eleloloNeNeol NN}

e eoleoNeoNoNoNeoc o ENolol-NoloE=Nolo e No N o

expected.

med

012

.012
.012
.012
.012
.012
.012

013

.012
.012
.012
.012

013

.011
.009

notes

MEAN ELBO CONVERGED

COMPLETED.

MEDIAN ELBO

The first part of the output reports on the configuration used. Here it indicates the
default mean-field setting of the variational inference algorithm. It also indicates the
default parameter sizes and tolerances for monitoring the algorithm’s convergence.
The second part of the output describes the progression of the algorithm. An adap-
tation phase finds a good value for the step size scaling parameter n. The evidence
lower bound (ELBO) is the variational objective function and is evaluated based on a
Monte Carlo estimate. The variational inference algorithm in Stan is stochastic, which
makes it challenging to assess convergence. That is, while the algorithm appears
to have converged in ~100 iterations, the algorithm runs for another few thousand

iterations until mean change in ELBO drops below the default tolerance of 0.01.

18

Variational Inference Output

The output from variational is written into the file output. csv by default. The output
follows the same pattern as the output for sampling, first dumping the entire set of
parameters used.

method

id =0
data
file
init =
random
seed
output

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
file
#

#

stan_version_major = 2
stan_version_minor = 8
stan_version_patch = 0
model =

bernoulli_model
= variational

variational

algorithm = meanfield (Default)

meanfield
iter = 10000 (Default)
grad_samples = 1 (Default)
elbo_samples = 100 (Default)
eta
adapt

engaged = 1 (Default)

iter = 50 (Default)
tol_rel_obj = 0.01 (Default)
eval_elbo = 100 (Default)
output_samples = 1000 (Default)

= 1 (Default)

(Default)

bernoulli.data.R
2 (Default)

1196271396

= output.csv (Default)

diagnostic_file = (Default)
refresh = 100 (Default)

Tp__, theta
Stepsize adaptation complete.

eta=1

0,0.249604
0,0.254227
0,0.211049

Note that everything is a comment other than a line for the header, the adapted value
for the stepsize, and a line for the values. The header indicates the unnormalized log

19

probability with Tp__. This is a legacy feature that we do not use for variational infer-
ence. The ELBO is not stored unless a diagnostic option is given. See Section 8.3 for
more details. The first line is special: it is the mean of the variational approximation.
The rest of the output contains output_samples number of samples drawn from the
variational approximation.

Configuring Command-Line Options

The command-line options for running a model are detailed in Chapter 8. They can
also be printed on the command line using Linux or Mac OS with

> ./bernoulli help-all

and on Windows with

> bernoulli.exe help-all

20

Part 11

CmdStan Tools

21

3. Overview

CmdStan is the command-line interface for Stan. The next two chapters describes
tools that are built as part of CmdStan installation: stanc and stansummary. The
process of building a CmdStan executable from a Stan program is as follows:

1. A Stan program is written to file with a . stan extension.

2. stanc is used to translate the Stan program into a C++ file. This C++ file is not a
full program that can be compiled to executable directly, but a translation from
the Stan language into a C++ concept. Each interface will generate identical C++
for the same Stan program.

3. A CmdStan exectuable is generated from the CmdStan source and the generated
C++. Each Stan program will have its own CmdStan executable. The options to
the CmdStan executable are described in Chapter 8.

3.1. Building the CmdStan Tools

The easy way to build CmdStan is through the use of make. From a command line
window, type:

> cd <cmdstan-home>
> make build

This will build both stanc and stansummary. If your computer has multiple cores
and sufficient ram, the build process can be parallelized by providing the -j option.
For example, to build on 4 cores, type:

> cd <cmdstan-home>
> make -j4 build

Warning: The make program may take 10+ minutes and consume 2+ GB of memory
to build CmdStan.

22

4. stanc: Translating Stan to C++

4.1. Building the stanc Compiler

Before the stanc compiler can be used, it must be built. It can be compiled directly
using the makefile as follows. For Mac and Linux:

> make bin/stanc

For Windows:

> make bin/stanc.exe

To change the default compiler or the optimization level, see Appendix B.6.

4.2. The stanc Compiler

The stanc compiler converts Stan programs to C++ concepts. The first stage of com-
pilation involves parsing the text of the Stan program. If the parser is successful, the
second stage of compilation generates C++ code. If the parser fails, it will provide
an error message indicating the location in the input where the failure occurred and
reason for the failure.

The following example illustrates a fully qualified call to stanc to build the simple
Bernoulli model.

For Linux and Mac:

> cd <cmdstan-home>
> bin/stanc --name=bernoulli --o=bernoulli.hpp \
stan/example-models/basic_estimators/bernoulli.stan

The backslash (\) is a continuation of the same line and can be omitted if the com-
mand is on a single line.
For Windows:

> cd <cmdstan-home>
> bin\stanc.exe --name=bernoulli --o=bernoulli.hpp A
stan/example-models/basic_estimators/bernoulli.stan

(The caret (A) is a line continuation on Windows.)

This call specifies the name of the model, here bernoul1i. This will determine
the name of the class implementing the model in the C++ code. Because this name is
the name of a C++ class, it must start with an alphabetic character (a-z or A-Z) and

23

contain only alphanumeric characters (a-z, A-Z, and 0-9) and underscores (_) and
should not conflict with any C++ reserved keyword.

The C++ code implementing the class is written to the file bernoull1i .hpp in the
current directory. The final argument, bernoulT1i . stan, is the file from which to read
the Stan program.

4.3. Command-Line Options for stanc

The model translation program stanc is called as follows.
> stanc [options] model_file

The argument mode1_f1ile is a path to a Stan model file ending in suffix .stan. The
options are as follows.

--help
Displays the manual page for stanc. If this option is selected, nothing else is
done.

--version
Prints the version of stanc. This is useful for bug reporting and asking for help
on the mailing lists.

--name=class_name
Specify the name of the class used for the implementation of the Stan model in
the generated C++ code.

Default: class_name = model_file_model

--0=cpp_TFile_name
Specify the name of the file into which the generated C++ is written.
Default: cpp_file_name = class_name.hpp

--allow_undefined
Do not throw a parser error if there is a function in the Stan program that is
declared but not defined in the functions block.

4.4. Using External C++ Code
The -allow_undefined flag can be passed to the call to stanc, which will allow

undefined functions in the Stan language to be parsed without an error. We can then
include a definition of the function in a C++ header file. We typically control these

24

options with two make variables: STANCFLAGS and USER_HEADER. See Appendix B.6
for more details.

The C++ file will not compile unless there is a header file that defines a function
with the same name and signature in a namespace that is formed by concatenating
the class_name argument to stanc documented above to the string _namespace.

For more details about how to write C++ code using the Stan Math Library, see
https://arxiv.org/abs/1509.07164. As an example, consider the following vari-
ant of the Bernoulli example

functions {
real make_odds(real theta);
}
data {
int<lower=0> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
modeT {
theta ~ beta(l,1);
for (n in 1:N)
y[n] ~ bernoulli(theta);
}
generated quantities {
real odds;
odds = make_odds(theta);
}

Here the make_odds function is declared but not defined, which would ordinarily
result in a parser error. However, if you put STANCFLAGS = --allow_undefined
into the make/Tocal file or into the stanc call, then the above Stan program will
parse successfully but would not compile when you call

> make examples/bernoulli/bernoulli # on Windows add .exe

To compile successfully, you need to write a file such as
examples/bernoulli/make_odds.hpp with the following lines

namespace bernoulli_model_namespace {

template <typename TO__>

25

https://arxiv.org/abs/1509.07164

inTine

typename boost::math::tools::promote_args<TO__>::type

make_odds(const TO__& theta, std::ostream* pstream__) {
return theta / (1 - theta);

3
}

Thus, the following make invocation should work

> STANCFLAGS=--allow_undefined \
USER_HEADER=examples/bernoulli/make_odds.hpp \
make examples/bernoulli/bernoulli # on Windows add .exe

or you could put STANCFLAGS and USER_HEADER into the make/local file instead of
specifying them on the command-line.

If the function were more complicated and involved functions in the Stan Math
Library, then you would need to prefix the function calls with stan::math::. The
pstream__ argument is mandatory in the signature but need not be used if your
function does not print any output. To see the necessary boilerplate look at the
corresponding lines in the generated C++ file.

