
CmdStan Interface

User’s Guide

Stan Development Team

CmdStan Version 2.14.0

Monday 26th December, 2016

http://mc-stan.org/

http://mc-stan.org/

Stan Development Team. 2016. CmdStan: User’s Guide. Version 2.14.0

Copyright © 2011–2016, Stan Development Team.

This document is distributed under the Creative Commons Attribute

4.0 Unported License (CC BY 4.0). For full details, see

https://creativecommons.org/licenses/by/4.0/legalcode

https://creativecommons.org/licenses/by/4.0/legalcode

Contents

I Introduction 5

1. Overview 6

2. Getting Started 7

II CmdStan Tools 21

3. Overview 22

4. stanc: Translating Stan to C++ 23

5. print: Output Analysis (deprecated) 27

6. stansummary: Output Analysis 28

III CmdStan Executables 31

7. Compiling CmdStan Exectuables 32

8. Running a CmdStan Program 34

Appendices 67

A. Licensing 68

B. Installation and Compatibility 70

C. Dump Data Format 84

Bibliography 91

iii

iv

Part I

Introduction

5

1. Overview

This document is a user’s guide for the CmdStan interface to the Stan statistical mod-
eling language. CmdStan takes Stan programs and generates executables that can be
run directly from the command line. CmdStan is one of several interfaces to Stan;
there are also R, Python, Matlab, Julia, and Stata interfaces.

1.1. Stan Home Page

For links to up-to-date code, examples, manuals, bug reports, feature requests, and
everything else Stan related, see the Stan home page:

http://mc-stan.org/

1.2. Licensing

CmdStan, Stan, and the Stan Math Library are licensed under the new BSD license
(3-clause). See Appendix A for details, including licensing terms for the dependent
packages Boost, Eigen, and CVODES.

1.3. Modeling Language User’s Guide and Reference

Stan’s modeling language is shared across all of its interfaces. Stan’s language, along
with a programming guide and many example models, is detailed in the Stan Modeling
Language User’s Guide and Reference Manual, which is available from the Stan home
page (see Section 1.1).

1.4. Example Models

There are many example models for Stan, in addition to those in the user’s guide and
reference. These are all linked from the Stan home page (see Section 1.1).

1.5. Benefits of CmdStan

Although CmdStan has the least amount of functionality among the Stan interfaces,
the minimal nature of CmdStan makes it trivial to install and use the latest develop-
ment version of the Stan library. It also has the fewest dependencies, which makes
it easier to run in limited environments such as clusters. The output generated is in
CSV format and can be post-processed using other Stan interfaces or general tools.

6

http://mc-stan.org/

2. Getting Started

This chapter is designed to help users get acquainted with the CmdStan interface.
Later chapters are devoted to expanding on the material in this chapter with full ref-
erence documentation. See the Stan user’s manual for details about the Stan language.

2.1. Installation

Installation of CmdStan is simple. CmdStan requires:

• The CmdStan source code and all its libraries.
This is included in the release tarball or zip file as a single download.

• The make utility program.
This is not strictly necessary, but will make the build process easy. The rest of
the documentation assumes make is available.

• A C++ compiler.

For information about supported versions of Windows, Mac, and Linux platforms see
Appendix B. For step-by-step installation instructions of the prerequisites, see

• Windows: Appendix B.3

• Mac: Appendix B.4

• Linux: Appendix B.5.

2.2. Building CmdStan

Building CmdStan involves building two executable programs:

• stanc: the Stan compiler (translates Stan language to C++)

• stansummary: a basic posterior analysis tool

The build process utilizes the make command-line utility and these instructions are
applicable for any of our supported platforms.

Steps to build CmdStan:

1. Open a command-line terminal window and change directories to the CmdStan
directory. From here on, we’ll refer to this location as <cmdstan-home>.

> cd <cmdstan-home>

7

A listing of the files and directory of this folder should show these files:

> ls
LICENSE makefile
README.md runCmdStanTests.py
doc src
examples stan
make test-all.sh

2. Optional: Set local make variables by editing the file
~/.config/cmdstan/make.local or <cmdstan-home>/make/local. See
Appendix B.6 for a list of available options. For most installations, this step
can be skipped; the default configuration should work for most users.

3. Use make to build CmdStan. When multiple CPU cores are available on the
system, the call to make can be parallelized. It can either be specified directly
when calling make with the -jN option, where N is the number of CPU cores. For
instance, to run on 4 cores, use

> make build -j4

Warning: The make program may take 10+ minutes and consume 2+ GB of
memory to build CmdStan.

When CmdStan is successfully built, the make program will report (after other lines
of output)

--- CmdStan v2.14.0 built ---

and there will be two executables in the <cmdstan-home>/bin/ folder:

• stanc, the Stan compiler. The Stan compiler translates a Stan program into C++

code. See Chapter 4 for details.

• stansummary, a posterior analysis tool. The stansummary command summa-
rizes the comma-separated values files that are generated from Stan program
runs. For each parameter within the Stan program, stansummary reports the
mean, standard deviation, quantiles, R̂, and other values. See Chapter 6 for
details.

2.3. Compiling and Executing a Stan Program

The rest of this quick-start guide explains how to code and run a very simple Bayesian
model.

8

A Simple Bernoulli Model

The following is a simple, complete Stan program for a Bernoulli model of binary
data.1

data {
int<lower=0> N;
int<lower=0,upper=1> y[N];

}
parameters {
real<lower=0,upper=1> theta;

}
model {
theta ~ beta(1,1);
for (n in 1:N)

y[n] ~ bernoulli(theta);
}

The model assumes the binary observed data y[1],...,y[N] are i.i.d. with Bernoulli
chance-of-success theta. The prior on theta is beta(1,1) (i.e., uniform).

Data Set

A data set of N = 10 observations is coded as follows. 2

N <- 10
y <- c(0,1,0,0,0,0,0,0,0,1)

This defines the contents of two variables, N and y, using an R-like syntax (see Chap-
ter C for more information).

Change directories to <cmdstan-home>

Before building any Stan program, change directories to <cmdstan-home>.

1The model is distributed with Stan’s example models repository, https://github.com/stan-dev/
example-models/blob/master/basic_estimators/bernoulli.stan, and is also available with the
CmdStan distribution at the path examples/bernoulli/bernoulli.stan.

2 The data is also available from the example-models repository on GitHub, https://github.com/
stan-dev/example-models/blob/master/basic_estimators/bernoulli.data.R. It is also included
with the CmdStan distribution and can be found at path stan/example-models/basic_estimators/
bernoulli.data.R.

9

https://github.com/stan-dev/example-models/blob/master/basic_estimators/bernoulli.stan
https://github.com/stan-dev/example-models/blob/master/basic_estimators/bernoulli.stan
https://github.com/stan-dev/example-models/blob/master/basic_estimators/bernoulli.data.R
https://github.com/stan-dev/example-models/blob/master/basic_estimators/bernoulli.data.R

Compiling a Stan Program

A single call to make is all that’s necessary to translate a Stan program to an executable
for the command line. (This call will first translate the Stan program to C++, then
compile the C++ code to an executable.)

A Stan program must be in a file with the file extension .stan. To create an
executable from a Stan program, make will be called with the name of the executable
as its argument. For Mac and Linux, it is the name of the Stan program with the .stan
omitted. For Windows, replace .stan with .exe.

To build the Bernoulli example, use the following command for Mac and Linux:

> make examples/bernoulli/bernoulli

For Windows, the command is the same with the addition of .exe at the end of the
target:

> make examples/bernoulli/bernoulli.exe

The generated C++ code (bernoulli.hpp) and the compiled executable will be
placed in the same directory as the Stan program.

Note: you must start in the <cmdstan-home> directory. The Stan program can be
in a different path, but the path to the Stan program must not contain a space. (This is
a limitation that’s introduced by make.) Relative paths are ok; the relative path must
not contain a space.

Sampling from the Stan Program

The program can be executed from the directory in which it resides.

> cd examples/bernoulli

To execute sampling of the model under Linux or Mac, use

> ./bernoulli sample data file=bernoulli.data.R

In Windows, the ./ prefix is not needed, resulting in the following command.

> bernoulli.exe sample data file=bernoulli.data.R

The output is the same across all supported platforms. First, the configuration of the
program is echoed to the standard output:

10

method = sample (Default)

sample

num_samples = 1000 (Default)

num_warmup = 1000 (Default)

save_warmup = 0 (Default)

thin = 1 (Default)

adapt

engaged = 1 (Default)

gamma = 0.050000000000000003 (Default)

delta = 0.80000000000000004 (Default)

kappa = 0.75 (Default)

t0 = 10 (Default)

init_buffer = 75 (Default)

term_buffer = 50 (Default)

window = 25 (Default)

algorithm = hmc (Default)

hmc

engine = nuts (Default)

nuts

max_depth = 10 (Default)

metric = diag_e (Default)

stepsize = 1 (Default)

stepsize_jitter = 0 (Default)

id = 0 (Default)

data

file = bernoulli.data.R

init = 2 (Default)

random

seed = 4294967295 (Default)

output

file = output.csv (Default)

diagnostic_file = (Default)

refresh = 100 (Default)

After the configuration has been displayed, a short timing message is given.

Gradient evaluation took 4e-06 seconds

1000 transitions using 10 leapfrog steps per transition would

take 0.04 seconds.

Adjust your expectations accordingly!

Next, the sampler reports the iteration number, reporting the percentage complete.

Iteration: 1 / 2000 [0%] (Warmup)

Iteration: 100 / 2000 [5%] (Warmup)

11

...

Iteration: 2000 / 2000 [100%] (Sampling)

Sampler Output

Each execution of the model results in draws from a single Markov chain being written
to a file in comma-separated value (CSV) format. The default name of the output file
is output.csv.

The first part of the output file records the version of the underlying Stan library
and the configuration as comments (i.e., lines beginning with the pound sign (#)).

stan_version_major = 2

stan_version_minor = 12

stan_version_patch = 0

model = bernoulli_model

method = sample (Default)

sample

num_samples = 1000 (Default)

num_warmup = 1000 (Default)

save_warmup = 0 (Default)

thin = 1 (Default)

...