26

5. print: Output Analysis (deprecated)

print is deprecated, but is still available until CmdStan v3.0. See the next chapter for
usage (replace stansummary with print).

27

6. stansummary: Output Analysis

CmdStan is distributed with a posterior analysis utility that is able to read in the out-
put of one or more Markov chains and summarize the posterior fits. This operation
mimics the print(fit) command in RStan, which itself was modeled on the print
functions from R2WinBUGS and R2jags.

6.1. Building the stansummary Command

CmdStan’s stansummary command is built along with stanc into the bin directory.
It can be compiled directly using the makefile as follows.

> cd <cmdstan-home>
> make bin/stansummary

6.2. Running the stansummary Command

The stansummary command is executed on one or more output.csv files. These files
may be provided as command-line arguments separated by spaces. That means that
wildcards may be used, as they will be replaced by space-separated file names by the
operating system’s command-line interpreter.

Suppose there are three samples files in a directory generated by fitting a negative
binomial model to a small data set.

> 1s output=*.csv
outputl.csv output2.csv output3.csv
> bin/stansummary output+*.csv

The result of bin/stansummary is displayed in Figure 6.1.! The posterior is skewed
to the high side, resulting in posterior means («x = 17 and 8 = 10) that are a long way
away from the posterior medians (x = 9.5 and B = 6.2); the posterior median is the
value listed under 50%, which is the 50th percentile of the posterior values.

For Windows, the forward slash in paths need to be converted to backslashes.

IRStan’s and PyStan’s output analysis stansummary may be different than that in the command-line
version of Stan.

28

Inference for Stan model: negative_binomial_model
1 chains: each with iter=(1000); warmup=(0); thin=(1); 1000 iterations saved.

Warmup took (0.054) seconds, 0.054 seconds total
Sampling took (0.059) seconds, 0.059 seconds total

Mean MCSE StdDev 5% 50% 95% N_Eff N_Eff/s R_hat
Tp_— -14 7.0e-02 1.le+00 -17 -14 -13 226 3022 1.0e+00
accept_stat__ 0.94 3.1e-03 9.7e-02 0.75 0.98 1.0 1000 13388 1.0e+00
stepsize__ 0.16 5.le-16 3.6e-16 0.16 0.16 0.16 0.50 6.7 1.0e+00
treedepth__ 2.9 4.1e-02 1.2e+00 1.0 3.0 5.0 829 11104 1.0e+00
n_leapfrog__ 8.0 2.1le-01 6.3e+00 1.0 7.0 19 870 11648 1.0e+00
divergent__ 0.00 0.0e+00 0.0e+00 0.00 0.00 0.00 1000 13388 nan
energy__ 15 8.7e-02 1.5e+00 14 15 18 282 3775 1.0e+00
alpha 16 1.9e+00 2.0e+01 1.9 9.7 50 114 1524 1.0e+00
beta 9.9 1.1e+00 1.2e+01 1.1 6.1 31 124 1664 1.0e+00

Samples were drawn using hmc with nuts.

For each parameter, N_Eff is a crude measure of effective sample size,
and R_hat is the potential scale reduction factor on split chains (at
convergence, R_hat=1).

Figure 6.1: Example output from bin/stansummary. The model parameters are alpha and
beta. The values for each quantity are the posterior means, standard deviations, and quan-
tiles, along with Monte-Carlo standard error, effective sample size estimates (per second), and
convergence diagnostic statistic. These values are all estimated from samples. In addition to
the parameters, bin/stansummary also outputs 1p__, the total log probability density (up to
an additive constant) at each sample, as well as NUTS-specific values that can be helpful in di-
agnostics. The quantity accept_stat__ is the average Metropolis acceptance probability over
each simulated Hamiltonian trajectory and stepsize__ is the integrator step size used in each
simulation. treedepth__ is the depth of tree used by NUTS while n_leapfrog__ is the number
of leapfrog steps taken during the Hamiltonian simulation; treedepth__ should always be the
binary log of n_leapfrog__. divergent__ indicates whether or not the simulated Hamiltonian
trajectory became unstable and diverged. Finally, energy__ is value of the Hamiltonian (up to
an additive constant) at each sample, also known as the energy.

Output of stansummary Command
divergent

CmdStan uses a symplectic integrator to approximate the exact solution of the Hamil-
tonian dynamics, and when the step size is too large relative to the curvature of the
log posterior this approximation becomes unstable and the trajectories can diverge
and threaten the validity of the sampler; divergent indicates whether or not a given
trajectory diverged. If there are any divergences then the samples may be biased -
common solutions are decreasing the step size (often by increasing the target average

29

acceptance probability) or reparameterizing the model.

energy

The energy, energy, is used to diagnose the accuracy of any Hamiltonian Monte Carlo
sampler. If the standard deviation of energy is much larger than /D/2, where D is
the number of unconstrained parameters, then the sampler is unlikely to be able to
explore the posterior adequately. This is usually due to heavy-tailed posteriors and
can sometime be remedied by reparameterizing the model.

6.3. Command-line Options

In addition to the filenames, stansummary includes three flags to customize the out-
put.

help
stansummary usage information
No help output by default

sig_figs=<int>
Sets the number of significant figures displayed in the output
Valid values: 0 <sig_figs
(default = 2)

autocorr=<int>
Calculates and then displays the autocorrelation of the specified chain
Valid values: Any integer matching a chain index
(No autocorrelation output by default)

csv_file=<string>
Writes output as a csv file with comments written as #
Valid values: Any valid filename
(Appends output to the file if it exists)

30

Part III

CmdStan Executables

31

7. Compiling CmdStan Exectuables

Preparing a Stan program to be run involves two steps,
1. translating the Stan program to C++, and
2. compiling the resulting C++ to an executable.

This chapter discusses both steps, as well as their encapsulation into a single make
target.

7.1. Translating and Compiling through make

The simplest way to compile a CmdStan program is through the make build tool,
which encapsulates the translation and compilation step into a single command. The
commands making up the make target for compiling a model are described in the
following sections, and the following chapter describes how to run a compiled model.
Before compiling a CmdStan program, change directories to <cmdstan-home>.

Translating and Compiling Test Models

There are a number of example models distributed with CmdStan which unpack into
the path examples. To build the simple example exampTles/bernoulli/bernoulli.
stan, the following call to make suffices.

The following call will build an executable form of the Bernoulli estimator. On
Windows, replace bernoul1i with bernoulli.exe.

> make examples/bernoulli/bernoulli

This will translate the model bernoulli.stan to a C++ file, bernoull1i.hpp, and
compile a CmdStan program using the generated C++ file, putting the executable in
examples/bernoulli/bernoulli(.exe).

Stan programs do not need to be in the <cmdstan-home> directory. The current
limitation is that the target executable name can not have spaces - this includes the
path to the executable. Spaces in the full path can be avoided by using relative paths.
For Windows users, if using the full path, include the drive letter and use forward
slashes, e.g. make c:/cmdstan/bernoulli/bernoulli.exe.

Dependencies in make

When executing a make target, all its dependencies are checked to see if they are up
to date, and if they are not, they are rebuilt. If the make target to build the Bernoulli

32

estimator is invoked a second time, it will see that it is up to date, and will not
recompile the program.

If the file containing the Stan program is updated, the next call to make will rebuild
the CmdStan executable.

Getting Help from the makefile

CmdStan’s makefile, which contains the top-level instructions to make, provides ex-
tensive help in terms of targets and options. Invoke make with the target help:

> make help

Options to make

CmdStan allows users to change compilers, library versions for Boost, Eigen, and
CVODES, as well as compilation options such as optimization.
For a full list of options, see Appendix B.6

Clean Targets
A very useful target is clean-alT, invoked as

> make clean-all

This removes the CmdStan tools. This step is necessary when changing compilers or
other make options.

33

8. Running a CmdStan Program

Once a CmdStan program is compiled, it can be run in many different ways. It can be
used to sample or optimize parameters, or to diagnose a model. Before diving into
the detailed configurations, the first section provides some simple examples.

8.1. Getting Started by Example

Once a CmdStan program has been converted to a C++ program for that model (see
Chapter 4) and the resulting C++ program compiled to a platform-specific executable
(see Chapter 7), the model is ready to be run.