This is followed by a CSV header indicating the names of the values sampled.

lp__,accept_stat__,stepsize__,treedepth__,n_leapfrog__,divergent__,energy__,theta

The first column reports the unnormalized log probability of the model. The next
columns provide sampler-dependent information; here, it is columns two through
five. For basic Hamiltonian Monte Carlo (HMC) and its adaptive variant, the No-U-
Turn sampler (NUTS), the sampler-depedent parameters are described in the following
table.

Sampler Parameter Description

NUTS accept_stat__ Metropolis acceptance probability
averaged over samples in the slice

NUTS stepsize__ Integrator step size
NUTS treedepth__ Tree depth
NUTS n_leapfrog__ Number of leapfrog calculations
NUTS divergent__ 1 if trajectory diverged
NUTS energy__ Hamiltonian value

HMC accept_stat__ Metropolis acceptance probability
HMC stepsize__ Integrator step size
HMC int_time__ Total integration time
NUTS energy__ Hamiltonian value

12

The remaining columns correspond to model parameters. For the Bernoulli model, it
is just the sixth column, theta. The header line is streamed to the output file before
warmup begins.

The next section describes the results of adaptation taking place during the
warmup phase.

Adaptation terminated

Step size = 1.81311

Diagonal elements of inverse mass matrix:

0.415719

The default sampler is NUTS with an adapted step size and a diagonal inverse mass
matrix. For this example, the step size is 1.81311, and the inverse mass contains the
single entry 0.415719 corresponding to the parameter theta.

Draws from the posterior distribution are printed out next, each line containing a
single draw with the columns corresponding to the header. 3

-6.78148,0.958918,0.997192,2,3,0,7.3034,0.283226

-6.74932,0.99923,0.997192,2,3,0,6.77915,0.243658

-6.88104,0.944956,0.997192,2,3,0,7.02671,0.317841

-6.74805,1,0.997192,2,3,0,6.84913,0.249106

-10.0366,0.49441,0.997192,2,3,0,10.1243,0.0398088

...

The output ends with timing details,

Elapsed Time: 0.006811 seconds (Warm-up)

0.011645 seconds (Sampling)

0.018456 seconds (Total)

Summarizing Sampler Output

The command-line program bin/stansummary will display summary information
about the run (for more information, see Chapter 6). To run stansummary on the
output file generated for bernoulli on Linux or Mac, type

> <cmdstan-home>/bin/stansummary output.csv

For Windows, use backslashes to call the stansummary.exe.

> <cmdstan-home>\bin\stansummary.exe output.csv

3There are repeated entries due to the Metropolis accept step in the No-U-Turn sampling algorithm.

13

The output of the command will display information about the run followed by infor-
mation for each parameter and generated quantity. For bernoulli, we ran 1 chain
and saved 1000 iterations. The information is echoed to the standard output stream.
The output is

Inference for Stan model: bernoulli_model
1 chains: each with iter=(1000); warmup=(0); thin=(1); 1000 iterations saved.

Warmup took (0.014) seconds, 0.014 seconds total
Sampling took (0.027) seconds, 0.027 seconds total

Mean MCSE StdDev 5% 50% 95% N_Eff N_Eff/s R_hat
lp__ -7.2 3.0e-02 6.6e-01 -8.5 -7.0 -6.7 479 29120 1.0e+00
accept_stat__ 0.91 4.5e-03 1.4e-01 0.61 0.97 1.0 1000 60846 1.0e+00
stepsize__ 1.00 3.8e-15 2.7e-15 1.00 1.00 1.00 0.50 30 1.0e+00
treedepth__ 1.7 1.6e-02 4.7e-01 1.0 2.0 2.0 812 49412 1.0e+00
n_leapfrog__ 2.4 3.3e-02 9.5e-01 1.0 3.0 3.0 813 49439 1.0e+00
divergent__ 0.00 0.0e+00 0.0e+00 0.00 0.00 0.00 1000 60846 nan
energy__ 7.7 4.6e-02 1.0e+00 6.8 7.4 9.6 491 29856 1.0e+00
theta 0.25 6.0e-03 1.1e-01 0.084 0.24 0.46 361 21985 1.0e+00

Samples were drawn using hmc with nuts.
For each parameter, N_Eff is a crude measure of effective sample size,
and R_hat is the potential scale reduction factor on split chains (at
convergence, R_hat=1).

In addition to the general information about the runs, stansummary displays sum-
mary statistics for each parameter and generated quantity.

In the bernoulli model, there is a single parameter, theta. The mean, standard
error of the mean, standard deviation, the 5%, 50%, and 95% quantiles, number of
effective samples (total and per second), and R̂ value are displayed. These quantities
and their uses are described in detail in the introductory Markov chain Monte Carlo
(MCMC) chapter of the language user’s guide and reference manual.

The command bin/stansummary can be called with more than one csv file by
separating filenames with spaces. It will also take wildcards in specifying filenames.
A typical usage of Stan from the command line would first create one or more Markov
chains by calling the model executable, typically in parallel, writing the output CSV
file for each into its own directory. After all of the processes are finished, the results
would be analyzed using stansummary to assess convergence and inspect the means
and quantiles of the fitted variables. Additionally, downstream inferences may be
performed using the draws (e.g., to make decisions or predictions for unseen data).