All of the CmdStan functionality is highly configurable from the command line;
the options are defined later in this chapter. Each command option also has defaults,
which are used in this section.

Sampling

Suppose the executable is in file my_model and the data is in file my_data, both in
the current working directory. To generate samples from a data set using the default
settings, use one of the following, depending on platform.

Mac OS and Linux

> ./my_model sample data file=my_data

Windows

> my_model sample data file=my_data

On both platforms, this command reads the data from file my_data, runs warmup
tuning for 1000 iterations (the values of which are discarded), and then runs the
fully-adaptive NUTS sampler for 1000 iterations, writing the parameter (and other)
values to the file samples.csv in the current working directory. When no random
number seed is specified, a seed is generated from the system time.

Sampling in Parallel

The previous example executes one chain, which can be repeated to generate multiple
chains. However, users may want to execute chains in parallel on a multicore machine.

34

Mac OS and Linux
To sample four chains using a Bash shell on Mac OS or Linux, execute!

> for i in {1..4}
do
./my_model sample random seed=12345 \
id=$7i data file=my_data \
output file=samples$i.csv &
done

The ampersand (&) at the end of the nested command pushes each process into the
background, so that the loop can continue without waiting for the current chain to
finish. The id value makes sure that a non-overlapping set of random numbers are
used for each chain. Also note that the output file is explicitly specified, with the
variable $i being used to ensure the output file name for each chain is unique.

The terminal standard output will be interleaved for all chains running concur-
rently. To suppress all terminal output, direct the standard output to the “null” de-
vice. This is achieved by postfixing > /dev/nul1 to a command, which in the above
case, means changing the second-to-last line to

output file=samples$i.csv > /dev/null &

Windows
On Windows, the following is functionally equivalent to the Bash snippet above

> for /1 %x in (1, 1, 4) do start /b model sample A
random seed=12345 id=%x data file=my_data A
output file=sampleskx.csv

The caret (A) indicates a line continuation in DOS.

Combining Parallel Chains

CmdStan has commands to analyze the output of multiple chains, each stored in
their own file; see Chapter 6. RStan also has commands to read in multiple CSV files
produced by CmdStan’s command-line sampler.

To compute posterior quantities, it is sometimes easier to have the chains merged
into a single CSV file. If the grep and sed programs are installed, then the following
will combine the four comma-separated values files into a single comma-separated
values file. The command is the same on Windows, Mac OS, and Linux.

I Complicated multiline commands such as this one are prime candidates for putting into a script file.

35

> grep 1p__ samplesl.csv > combined.csv
> sed "/A[#1]/d' samples=.csv >> combined.csv

Scripting and Batching

The previous examples show how to sample in parallel from the command line. Op-
erations like these can also be scripted, using shell scripts (. sh) on Mac OS and Linux
and DOS batch (.bat) files on Windows. A sequence of several such commands can
be executed from a single script file. Such scripts might contain stanc commands
(see Chapter 4) and stansummary commands (see Chapter 6) can be executed from a
single script file. At some point, it is worthwhile to move to something with stronger
dependency control such as makefiles.

Optimization

CmdStan can find the posterior mode (assuming there is one). If the posterior is not
convex, there is no guarantee Stan will be able to find the global mode as opposed to
a local optimum of log probability.

For optimization, the mode is calculated without the Jacobian adjustment for con-
strained variables, which shifts the mode due to the change of variables. Thus modes
correspond to modes of the model as written.

Windows

> my_model optimize data file=my_data

Mac OS and Linux

> ./my_model optimize data file=my_data

Variational Inference

CmdStan can fit a variational approximation to the posterior. The approximation
is a Gaussian in the unconstrained variable space. Stan implements two variational
algorithms. The algorithm=meanfield option uses a fully factorized Gaussian for
the approximation. The aTlgorithm=fullrank option uses a Gaussian with a full-rank
covariance matrix for the approximation.

Mac OS and Linux

> ./my_model variational algorithm=meanfield \
data file=my_data

36

> ./my_model variational algorithm=fullrank \
data file=my_data

Windows
> my_model variational algorithm=meanfield \
data file=my_data
> my_model variational algorithm=fullrank \

data file=my_data

8.2. Diagnostics

CmdStan has a basic diagnostic feature that will calculate gradients of the initial
state and compare them with those calculated with finite differences. If there are
discrepancies, there is a problem with the model or initial states (or a bug in Stan).
To run on the different platforms, use one of the following.

Mac OS and Linux

> ./my_model diagnose data file=my_data

Windows

> my_model diagnose data file=my_data

8.3. Command-Line Options

CmdStan executables are highly configurable, allowing the user to specify and cus-
tomize not only the calculation method but also the data, output, initialization, and
random number generation. The arguments are defined hierarchically so that, for
example, optimization settings are not necessary when sampling.

The atomic elements of the hierarchy (i.e., those without corresponding values)
are categorical arguments (sometimes called “flags”) which define self-contained cat-
egories of arguments.

CmdStan’s commands have more hierarchical structure than is typical of com-
mand line executables, which usually have at most two subgroups of commands.
Arguments grouped within a category are not ordered with respect to each other.
The only ordering is that the global options come before the method argument and

37

subcommand-specific options after the method argument. For example, the following
four commands all define the same configuration:?

> ./model sample output file=samples.csv \
diagnostic_file=diagnostics.csv \
random seed=1

> ./model sample output diagnostic_file=diagnostics.csv \
file=samples.csv \
random seed=1

> ./model sample random seed=1 \
output file=samples.csv \
diagnostic_file=diagnostics.csv

> ./model sample random seed=1 \
output diagnostic_file=diagnostics.csv \
file=samples.csv

The categorical arguments output and random can be in any order provided that
the subarguments follow their respective parent, here diagnostic_file and file
following output and seed coming after random. These four configurations exhaust
all valid combinations.

Categorical arguments may appear is isolation, for example when introducing
sample or random, or they may appear as the values for other arguments, such as
hmc which not only introduces a category of HMC related arguments but also defines
the value of the argument algorithm. A visual diagram of the available categorical
arguments is shown in Figure 8.1, with the mutual exclusivity of these arguments as
values shown in Figure 8.2. Specifying conflicting arguments causes the execution to
immediately terminate.

Note that any valid argument configuration must either specify a method or a help
request.

Method

All commands other than help must include at least one method, specified explicitly
as method=method_name or implicitly with only method_name. Currently CmdStan
supports the following methods:

2 The backslash (\) is used at the end of a line in a command to indicate that it continues on the next
line. The indentation to indicate the structure of the command is for pedagogical purposes only; the same
result would be obtained writing each command on one line with single spaces separating the elements.

38

id, data, init

random

seed

output

file, diagnostic_file,

method
diagnose
—»
optimize
—»
sample
num_samples, num_warmup, save_warmup, thin
adapt
algorithm
L
hmc
nuts

Figure 8.1: In the hierarchical argument structure, certain arguments, such as random and
output, introduce new categories of arguments. Categorical arguments may also appear as
values of other arguments, such as diagnose, optimize, and sample, which define the mutually
exclusive values for the argument method.

39

id, data, 1init

random

seed

output

file, diagnostic_file,

method
sample
num_samples, num_warmup, save_warmup, thin
adapt
algorithm
L

t* hmc

Figure 8.2: A valid argument configuration defines only one mutually exclusive argument.
If conflicting arguments are specified, for example method=optimize method=sample, then
execution immediately terminates with a warning message.

40

Method | Description

sampTle | sample using MCMC
optimize | find posterior mode using optimization
variational | fit variational approximation (experimental)
diagnose | diagnose models

All remaining configurations are optional, with default values provided for all argu-
ments not explicitly specified.
Help

Informative output can be retrieved either globally, by requesting help at the top-
level, or locally, by requesting help deeper into the hierarchy. Note that after any help
has been displayed the execution immediately terminates, even if a method has been
specified.

Top-Level Help

If help is specified as the only argument then a usage message is displayed. Similarly,
specifying help_al1 by itself displays the entire argument hierarchy.

Context-Sensitive Help

Specifying help after any argument displays a description and valid options for that
argument. For example,

./my_model sample help

provides the top-level options for the samp1e method.
Detailed information on the argument, and all arguments deriving from it, can
accessed by specifying help-al1 instead,

./my_model sample help-all

8.4. Full Argument Hierarchy

Here we present the full argument hierarchy, along with relevant details. Some typical
use-case examples are provided in the next section.

41

Typographical Conventions

The following typographical conventions are obeyed in the hierarchy.

- arg=<value-type>
Arguments with values; displays the value type, legal values, and default value

- arg
Isolated categorical arguments; displays all valid subarguments

value
Values; describes effect of selecting the value

- avalue
Categorical arguments that appear as values to other arguments; displays all
valid subarguments

Top-Level Method Argument

Every command must have exactly one method specified as the very first argument.
The value type of Tist element means that the valid values are enumerated as a list.

method=<T17ist element>
Analysis method (Note that method= is optional)
Valid values: sample, optimize, variational, diagnose
(Defaults to sampTe)

Sampling-Specific Arguments

The following arguments are specific to sampling. The method argument sample (or
method=sampTe) must come first in order to enable the subsequent arguments. The
other arguments are optional and may appear in any order.

L sample
Bayesian inference with Markov Chain Monte Carlo
Valid subarguments: num_samples, num_warmup, save_warmup,
thin, adapt, algorithm

L L num_samples=<int>
Number of sampling iterations
Valid values: 0 < num_samples
(Defaults to 1000)

42

Iteration

Figure 8.3: Adaptation during warmup occurs in three stages: an initial fast adaptation interval
(), a series of expanding slow adaptation intervals (Il), and a final fast adaptation interval (III).
For HMC, both the fast and slow intervals are used for adapting the step size, while the slow
intervals are used for learning the (co)variance necessitated by the metric. Iteration numbering
starts at 1 on the left side of the figure and increases to the right.

L L num_warmup=<int>
Number of warmup iterations
Valid values: 0 < warmup
(Defaults to 1000)

L L save_warmup=<boolean>
Stream warmup samples to output?
Valid values: 0, 1
(Defaults to 0)

L L thin=<int>
Period between saved samples
Valid values: 0 < thin
(Defaults to 1)

Sampling Adaptation-Specific Parameters

When adaptation is engaged the warmup period is split into three stages (Figure 8.3),
with two fast intervals surrounding a series of growing slow intervals. Here fast and
slow refer to parameters that adapt using local and global information, respectively;
the Hamiltonian Monte Carlo samplers, for example, define the step size as a fast pa-
rameter and the (co)variance as a slow parameter. The size of the the initial and final
fast intervals and the initial size of the slow interval are all customizable, although
user-specified values may be modified slightly in order to ensure alignment with the
warmup period.

The motivation behind this partitioning of the warmup period is to allow for more
robust adaptation. In the initial fast interval the chain is allowed to converge to-

43

wards the typical set,> with only parameters that can learn from local information
adapted. After this initial stage parameters that require global information, for exam-
ple (co)variances, are estimated in a series of expanding, memoryless windows; often
fast parameters will be adapted here as well. Lastly the fast parameters are allowed
to adapt to the final update of the slow parameters.

Currently all Stan sampling algorithms utilize dual averaging to optimize the step
size (this optimization during adaptation of the sampler should not be confused with
running Stan’s optimization method). This optimization procedure is extremely flex-
ible and for completeness we have exposed each option, using the notation of (Hoff-
man and Gelman, 2011, 2014). In practice the efficacy of the optimization is sensitive
to the value of these parameters, and we do not recommend changing the defaults
without experience with the dual averaging algorithm. For more information, see the
discussion of dual averaging in (Hoffman and Gelman, 2011, 2014).

Variances or covariances are estimated using Welford accumulators to avoid a loss
of precision over many floating point operations.

The following subarguments are introduced by the categorical argument adapt.
Each subargument must contiguously follow adapt, though they may appear in any
order.

L L adapt
Warmup Adaptation
Valid subarguments: engaged, gamma, delta, kappa, tO

L L L engaged=<boolean>
Adaptation engaged?
Valid values: 0, 1
(Defaults to 1)

L L L gamma=<double>
Adaptation regularization scale
Valid values: 0 < gamma
(Defaults to 0.05)

L L L delta=<double>
Adaptation target acceptance statistic
Valid values: 0 < deTta <1
(Defaults to 0. 8)

L L L kappa=<double>
Adaptation relaxation exponent

3The typical set is a concept borrowed from information theory and refers to the neighborhood (or
neighborhoods in multimodal models) of significant posterior probability mass through which the Markov
chain will travel in equilibrium.

44

Valid values: 0 < kappa
(Defaults to 0.75)

L L L tO=<double>
Adaptation iteration offset
Valid values: 0 < t0
(Defaults to 10)

L L L init_buffer=<unsigned int>
Width of initial fast adaptation interval
Valid values: All
(Defaults to 75)

L L L term_buffer=<unsigned int>
Width of final fast adaptation interval
Valid values: All
(Defaults to 50)

L L L window=<unsigned int>
Initial width of slow adaptation interval
Valid values: All
(Defaults to 25)

By setting the acceptance statistic delta to a value closer to 1 (its value must be
strictly less than 1 and its default value is 0.8), adaptation will be forced to use smaller
step sizes. This can improve sampling efficiency (effective samples per iteration)
at the cost of increased iteration times. Raising the value of delta will also allow
some models that would otherwise get stuck overcome their blockages; see also the
stepsize_jitter argument.

Sampling Algorithm- and Engine-Specific Arguments

The following batch of arguments are used to control the sampler used for sampling.
The top-level specification is for engine, the only valid value of which is hmc (this will
change in the future as we add new samplers).

L L algorithm=<Tlist element>
Sampling algorithm
Valid values: hmc, fixed_param
(Defaults to hmc)

Hamiltonian Monte Carlo is a very general approach to sampling that utilizes tech-
niques of differential geometry and mathematical physics to generate efficient MCMC
transitions. This generality manifests in a wealth of implementation choices.

45

L L L hmc
Hamiltonian Monte Carlo
Valid subarguments: engine, metric, stepsize, stepsize_jitter

All HMC implementations require at least two parameters: an integration step size
and a total integration time. We refer to different specifications of the latter as en-
gines.

In the static_hmc implementation the total integration time must be specified by
the user, where as the nuts implementation uses the No-U-Turn Sampler to determine
an optimal integration time dynamically.

L L L L engine=<list element>
Engine for Hamiltonian Monte Carlo
Valid values: static, nuts
(Defaults to nuts)

The following options are activated for static HMC.

L L L L L static
Static integration time
Valid subarguments: int_time

LLLLLL int_time=<double>
Total integration time for Hamiltonian evolution
Valid values: 0 < int_time
(Defaults to 21)

These options are for NUTS, an adaptive version of HMC.

L LLLL nuts
The No-U-Turn Sampler
Valid subarguments: max_depth

Tree Depth

NUTS generates a proposal by evolving the initial system both forwards and back-
wards in time to form a balanced binary tree. At each iteration of the NUTS algorithm
the tree depth is increased by one, doubling the number of leapfrog steps and effec-
tively doubles the computation time. The algorithm terminates in one of two ways:
either the NUTS criterion is satisfied for a new subtree or the completed tree, or the
depth of the completed tree hits max_depth.

Both the tree depth and the actual number of leapfrog steps computed are re-
ported along with the parameters in the output as treedepth__ and n_leapfrog__,

46

respectively. Because the final subtree may only be partially constructed, these two
will always satisfy
2treedepth71 _1< Nlcapfrog < 2treedepth ~1.

treedepth__ is an important diagnostic tool for NUTS. For example,
treedepth__ = 0 occurs when the first leapfrog step is immediately rejected and
the initial state returned, indicating extreme curvature and poorly-chosen step size
(at least relative to the current position). On the other hand, if treedepth__ =
max_depth then NUTS is taking many leapfrog steps and being terminated prema-
turely to avoid excessively long execution time. For the most efficient sampling
max_depth should be increased to ensure that the NUTS tree can grow as large as
necessary.

For more information on the NUTS algorithm see (Hoffman and Gelman, 2011,
2014).

L'L L L L L max_depth=<int>
Maximum tree depth
Valid values: 0 < max_depth
(Defaults to 10)

Euclidean Metric

All HMC implementations in Stan utilize quadratic kinetic energy functions which are
specified up to the choice of a symmetric, positive-definite matrix known as a mass
matrix or, more formally, a metric (Betancourt and Stein, 2011).