Optimization

CmdStan can be used for finding posterior modes as well as sampling from the pos-
terior distribution. The executable does not need to be recompiled in order to switch

14

from sampling to optimization, and the data input format is the same. The following
is a minimal call to Stan’s optimizer using defaults for everything but the location of
the data file. See Section 8.3 for more details.

> ./bernoulli optimize data file=bernoulli.data.R

Executing this command prints the following.

method = optimize
optimize

algorithm = lbfgs (Default)
lbfgs

init_alpha = 0.001 (Default)
tol_obj = 9.9999999999999998e-13 (Default)
tol_rel_obj = 10000 (Default)
tol_grad = 1e-08 (Default)
tol_rel_grad = 10000000 (Default)
tol_param = 1e-08 (Default)
history_size = 5 (Default)

iter = 2000 (Default)
save_iterations = 0 (Default)

id = 0 (Default)
data
file = bernoulli.data.R

init = 2 (Default)
random
seed = 4294967295 (Default)

output
file = output.csv (Default)
diagnostic_file = (Default)
refresh = 100 (Default)

initial log joint probability = -5.18908
Iter log prob ||dx|| ||grad|| alpha alpha0 # evals Notes

4 -5.00402 0.00400907 7.80306e-05 1 1 7
Optimization terminated normally:
Convergence detected: relative gradient magnitude is below tolerance

The first part of the output reports on the configuration used, here indicating the
default L-BFGS optimizer, with default initial stepsize and tolerances for monitoring
convergence. The second part of the output indicates how well the algorithm fared,
here converging and terminating normally. The numbers reported indicate that it
took 4 iterations and 7 gradient evaluations, resulting in a final state state where the
change in parameters was roughly 0.004 and the length of the gradient roughly 8e-5.
The alpha value is for step size used. This is, not surprisingly, far fewer iterations
than required for sampling; even fewer iterations would be used with less stringent
user-specified convergence tolerances.

15

Optimization Output

The output from optimization is written into the file output.csv by default. The
output follows the same pattern as the output for sampling, first dumping the entire
set of parameters used.

stan_version_major = 2

stan_version_minor = 7

stan_version_patch = 0

model = bernoulli_model

method = optimize

optimize

algorithm = lbfgs (Default)

lbfgs

init_alpha = 0.001 (Default)

tol_obj = 9.9999999999999998e-13 (Default)

tol_rel_obj = 10000 (Default)

tol_grad = 1e-08 (Default)

tol_rel_grad = 10000000 (Default)

tol_param = 1e-08 (Default)

history_size = 5 (Default)

iter = 2000 (Default)

save_iterations = 0 (Default)

id = 0 (Default)

data

file = bernoulli.data.R

init = 2 (Default)

random

seed = 458923754

output

file = output.csv (Default)

diagnostic_file = (Default)

refresh = 100 (Default)

lp__,theta

-5.00402,0.200008

Note that everything is a comment other than a line for the header, and a line for the
values. Here, the header indicates the unnormalized log probability with lp__ and
the model parameter theta. The maximum log probability is -5.0 and the posterior
mode for theta is 0.20. The mode exactly matches what we would expect from the
data.4 Because the prior was uniform, the result 0.20 represents the maximum likeli-

4The Jacobian adjustment included for the sampler’s log probability function is not applied during
optimization, because it can change the shape of the posterior and hence the solution.

16

hood estimate (MLE) for the very simple Bernoulli model. Note that no uncertainty is
reported.

Variational Inference

CmdStan can approximate the posterior distribution using variational inference. The
executable does not need to be recompiled in order to switch to variational inference,
and the data input format is the same. The following is a minimal call to Stan’s
variational inference algorithm using defaults for everything but the location of the
data file. See Section 8.3 for more details.

> ./bernoulli variational data file=bernoulli.data.R

Executing this command prints the following.

method = variational
variational

algorithm = meanfield (Default)
meanfield

iter = 10000 (Default)
grad_samples = 1 (Default)
elbo_samples = 100 (Default)
eta = 1 (Default)
adapt
engaged = 1 (Default)
iter = 50 (Default)

tol_rel_obj = 0.01 (Default)
eval_elbo = 100 (Default)
output_samples = 1000 (Default)

id = 0 (Default)
data
file = bernoulli.data.R

init = 2 (Default)
random
seed = 1196271396

output
file = output.csv (Default)
diagnostic_file = (Default)
refresh = 100 (Default)

This is Automatic Differentiation Variational Inference.

(EXPERIMENTAL ALGORITHM: expect frequent updates to the procedure.)

Gradient evaluation took 6e-06 seconds
1000 iterations under these settings should take 0.006 seconds.
Adjust your expectations accordingly!

Begin eta adaptation.

17

Iteration: 1 / 250 [0%] (Adaptation)
Iteration: 50 / 250 [20%] (Adaptation)
Iteration: 100 / 250 [40%] (Adaptation)
Iteration: 150 / 250 [60%] (Adaptation)
Iteration: 200 / 250 [80%] (Adaptation)
Success! Found best value [eta = 1] earlier than expected.