If the metric is constant then the resulting implementation is known as Euclidean
HMC. Stan allows for three Euclidean HMC implementations: a unit metric, a diagonal
metric, and a dense metric. These can be specified with the values unit_e, diag_e,
and dense_e, respectively.

Future versions of Stan will also include dynamic metrics associated with Rieman-
nian HMC (Girolami and Calderhead, 2011; Betancourt, 2012).

L L L L metric=<Tist element>
Geometry of base manifold
Valid values: unit_e, diag_e, dense_e
(Defaults to diag_e)

LLLLL unit_e
Euclidean manifold with unit metric

LLLLL diag_e
Euclidean manifold with diag metric

47

LLLL L dense_e
Euclidean manifold with dense metric

Step Size and Jitter

All implementations of HMC also use numerical integrators requiring a step size.
We also allow that step size to be “jittered” randomly during sampling to avoid any
poor interactions with a fixed step size and regions of high curvature. The maximum
amount of jitter is 1, which will cause step sizes to be selected in the range of 0 to
twice the adapted step size. Low step sizes can get HMC samplers unstuck that would
otherwise get stuck with higher step sizes. The downside is that jittering below the
adapted value will increase the number of leapfrog steps required and thus slow down
iterations, whereas jittering above the adapted value can cause premature rejection
due to simulation error in the Hamiltonian dynamics calculation. See (Neal, 2011) for
further discussion of step-size jittering.

L L L L stepsize=<double>
Step size for discrete evolution
Valid values: 0 < stepsize
(Defaults to 1)

L L L L stepsize_jitter=<double>
Uniformly random jitter of the stepsize, in percent
Valid values: 0 < stepsize_jitter <1
(Defaults to 0)

Fixed Parameter Sampler

The fixed parameter sampler generates a new sample without changing the cur-
rent state of the Markov chain; only generated quantities may change. This can
be useful when, for example, trying to generate pseudo-data using the generated
quantities block. If the parameters block is empty (no parameters) then using
algorithm=fixed_paramis mandatory.

L L L fixed_param
Fixed Parameter Sampler

Optimization-Specific Commands

The following arguments are for the top-level method optimize. They allow control
of the optimization algorithm, and some of its configuration. The other arguments
may appear in any order.

48

L optimize
Point estimation
Valid subarguments: algorithm, iter, save_iterations

L L algorithm=<Tlist element>
Optimization algorithm
Valid values: bfgs, 1bfgs, newton
(Defaults to Thfgs)

The following options are for the (L-)BFGS optimizer. L-BFGS is the default optimizer
and also much faster than the other optimizers.

Convergence monitoring in (L-)BFGS is controlled by a number of tolerance values,
any one of which being satisified causes the algorithm to terminate with a solution.

- The log probability is considered to have converged if
[logp(0:ly) —logp(6;-11y)| < tol_obj
or

[logp(0:ly) —logp(0i-11y) |
max (|logp(0;1y) |, [logp(0i-11y)]|, 1.0)

< tol_rel_obj x €.
- The parameters are considered to have converged if

[10; — 0;_1|] < tol_param.
- The gradient is considered to have converged to O if
[1gill < tol_grad
or

giTHiflgi
max (|logp(6ily)|,1.0)

< tol_rel_grad *x €.

Here, i is the current iteration, 6; is the value of the parameters at iteration i, y is the
data, p(6;|y) is the posterior probability of 6; up to a proportion, Vg is the gradient
operator with respect to 9, gi = Vglogp(6;|y) is the gradient at iteration i, H; is
the estimate of the Hessian at iteration i, |u| is absolute value (L1 norm) of u, ||ul|
is vector length (L2 norm) of u, and € ~ 2e — 16 is machine precision. Any of the
convergence tests can be disabled by setting its corresponding tolerance parameter
to zero.

The other command-line argument for (L-)BFGS is init_alpha, which is the first
step size to try on the initial iteration. If the first iteration takes a long time (and
requires a lot of function evaluations), set init_alpha to be the roughly equal to

49

the alpha used in that first iteration. init_alpha has a tiny default value, which is
reasonable for many problems but might be too large or too small depending on the
objective function and initialization. Being too big or too small just means that the
first iteration will take longer (i.e., require more gradient evaluations) before the line
search finds a good step length. It’s not a critical parameter, but for optimizing the
same model multiple times (as you tweak things or with different data) being able to
change it can save some real time.

Finally, L-BFGS has a additional command-line argument, history_size, which
controls how much memory is used maintaining the approximation of the Hessian.
This should be less than the dimensionality of the parameter space and, in general,
relatively small values (5 - 10) are sufficient. If L-BFGS performs badly but BFGS is
performing well, then consider increasing this. Note that increasing this will increase
the memory usage, although this is unlikely to be an issue for typical Stan models.

L L L (I)bfgs
(L-)BFGS with linesearch
Valid subarguments: 1init_alpha, tol_obj, tol_rel_obj, tol_grad,
tol_rel_grad, tol_param, history_size (Ibfgs only)

L L L L init_alpha=<double>
Line search step size for first iteration
Valid values: 0 < init_alpha
(Defaults to 0.001)

L L L L tol_obj=<double>
Convergence tolerance on changes in objective function value
Valid values: 0 < tol_obj
(Defaults to 1le-12)

L L L L tol_rel_obj=<double>
Convergence tolerance on relative changes in objective function value
Valid values: 0 < tol_rel_obj
(Defaults to 1le+4)

L L L L tol_grad=<double>
Convergence tolerance on the norm of the gradient
Valid values: 0 < tol_grad
(Defaults to 1e-8)

L L L L tol_rel_grad=<double>
Convergence tolerance on the relative norm of the gradient
Valid values: 0 < tol_rel_grad
(Defaults to 1e+7)

50

L L L L tol_param=<double>
Convergence tolerance on changes in parameter value
Valid values: 0 < tol_param
(Defaults to 1e-8)

L L L L history_size=<int>
Number of update vectors to use in Hessian approximations (Ibfgs only)
Valid values: 0 < history_size
(Defaults to 5)

The following argument is for Newton’s optimization method; there are currently no
configuration parameters for Newton’s method, and it is not recommended because
of the slow Hessian calculation involving finite differences.

L L L newton
Newton’s method

The remaining arguments apply to all optimizers.

L L iter=<int>
Total number of iterations
Valid values: 0 < iter
(Defaults to 2000)

L L save_iterations=<boolean>
Stream optimization progress to output?
Valid values: 0, 1
(Defaults to 0)

Variational Inference-Specific Commands

The following arguments are for the top-level method variational. They allow con-
trol of the variational inference algorithm, and some of its configuration.

L variational
Variational inference
Valid subarguments: algorithm, iter, grad_samples, elbo_samples,
eta, adapt, tol_rel_obj, eval_elbo, output_samples

L L algorithm=<Tist element>
Variational inference algorithm
Valid values: meanfield, fullrank
(Defaults to meanfield)

51

iter=<int>

Maximum number of iterations
Valid values: 0 < iter
(Defaults to 10000)

grad_samples=<int>

Number of samples for Monte Carlo estimate of gradients
Valid values: 0 < grad_samples

(Defaults to 1)

elbo_samples=<int>

Number of samples for Monte Carlo estimate of ELBO (objective function)
Valid values: 0 < elbo_samples

(Defaults to 100)

eta=<double>

Stepsize weighting parameter for adaptive stepsize sequence
Valid values: 0 < eta

(Defaults to 1.0)

adapt
Warmup Adaptation
Valid subarguments: engaged, 1iter

L engaged=<boolean>
Adaptation engaged?
Valid values: 0, 1
(Defaults to 1)

L diter=<int>

Maximum number of adaptation iterations
Valid values: 0 < iter

(Defaults to 50)

tol_rel_obj=<double>

Convergence tolerance on the relative norm of the objective
Valid values: 0 < tol_rel_obj

(Defaults to 0.01)

eval_elbo=<int>

Evaluate ELBO every Nth iteration
Valid values: 0 < eval_elbo
(Defaults to 100)

52

L L output_samples=<int>
Number of posterior samples to draw and save
Valid values: 0 < output_samples
(Defaults to 1000)

Diagnostic-Specific Arguments

The following arguments are specific to diagnostics. As of now, the only diagnostic is
gradients of the log probability function.

L diagnose
Model diagnostics
Valid subarguments: test

L L test=<list element>
Diagnostic test
Valid values: gradient
(Defaults to gradient)

L L L gradient
Check model gradient against finite differences Valid subarguments: epsilon,
error

L L L L epsilon=<real>
Finite difference step size
Valid values: 0 < epsilon
(Defaults to 1e-6)

L L L L error=<real>
Error threshold
Valid values: 0 < error
(Defaults to 1e-6)

General-Purpose Arguments
The following arguments may be used with any of the previous configurations. They
may come either before or after the other subarguments of the top-level method.

Process Identifier Argument

id=<int>
Unique process identifier, used to advance random number generator so that
random numbers do not overlap across chains

53

Valid values: 0 < id
(Defaults to 0)

Input Data Arguments

data
Input data options
Valid subarguments: file

L file=<string>
Input data file
Valid values: Path to existing file
(Defaults to empty path)

Initialization Arguments

Initialization is only applied to parameters defined in the parameters block. Any ini-
tial values supplied for transformed parameters or generated quantities are ignored.

init=<string>
Initialization method:
e real number x > 0 initializes randomly bewteen [-x, x];
e 0 initializes to 0;
e non-number interpreted as a data file
Valid values: All
(Defaults to 2)

Random Number Generator Arguments

random
Random number configuration
Valid subarguments: seed

L seed=<unsigned int>
Random number generator seed
Valid values:
e seed > 0 generates seed;
e seed < 0 uses seed generated from time
(Defaults to -1)

54

Output Arguments

output
File output options
Valid subarguments: file, diagnostic_file, refresh

L file=<string>
Output file
Valid values: Valid path
(Defaults to output.csv)

L diagnostic_file=<string>
Auxiliary output file for diagnostic information
Valid values: Valid path
(Defaults to empty path)

L refresh=<int>
Number of interations between screen updates
Valid values: 0 < refresh
(Defaults to 100)

8.5. Command-Line Option Examples

The hierarchical structure of the command-line options can be intimidating, and here
we provide an example workflow to help ease the introduction to new users, especially
those used to Stan 1.3 or earlier releases. The examples in this section are for Mac
OS and Linux; on Windows, just remove the ./ before the executable and change the
line-continuation character from Unix’s \ to DOS’s A. As in previous sections, the
indentation on continued lines is for pedagogical purposes only and does not convey
any content to the executable.

Let’s say that we’ve just built our model, model, and are ready to run. We begin
by specifying data and init files,

> ./model data file=model.data.R init=model.init.R
but our model doesn’t run. Instead, the above command prints

A method must be specified!
Failed to parse arguments, terminating Stan

The problem is that we forgot to specify a method.
All Stan arguments have default values, except for the method. This is the only
argument that must be specified by the user and a model will not run without it (not

55

to say that the model will run without error, for example a model that requires data
will eventually fail unless an input file is specified with file under data). Assuming
that we want to draw MCMC samples from our model, we can either specify a method
implicitly,

> ./model sample data file=model.data.R init=model.init.R
or explicitly,

> ./model method=sample data file=model.data.R \
init=model.init.R

In either case our model now executes without any problem.

Now let’s say that we want to customize our execution. In particular we want to
set the seed for the random number generator, but we forgot the specific argument
syntax. Information for each argument can displayed by calling help,

> ./model random help

which returns

random
Random number configuration
Valid subarguments: seed

before printing usage information. For information on the seed argument we just call
help one level deeper,

> ./model random seed help

which returns

seed=<unsigned int>
Random number generator seed
Valid values: seed > 0, if negative seed is generated from time
Defaults to -1

Fully informed, we can now run with a given seed,

> ./model method=sample data fle=model.data.R \
init=model.init.R \
random seed=5

56

The arguments method, data, init, and random are all top-level arguments. To
really see the power of a hierarchical argument structure let’s try to drill down and
specify the metric we use for HMC: instead of the default diagonal Euclidean metric,
we want to use a dense Euclidean metric. Attempting to specify the metric we try

> ./model method=sample data file=model.data.R \
init=model.init.R \
random seed=5 \
metric=unit

only to have the execution fail with the message

metric=unit_e is either mistyped or misplaced.

Perhaps you meant one of the following valid configurations?
method=sample algorithm=hmc metric=<list_element>

Failed to parse arguments, terminating Stan

The argument metric does exist, but not at the top-level. In order to specify it we
have to drill down into sample by first specifying the sampling algorithm, as noted in
the suggestion,

> ./model method=sample algorithm=hmc metric=unit \
data file=model.data.R \
init=model.init.R \
random seed=5

Unfortunately we still messed up,

unit is not a valid value for "metric"
Valid values: unit_e, diag_e, dense_e
Failed to parse arguments, terminating Stan

Tweaking the metric name we make one last attempt,

> ./model method=sample algorithm=hmc metric=unit_e \
data file=model.data.R \
init=model.init.R \
random seed=5

which successfully runs.

Finally, let’s consider the circumstance where our model runs fine but the NUTS
iterations keep saturating the default tree depth limit of 10. We need to change the
limit, but how do we specify NUTS let alone the maximum tree depth? To see how

57

let’s take advantage of the help-all option which prints all arguments that derive
from the given argument. We know that NUTS is somehow related to sampling, so we
try

> ./model method=sample help-all

which returns the verbose output,

sample
Bayesian inference with Markov Chain Monte Carlo
Valid subarguments: num_samples, num_warmup,
save_warmup, thin, adapt, algorithm

num_samples=<int>
Number of sampling iterations
Valid values: 0 <= num_samples
Defaults to 1000

num_warmup=<int>
Number of warmup iterations
Valid values: 0 <= warmup
Defaults to 1000

save_warmup=<boolean>
Stream warmup samples to output?
Valid values: [0, 1]
Defaults to O

thin=<int>
Period between saved samples
Valid values: 0 < thin
Defaults to 1

adapt
Warmup Adaptation
Valid subarguments: engaged, gamma, delta, kappa, tO

engaged=<boolean>
Adaptation engaged?
Valid values: [0, 1]
Defaults to 1

gamma=<double>

Adaptation regularization scale
Valid values: 0 < gamma

58

Defaults to 0.05

delta=<double>
Adaptation target acceptance statistic
Valid values: 0 < delta < 1
Defaults to 0.65

kappa=<doubTe>
Adaptation relaxation exponent
Valid values: 0 < kappa
Defaults to 0.75

tO0=<double>
Adaptation iteration offset
Valid values: 0 < t0
Defaults to 10

algorithm=<list element>
Sampling algorithm
Valid values: hmc
Defaults to hmc

hmc
HamiTtonian Monte Carlo
Valid subarguments: engine, metric, stepsize,
stepsize_jitter

engine=<list element>
Engine for Hamiltonian Monte Carlo
Valid values: static, nuts
Defaults to nuts

static
Static integration time
Valid subarguments: int_time

int_time=<double>
Total integration time for Hamiltonian evolution
Valid values: 0 < int_time
Defaults to 2 = pi

nuts

The No-U-Turn Sampler
Valid subarguments: max_depth

59

max_depth=<int>
Maximum tree depth
Valid values: 0 < max_depth
Defaults to 10

metric=<list element>
Geometry of base manifold
Valid values: unit_e, diag_e, dense_e
Defaults to diag_e

unit_e
Euclidean manifold with unit metric

diag_e
Euclidean manifold with diag metric

dense_e
Euclidean manifold with dense metric

stepsize=<double>
Step size for discrete evolution
Valid values: 0 < stepsize
Defaults to 1

stepsize_jitter=<double>
Uniformly random jitter of the stepsize, in percent
Valid values: 0 <= stepsize_jitter <=1
Defaults to 0

Following the hierarchy, the maximum tree depth derives from nuts, which itself is a
value for the argument engine which derives from hmc. Adding this to our previous
call we attempt

> ./model method=sample
algorithm=hmc
metric=unit_e
engine=nuts max_depth=-15
data file=model.data.R
init=model.init.R
random seed=5

— = = - -

which yields

60

-1 is not a valid value for "max_depth"
Valid values: 0 < max_depth
Failed to parse arguments, terminating Stan

Where did that negative sign come from? Clumsy fingers are nothing to be embar-
rassed about, especially with such complex argument configurations. Removing the
guilty character, we try

> ./model method=sample
algorithm=hmc
metric=unit_e
engine=nuts max_depth=15
data file=model.data.R
init=model.init.R
random seed=5

—— = = =

which finally runs without issue.