Begin stochastic gradient ascent.
iter ELBO delta_ELBO_mean delta_ELBO_med notes
100 -6 1.000 1.000
200 -6.3 0.511 1.000
300 -6.2 0.344 0.021
400 -6.2 0.261 0.021
500 -6.2 0.211 0.014
600 -6.2 0.178 0.014
700 -6.3 0.154 0.012
800 -6.3 0.135 0.012
900 -6.2 0.121 0.012
1000 -6.4 0.112 0.012
1100 -6.3 0.015 0.012
1200 -6.2 0.014 0.012
1300 -6.1 0.014 0.012
1400 -6.2 0.015 0.013
1500 -6.3 0.015 0.012
1600 -6.3 0.014 0.012
1700 -6.3 0.013 0.012
1800 -6.3 0.013 0.012
1900 -6.2 0.013 0.013
2000 -6.3 0.011 0.011
2100 -6.2 0.008 0.009 MEAN ELBO CONVERGED MEDIAN ELBO CONVERGED

Drawing 1000 samples from the approximate posterior... COMPLETED.

The first part of the output reports on the configuration used. Here it indicates the
default mean-field setting of the variational inference algorithm. It also indicates the
default parameter sizes and tolerances for monitoring the algorithm’s convergence.
The second part of the output describes the progression of the algorithm. An adap-
tation phase finds a good value for the step size scaling parameter η. The evidence
lower bound (ELBO) is the variational objective function and is evaluated based on a
Monte Carlo estimate. The variational inference algorithm in Stan is stochastic, which
makes it challenging to assess convergence. That is, while the algorithm appears
to have converged in ∼100 iterations, the algorithm runs for another few thousand
iterations until mean change in ELBO drops below the default tolerance of 0.01.

18

Variational Inference Output

The output from variational is written into the file output.csv by default. The output
follows the same pattern as the output for sampling, first dumping the entire set of
parameters used.

stan_version_major = 2

stan_version_minor = 8

stan_version_patch = 0

model = bernoulli_model

method = variational

variational

algorithm = meanfield (Default)

meanfield

iter = 10000 (Default)

grad_samples = 1 (Default)

elbo_samples = 100 (Default)

eta = 1 (Default)

adapt

engaged = 1 (Default)

iter = 50 (Default)

tol_rel_obj = 0.01 (Default)

eval_elbo = 100 (Default)

output_samples = 1000 (Default)

id = 0 (Default)

data

file = bernoulli.data.R

init = 2 (Default)

random

seed = 1196271396

output

file = output.csv (Default)

diagnostic_file = (Default)

refresh = 100 (Default)

lp__,theta

Stepsize adaptation complete.

eta = 1

0,0.249604

0,0.254227

0,0.211049

...

Note that everything is a comment other than a line for the header, the adapted value
for the stepsize, and a line for the values. The header indicates the unnormalized log

19

probability with lp__. This is a legacy feature that we do not use for variational infer-
ence. The ELBO is not stored unless a diagnostic option is given. See Section 8.3 for
more details. The first line is special: it is the mean of the variational approximation.
The rest of the output contains output_samples number of samples drawn from the
variational approximation.

Configuring Command-Line Options

The command-line options for running a model are detailed in Chapter 8. They can
also be printed on the command line using Linux or Mac OS with

> ./bernoulli help-all

and on Windows with

> bernoulli.exe help-all

20

Part II

CmdStan Tools

21

3. Overview

CmdStan is the command-line interface for Stan. The next two chapters describes
tools that are built as part of CmdStan installation: stanc and stansummary. The
process of building a CmdStan executable from a Stan program is as follows:

1. A Stan program is written to file with a .stan extension.

2. stanc is used to translate the Stan program into a C++ file. This C++ file is not a
full program that can be compiled to executable directly, but a translation from
the Stan language into a C++ concept. Each interface will generate identical C++

for the same Stan program.

3. A CmdStan exectuable is generated from the CmdStan source and the generated
C++. Each Stan program will have its own CmdStan executable. The options to
the CmdStan executable are described in Chapter 8.

3.1. Building the CmdStan Tools

The easy way to build CmdStan is through the use of make. From a command line
window, type:

> cd <cmdstan-home>

> make build

This will build both stanc and stansummary. If your computer has multiple cores
and sufficient ram, the build process can be parallelized by providing the -j option.
For example, to build on 4 cores, type:

> cd <cmdstan-home>

> make -j4 build

Warning: The make program may take 10+ minutes and consume 2+ GB of memory
to build CmdStan.

22

4. stanc: Translating Stan to C++

4.1. Building the stanc Compiler

Before the stanc compiler can be used, it must be built. It can be compiled directly
using the makefile as follows. For Mac and Linux:

> make bin/stanc

For Windows:

> make bin/stanc.exe

To change the default compiler or the optimization level, see Appendix B.6.

4.2. The stanc Compiler

The stanc compiler converts Stan programs to C++ concepts. The first stage of com-
pilation involves parsing the text of the Stan program. If the parser is successful, the
second stage of compilation generates C++ code. If the parser fails, it will provide
an error message indicating the location in the input where the failure occurred and
reason for the failure.

The following example illustrates a fully qualified call to stanc to build the simple
Bernoulli model.

For Linux and Mac:

> cd <cmdstan-home>
> bin/stanc --name=bernoulli --o=bernoulli.hpp \
stan/example-models/basic_estimators/bernoulli.stan

The backslash (\) is a continuation of the same line and can be omitted if the com-
mand is on a single line.

For Windows:

> cd <cmdstan-home>
> bin\stanc.exe --name=bernoulli --o=bernoulli.hpp ^

stan/example-models/basic_estimators/bernoulli.stan

(The caret (^) is a line continuation on Windows.)
This call specifies the name of the model, here bernoulli. This will determine

the name of the class implementing the model in the C++ code. Because this name is
the name of a C++ class, it must start with an alphabetic character (a-z or A-Z) and

23

contain only alphanumeric characters (a-z, A-Z, and 0-9) and underscores (_) and
should not conflict with any C++ reserved keyword.

The C++ code implementing the class is written to the file bernoulli.hpp in the
current directory. The final argument, bernoulli.stan, is the file from which to read
the Stan program.

4.3. Command-Line Options for stanc

The model translation program stanc is called as follows.

> stanc [options] model_file

The argument model_file is a path to a Stan model file ending in suffix .stan. The
options are as follows.

--help
Displays the manual page for stanc. If this option is selected, nothing else is
done.

--version
Prints the version of stanc. This is useful for bug reporting and asking for help
on the mailing lists.

--name=class_name
Specify the name of the class used for the implementation of the Stan model in
the generated C++ code.

Default: class_name = model_file_model

--o=cpp_file_name
Specify the name of the file into which the generated C++ is written.

Default: cpp_file_name = class_name.hpp

--allow_undefined
Do not throw a parser error if there is a function in the Stan program that is
declared but not defined in the functions block.

4.4. Using External C++ Code

The -allow_undefined flag can be passed to the call to stanc, which will allow
undefined functions in the Stan language to be parsed without an error. We can then
include a definition of the function in a C++ header file. We typically control these

24

options with two make variables: STANCFLAGS and USER_HEADER. See Appendix B.6
for more details.

The C++ file will not compile unless there is a header file that defines a function
with the same name and signature in a namespace that is formed by concatenating
the class_name argument to stanc documented above to the string _namespace.

For more details about how to write C++ code using the Stan Math Library, see
https://arxiv.org/abs/1509.07164. As an example, consider the following vari-
ant of the Bernoulli example

functions {
real make_odds(real theta);

}
data {
int<lower=0> N;
int<lower=0,upper=1> y[N];

}
parameters {
real<lower=0,upper=1> theta;

}
model {
theta ~ beta(1,1);
for (n in 1:N)

y[n] ~ bernoulli(theta);
}
generated quantities {
real odds;
odds = make_odds(theta);

}

Here the make_odds function is declared but not defined, which would ordinarily
result in a parser error. However, if you put STANCFLAGS = --allow_undefined
into the make/local file or into the stanc call, then the above Stan program will
parse successfully but would not compile when you call

> make examples/bernoulli/bernoulli # on Windows add .exe

To compile successfully, you need to write a file such as
examples/bernoulli/make_odds.hpp with the following lines

namespace bernoulli_model_namespace {

template <typename T0__>

25

https://arxiv.org/abs/1509.07164

inline
typename boost::math::tools::promote_args<T0__>::type
make_odds(const T0__& theta, std::ostream* pstream__) {
return theta / (1 - theta);

}

}

Thus, the following make invocation should work

> STANCFLAGS=--allow_undefined \
USER_HEADER=examples/bernoulli/make_odds.hpp \
make examples/bernoulli/bernoulli # on Windows add .exe

or you could put STANCFLAGS and USER_HEADER into the make/local file instead of
specifying them on the command-line.

If the function were more complicated and involved functions in the Stan Math
Library, then you would need to prefix the function calls with stan::math::. The
pstream__ argument is mandatory in the signature but need not be used if your
function does not print any output. To see the necessary boilerplate look at the
corresponding lines in the generated C++ file.

26

5. print: Output Analysis (deprecated)

print is deprecated, but is still available until CmdStan v3.0. See the next chapter for
usage (replace stansummary with print).

27

6. stansummary: Output Analysis

CmdStan is distributed with a posterior analysis utility that is able to read in the out-
put of one or more Markov chains and summarize the posterior fits. This operation
mimics the print(fit) command in RStan, which itself was modeled on the print
functions from R2WinBUGS and R2jags.

6.1. Building the stansummary Command

CmdStan’s stansummary command is built along with stanc into the bin directory.
It can be compiled directly using the makefile as follows.

> cd <cmdstan-home>
> make bin/stansummary

6.2. Running the stansummary Command

The stansummary command is executed on one or more output.csv files. These files
may be provided as command-line arguments separated by spaces. That means that
wildcards may be used, as they will be replaced by space-separated file names by the
operating system’s command-line interpreter.

Suppose there are three samples files in a directory generated by fitting a negative
binomial model to a small data set.