8.6. Command Templates

This section provides templates for all of the arguments deriving from each of the
possible methods: sample, optimize, variational and diagnose. Arguments in
square brackets are optional, those not in square brackets are required for the tem-
plate.

Sampling Templates

The No-U-Turn sampler (NUTS) is the default (and recommended) sampler for Stan.
The full set of configuration options is in Figure 8.4.

A standard Hamiltonian Monte Carlo (HMC) sampler with user-specified integra-
tion time may also be used. Its set of configuration options are shown in Figure 8.5.

Both NUTS and HMC may be configured with either a unit, diagonal or dense
Euclidean metric, with a diagonal metric the default.* A unit metric provides no
parameter-by-parameter scaling, a diagonal metric scales each parameter indepen-
dently, and a dense metric also rotates the parameters so that correlated parameters
may move together. Although dense metrics offer the hope of superior simulation
performance, they require more computation per iteration. Specifically for m samples
of a model with n parameters, the dense metric requires © (n®log(m) + n?> m) opera-
tions, whereas diagonal metrics require only ©@ (n m). Furthermore, dense metrics are
difficult to estimate, given the O (n?) components with complex interdependence.

4In Euclidean HMC, a diagonal metric emulates different step sizes for each parameter. Explicitly varying

61

> ./my_model sample
algorithm=hmc
engine=nuts
[max_depth=<int>]
[metric={unit_e,diag_e,dense_e}]
[stepsize=<double>]
[stepsize_jitter=<double>]
[num_samples=<int>]
[num_warmup=<int>]
[save_warmup=<boolean>]
[thin=<int>]
[adapt
[engaged=<boolean>]
[gamma=<double>]
[delta=<double>]
[kappa=<double>]
[tO=<double>]]
[data file=<string>]
[init=<string>]
[random seed=<int>]
[output
[file=<string>]
[diagnostic_file=<string>]
[refresh=<int>]]

e e e e e — — — — —

Figure 8.4: Command skeleton for invoking the no-U-turn sampler (NUTS). This is the same
skeleton as that for basic HMC in Figure 8.5. Elements in braces are optional. All arguments and
their default values are described in detail in Section 8.4.

Optimization Templates

CmdStan supports several optimizers. These share many of their configuration op-
tions with the samplers. The default optimizer is the the limited memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) method; Nocedal and Wright (2006) contains an
excellent overview of both the BFGS and L-BFGS algorithms. The command skeleton
for L-BFGS is in Figure 8.6 and the one for BFGS is in Figure 8.7. Stan also supports
Newton’s method; see (Nocedal and Wright, 2006) for more information. This method
is the least efficient of the three, but has the advantage of setting its own step size.
Other than not having a stepsize argument, the skeleton for Newton’s method shown
in Figure 8.8 is identical to that for BFGS.

step sizes were used in Stan 1.3 and before; Neal (2011) discusses the equivalence.

62

> ./my_model sample
algorithm=hmc
engine=static
[int_time=<double>]
[metric={unit_e,diag_e,dense_e}]
[stepsize=<double>]
[stepsize_jitter=<double>]
[num_samples=<int>]
[num_warmup=<int>]
[save_warmup=<boolean>]
[thin=<int>]
[adapt
[engaged=<boolean>]
[gamma=<double>]
[delta=<double>]
[kappa=<double>]
[tO=<double>]]
[data file=<string>]
[init=<string>]
[random seed=<int>]
[output
[file=<string>]
[diagnostic_file=<string>]
[refresh=<int>]]

e e e e e — — — — —

Figure 8.5: Command skeleton for invoking the basic Hamiltonian Monte Carlo sampler (HMC).
This is the same as the NUTS command skeleton shown in Figure 8.4 other than for the engine.
Elements in braces are optional. All arguments and their default values are described in detail
in Section 8.4.

Variational Inference Templates

CmdStan implements Automatic Differentiation Variational Inference (Kucukelbir
et al., 2015). The command skeleton for the meanfield algorithm is in Figure 8.9.
The command skeleton for the fullrank algorithm is in Figure 8.10.

Diagnostic Command Skeleton

Stan reports on gradients for the model at a specified or randomly generated initial
value. The command-skeleton in this case is very simple, and shown in Figure 8.11.

63

—

> ./my_model optimize
algorithm=1bfgs \
[init_alpha=<double>]
[tol_obj=<double>]
[tol_rel_obj=<double>]
[tol_grad=<double>]
[tol_rel_grad=<double>]
[tol_param=<double>]
[history_size=<int>]
[iter=<int>]
[save_iterations=<boolean>]
[data file=<string>]
[init=<string>]
[random seed=<int>]
[output
[file=<string>]
[diagnostic_file=<string>]
[refresh=<int>]]

P il

Figure 8.6: Command skeleton for invoking the L-BFGS optimizer. All arguments and their
default values are described in detail in Section 8.4.

> ./my_model optimize \
algorithm=bfgs \
[init_alpha=<double>] \
[tol_obj=<double>] \
[tol_rel_obj=<double>] \
[tol_grad=<double>] \
[tol_rel_grad=<double>] \
[tol_param=<double>] \
[iter=<int>] \
[save_iterations=<boolean>] \
[data file=<string>] \
[init=<string>] \
[random seed=<int>] \
[output \
[file=<string>] \
[diagnostic_file=<string>] \

[refresh=<int>]]

Figure 8.7: Command skeleton for invoking the BFGS optimizer. All arguments and their default
values are described in detail in Section 8.4.

64

> ./my_model optimize
algorithm=newton
[iter=<int>]
[save_iterations=<boolean>]
[data file=<string>]
[init=<string>]
[random seed=<int>]
[output
[file=<string>]
[diagnostic_file=<string>]
[refresh=<int>]]

— - -

Figure 8.8: Command skeleton for invoking the Newton optimizer. All arguments and their
default values are described in detail in Section 8.4.

> ./my_model variational
algorithm=meanfield

[iter=<int>]

[grad_samples=<int>]

[elbo_samples=<int>]

[eta=<double>]

[adapt
[engaged=<boolean>]
[iter=<int>]]

[tol_rel_obj=<double>]

[eval_elbo=<int>]

[output_samples=<int>]

[data file=<string>]

[init=<string>]

[random seed=<int>]

[output
[file=<string>]
[diagnostic_file=<string>]
[refresh=<int>]]

— -

Figure 8.9: Command skeleton for invoking the meanfield variational inference algorithm. All
arguments and their default values are described in detail in Section 8.4.

65

> ./my_model variational
algorithm=fullrank

[iter=<int>]

[grad_samples=<int>]

[elbo_samples=<int>]

[eta=<double>]

[adapt
[engaged=<boolean>]
[iter=<int>]]

[tol_rel_obj=<double>]

[eval_elbo=<int>]

[output_samples=<int>]

[data file=<string>]

[init=<string>]

[random seed=<int>]

[output
[file=<string>]
[diagnostic_file=<string>]
[refresh=<int>]]

PP

Figure 8.10: Command skeleton for invoking the fullrank variational inference algorithm. All
arguments and their default values are described in detail in Section 8.4.

> ./my_model diagnose
[test=gradient]
[epsilon=<real>]
[error=<real>]
[data file=<string>]
[init=<string>]
[random seed=<int>]

— - - - - —

Figure 8.11: Command skeleton for invoking model diagnostics. All arguments and their de-
fault values are described in detail in Section 8.4.

66

Appendices

67

A. Licensing

CmdStan, Stan, and Stan’s three dependent libraries, Stan Math Library, Boost, and
Eigen, are distributed under liberal freedom-respecting! licenses approved by the
Open Source Initiative.?

In particular, the licenses for CmdStan and its dependent libraries have no “copy-
left” provisions requiring applications of CmdStan to be open source if they are re-
distributed.

This chapter describes the licenses for the tools that are distributed with Cmd-
Stan. The next chapter explains some of the build tools that are not distributed with
CmdStan, but are required to build and run Stan models.