> ls output*.csv

output1.csv output2.csv output3.csv

> bin/stansummary output*.csv

The result of bin/stansummary is displayed in Figure 6.1.1 The posterior is skewed
to the high side, resulting in posterior means (α = 17 and β = 10) that are a long way
away from the posterior medians (α = 9.5 and β = 6.2); the posterior median is the
value listed under 50%, which is the 50th percentile of the posterior values.

For Windows, the forward slash in paths need to be converted to backslashes.

1RStan’s and PyStan’s output analysis stansummary may be different than that in the command-line
version of Stan.

28

Inference for Stan model: negative_binomial_model
1 chains: each with iter=(1000); warmup=(0); thin=(1); 1000 iterations saved.

Warmup took (0.054) seconds, 0.054 seconds total
Sampling took (0.059) seconds, 0.059 seconds total

Mean MCSE StdDev 5% 50% 95% N_Eff N_Eff/s R_hat
lp__ -14 7.0e-02 1.1e+00 -17 -14 -13 226 3022 1.0e+00
accept_stat__ 0.94 3.1e-03 9.7e-02 0.75 0.98 1.0 1000 13388 1.0e+00
stepsize__ 0.16 5.1e-16 3.6e-16 0.16 0.16 0.16 0.50 6.7 1.0e+00
treedepth__ 2.9 4.1e-02 1.2e+00 1.0 3.0 5.0 829 11104 1.0e+00
n_leapfrog__ 8.0 2.1e-01 6.3e+00 1.0 7.0 19 870 11648 1.0e+00
divergent__ 0.00 0.0e+00 0.0e+00 0.00 0.00 0.00 1000 13388 nan
energy__ 15 8.7e-02 1.5e+00 14 15 18 282 3775 1.0e+00
alpha 16 1.9e+00 2.0e+01 1.9 9.7 50 114 1524 1.0e+00
beta 9.9 1.1e+00 1.2e+01 1.1 6.1 31 124 1664 1.0e+00

Samples were drawn using hmc with nuts.
For each parameter, N_Eff is a crude measure of effective sample size,
and R_hat is the potential scale reduction factor on split chains (at
convergence, R_hat=1).

Figure 6.1: Example output from bin/stansummary. The model parameters are alpha and

beta. The values for each quantity are the posterior means, standard deviations, and quan-

tiles, along with Monte-Carlo standard error, effective sample size estimates (per second), and

convergence diagnostic statistic. These values are all estimated from samples. In addition to

the parameters, bin/stansummary also outputs lp__, the total log probability density (up to

an additive constant) at each sample, as well as NUTS-specific values that can be helpful in di-

agnostics. The quantity accept_stat__ is the average Metropolis acceptance probability over

each simulated Hamiltonian trajectory and stepsize__ is the integrator step size used in each

simulation. treedepth__ is the depth of tree used by NUTS while n_leapfrog__ is the number

of leapfrog steps taken during the Hamiltonian simulation; treedepth__ should always be the

binary log of n_leapfrog__. divergent__ indicates whether or not the simulated Hamiltonian

trajectory became unstable and diverged. Finally, energy__ is value of the Hamiltonian (up to

an additive constant) at each sample, also known as the energy.

Output of stansummary Command

divergent

CmdStan uses a symplectic integrator to approximate the exact solution of the Hamil-
tonian dynamics, and when the step size is too large relative to the curvature of the
log posterior this approximation becomes unstable and the trajectories can diverge
and threaten the validity of the sampler; divergent indicates whether or not a given
trajectory diverged. If there are any divergences then the samples may be biased –
common solutions are decreasing the step size (often by increasing the target average

29

acceptance probability) or reparameterizing the model.

energy

The energy, energy, is used to diagnose the accuracy of any Hamiltonian Monte Carlo
sampler. If the standard deviation of energy is much larger than

√
D/2, where D is

the number of unconstrained parameters, then the sampler is unlikely to be able to
explore the posterior adequately. This is usually due to heavy-tailed posteriors and
can sometime be remedied by reparameterizing the model.

6.3. Command-line Options

In addition to the filenames, stansummary includes three flags to customize the out-
put.

help
stansummary usage information
No help output by default

sig_figs=<int>
Sets the number of significant figures displayed in the output
Valid values: 0 <sig_figs
(default = 2)

autocorr=<int>
Calculates and then displays the autocorrelation of the specified chain
Valid values: Any integer matching a chain index
(No autocorrelation output by default)

csv_file=<string>
Writes output as a csv file with comments written as #
Valid values: Any valid filename
(Appends output to the file if it exists)

30

Part III

CmdStan Executables

31

7. Compiling CmdStan Exectuables

Preparing a Stan program to be run involves two steps,

1. translating the Stan program to C++, and

2. compiling the resulting C++ to an executable.

This chapter discusses both steps, as well as their encapsulation into a single make
target.

7.1. Translating and Compiling through make

The simplest way to compile a CmdStan program is through the make build tool,
which encapsulates the translation and compilation step into a single command. The
commands making up the make target for compiling a model are described in the
following sections, and the following chapter describes how to run a compiled model.

Before compiling a CmdStan program, change directories to <cmdstan-home>.

Translating and Compiling Test Models

There are a number of example models distributed with CmdStan which unpack into
the path examples. To build the simple example examples/bernoulli/bernoulli.
stan, the following call to make suffices.