A.1. CmdStan’s License

CmdStan is distributed under the BSD 3-clause license (BSD New).

http://www.opensource.org/licenses/BSD-3-Clause

A.2. Stan’s License

Stan is distributed under the BSD 3-clause license (BSD New).

http://www.opensource.org/licenses/BSD-3-Clause

A.3. Stan Math Library’s License

The Stan Math Library is distributed under the BSD 3-clause license (BSD New).

http://www.opensource.org/Ticenses/BSD-3-Clause

A.4. Boost License

Boost is distributed under the Boost Software License version 1.0.

http://www.opensource.org/Ticenses/BSL-1.0

IThe link http://www.gnu.org/philosophy/open-source-misses-the-point.html leads to a dis-
cussion about terms “open source” and “freedom respecting.”
2See http://opensource.org.

68

http://www.opensource.org/licenses/BSD-3-Clause
http://www.opensource.org/licenses/BSD-3-Clause
http://www.opensource.org/licenses/BSD-3-Clause
http://www.opensource.org/licenses/BSL-1.0
http://www.gnu.org/philosophy/open-source-misses-the-point.html
http://opensource.org

A.5. Eigen License

Eigen is distributed under the Mozilla Public License, version 2.

http:/http://opensource.org/licenses/mp1-2.0

A.6. CVODES License

CVODES is distributed under the BSD 3-clause license (BSD New).

http://computation.11nl.gov/projects/sundials-suite-nonlinear-differen
Ticense

A.7. Google Test License

CmdStan uses Google Test for unit testing; it is not required to compile or execute
models. Google Test is distributed under the BSD 2-clause license.

http://www.opensource.org/Ticenses/BSD-L1icense

69

http:/http://opensource.org/licenses/mpl-2.0
http://computation.llnl.gov/projects/sundials-suite-nonlinear-differential-algebraic-equation-solvers/license
http://computation.llnl.gov/projects/sundials-suite-nonlinear-differential-algebraic-equation-solvers/license
http://www.opensource.org/licenses/BSD-License

B. Installation and Compatibility

This appendix describes the hardware and software required to run CmdStan. The
software required includes CmdStan and its libraries, as well as a contemporary C++
compiler. CmdStan requires hardware powerful enough to build and execute the
models. Ideally, that will be a 64-bit computer with at least 4GB of memory and
multiple processor cores.

B.1. Operating System

CmdStan is written in portable C++ without C++11 features, as are the libraries on
which it depends. Therefore, CmdStan should run on any machine for which a suit-
able C++ compiler is available. In practice, CmdStan, like the Boost and Eigen libraries
on which it depends, is very hard on the compiler and linker.

CmdStan has been tested on the following operating systems.

- Linux (Debian, Ubuntu, Red Hat)

- Mac OS X (10.10 “Yosemite,” 10.9 “Mavericks,” 10.8 “Mountain Lion,” 10.7
“Lion,” and 10.6 “Snow Leopard”)

- Windows (XP, 7, 8).

CmdStan should work on other versions of these operating systems if compatible C++
compilers can be found. The plan is to keep up with new versions of these operating
systems and gradually phase out testing on older versions.

B.2. Required Software and Tools

The only two absolute requirements for running CmdStan are the CmdStan source
code (and dependent libraries) and a C++ compiler.

CmdStan Source

In order to compile Stan program, the CmdStan source code is required. The Cmd-
Stan source code distribution includes CmdStan’s source code, Stan’s source code,
documentation, build scripts, unit tests, documentation and source for the required
libraries, Stan Math Library, Boost, and Eigen, and the source for an optional testing
library, Google Test.

70

CmdStan: Stable Releases

The latest release version of CmdStan can be downloaded from the CmdStan home
page:

http://mc-stan.org/cmdstan.html

CmdStan: Development Source Control

The source code repository is hosted by GitHub, and contains the latest versions of
CmdStan (and Stan) underdevelopment. See:

http://mc-stan.org/source-repos.html

Stan Library Source

The source code for Stan’s parse and implementation of inference algorithms are in
the Stan library.

- Home: http://mc-stan.org/stan.html
- License: BSD
- Tested Version: 2.14.0

The Stan source code is distributed with CmdStan.

Stan Math Library Source

Stan’s mathematical functions and inference algorithm rely on the reverse-mode au-
tomatic differentiation implemented in the Stan Math Library.

- Home: http://mc-stan.org
- License: BSD
- Tested Version: 2.14.0

The Stan Math Library source code is distributed with CmdStan

71

http://mc-stan.org/cmdstan.html
http://mc-stan.org/stan.html
http://mc-stan.org

Boost C++ Library Source

Stan’s parser and some of its mathematical functions and template metaprogramming
facilities are implemented with the Boost C++ Library.

- Home: http://www.boost.org/users/license.html
- License: Boost Software License
- Tested Version: 1.58.0

The Boost source code is distributed with CmdStan.

Eigen Matrix and Linear Algebra Library Source

Stan’s matrix algebra depends on the Eigen C++ matrix and linear algebra library.
- Home: http://eigen.tuxfamily.org
- License: Mozilla Public License, version 2.0
- Tested Version: 3.2.4

The Eigen source code is distributed with CmdStan.

C++ Compiler

Compiling CmdStan programs requires a C++ compiler. CmdStan has been primarily
developed with cTang++ and g++ and no promises are made for other compilers. The
full set of compilers for which CmdStan has been tested is

- g+t
Tested Versions: Mac 4.2.1, 4.6, Linux 4.4-4.7 (plus trunk 4.8, 4.9), Windows
4.6.3
Home: http://gcc.gnu.org/
License: GPL3+

- clang++ Mac 2.9-3.1, 6.1, Linux 2.9-3.1
Home: http://clang.1lvm.org/
License: BSD

- mingw-64, version 2.0 (Windows 7, cross-compiled from Debian Linux)

72

http://www.boost.org/users/license.html
http://eigen.tuxfamily.org
http://gcc.gnu.org/
http://clang.llvm.org/

B.3. Step-by-Step Windows Install Instructions

CmdStan has been tested on Windows XP, Windows 7, and Windows 8.

CmdStan also runs under Cygwin, which provides a unix-like shell on top of Win-
dows. Instructions for Cygwin installation are provided below in their own subsec-
tion.

Windows Tips
Opening a Command Shell

To open a Windows command shell, first open the Start Menu (usually in the lower
left of the screen), select option ATT Programs, then option Accessories, then pro-
gram Command Prompt.

Alternatively, enter [Windows+r] (both keys together on the keyboard), and enter
cmd into the text field that pops up in the Run window, then press [Return] on the
keyboard to run.
32-bit Builds
CmdStan defaults to a 64-bit build. On a 32-bit operating system, include BIT=32 in
make/local. See Appendix B.6 for more details.

Rtools C++ Development Environment

The simplest way to install a full C++ build environment that will work for CmdStan
is to use the Rtools package designed for R developers on Windows (even if you don’t
plan to use R).

First, download the latest frozen (i.e., stable) version of Rtools from the Rtools
home page, using

http://cran.r-project.org/bin/windows/Rtools/

Next, double click on the downloaded file to open the Rtools install wizard, then
proceed through its options.

- Language: select language, click Next,
- Welcome: click Next,
- Information: click Next,

- Setup Location: accept default (c:\Rtools), click Next,

73

http://cran.r-project.org/bin/windows/Rtools/

- Select Components: select default, Package Authoring, click Next,

- Select Additional Tasks: check Edit Path and Save Version in Registry,
click Next,

- System Path Report: ensure that that the paths to c:\Rtools\bin and
c:\Rtools\gcc-4.6.3\bin are listed at the beginning of the path and click
Next,

- Ready to Install: click Next, wait for the install to complete, then

- Finish: click Finish.

- Confirm Path: After the install has completed, open a command prompt and
type PATH to ensure that the new path is activated and the Rtools folders are in
the system path.

Checking the Path

Make sure that c:\Rtools\bin has been added to your PATH environment variable,
and then open another command window. You should be able to follow the last step,
Comfirm Path, above.

Note: if you see an error like “FIND: Parameter format not correct,” please
check to see that c:\Rtools\bin is listed at the beginning of the path.
Verifying Tools
To verify that g++ is installed, use the following command.

> g++ -V

This should report version information for g++. Next, verify that make is installed with
the following command.

> make -v

This should print version information for make.

Downloading and Unpacking CmdStan

The CmdStan source code distrib