The following call will build an executable form of the Bernoulli estimator. On
Windows, replace bernoulli with bernoulli.exe.

> make examples/bernoulli/bernoulli

This will translate the model bernoulli.stan to a C++ file, bernoulli.hpp, and
compile a CmdStan program using the generated C++ file, putting the executable in
examples/bernoulli/bernoulli(.exe).

Stan programs do not need to be in the <cmdstan-home> directory. The current
limitation is that the target executable name can not have spaces – this includes the
path to the executable. Spaces in the full path can be avoided by using relative paths.
For Windows users, if using the full path, include the drive letter and use forward
slashes, e.g. make c:/cmdstan/bernoulli/bernoulli.exe.

Dependencies in make

When executing a make target, all its dependencies are checked to see if they are up
to date, and if they are not, they are rebuilt. If the make target to build the Bernoulli

32

estimator is invoked a second time, it will see that it is up to date, and will not
recompile the program.

If the file containing the Stan program is updated, the next call to make will rebuild
the CmdStan executable.

Getting Help from the makefile

CmdStan’s makefile, which contains the top-level instructions to make, provides ex-
tensive help in terms of targets and options. Invoke make with the target help:

> make help

Options to make

CmdStan allows users to change compilers, library versions for Boost, Eigen, and
CVODES, as well as compilation options such as optimization.

For a full list of options, see Appendix B.6

Clean Targets

A very useful target is clean-all, invoked as

> make clean-all

This removes the CmdStan tools. This step is necessary when changing compilers or
other make options.

33

8. Running a CmdStan Program

Once a CmdStan program is compiled, it can be run in many different ways. It can be
used to sample or optimize parameters, or to diagnose a model. Before diving into
the detailed configurations, the first section provides some simple examples.

8.1. Getting Started by Example

Once a CmdStan program has been converted to a C++ program for that model (see
Chapter 4) and the resulting C++ program compiled to a platform-specific executable
(see Chapter 7), the model is ready to be run.

All of the CmdStan functionality is highly configurable from the command line;
the options are defined later in this chapter. Each command option also has defaults,
which are used in this section.

Sampling

Suppose the executable is in file my_model and the data is in file my_data, both in
the current working directory. To generate samples from a data set using the default
settings, use one of the following, depending on platform.

Mac OS and Linux

> ./my_model sample data file=my_data

Windows

> my_model sample data file=my_data

On both platforms, this command reads the data from file my_data, runs warmup
tuning for 1000 iterations (the values of which are discarded), and then runs the
fully-adaptive NUTS sampler for 1000 iterations, writing the parameter (and other)
values to the file samples.csv in the current working directory. When no random
number seed is specified, a seed is generated from the system time.

Sampling in Parallel

The previous example executes one chain, which can be repeated to generate multiple
chains. However, users may want to execute chains in parallel on a multicore machine.

34

Mac OS and Linux

To sample four chains using a Bash shell on Mac OS or Linux, execute1

> for i in {1..4}
do

./my_model sample random seed=12345 \
id=$i data file=my_data \
output file=samples$i.csv &

done

The ampersand (&) at the end of the nested command pushes each process into the
background, so that the loop can continue without waiting for the current chain to
finish. The id value makes sure that a non-overlapping set of random numbers are
used for each chain. Also note that the output file is explicitly specified, with the
variable $i being used to ensure the output file name for each chain is unique.

The terminal standard output will be interleaved for all chains running concur-
rently. To suppress all terminal output, direct the standard output to the “null” de-
vice. This is achieved by postfixing > /dev/null to a command, which in the above
case, means changing the second-to-last line to

output file=samples$i.csv > /dev/null &

Windows

On Windows, the following is functionally equivalent to the Bash snippet above

> for /l %x in (1, 1, 4) do start /b model sample ^
random seed=12345 id=%x data file=my_data ^
output file=samples%x.csv

The caret (^) indicates a line continuation in DOS.

Combining Parallel Chains

CmdStan has commands to analyze the output of multiple chains, each stored in
their own file; see Chapter 6. RStan also has commands to read in multiple CSV files
produced by CmdStan’s command-line sampler.

To compute posterior quantities, it is sometimes easier to have the chains merged
into a single CSV file. If the grep and sed programs are installed, then the following
will combine the four comma-separated values files into a single comma-separated
values file. The command is the same on Windows, Mac OS, and Linux.

1Complicated multiline commands such as this one are prime candidates for putting into a script file.

35

> grep lp__ samples1.csv > combined.csv
> sed '/^[#l]/d' samples*.csv >> combined.csv

Scripting and Batching

The previous examples show how to sample in parallel from the command line. Op-
erations like these can also be scripted, using shell scripts (.sh) on Mac OS and Linux
and DOS batch (.bat) files on Windows. A sequence of several such commands can
be executed from a single script file. Such scripts might contain stanc commands
(see Chapter 4) and stansummary commands (see Chapter 6) can be executed from a
single script file. At some point, it is worthwhile to move to something with stronger
dependency control such as makefiles.

Optimization

CmdStan can find the posterior mode (assuming there is one). If the posterior is not
convex, there is no guarantee Stan will be able to find the global mode as opposed to
a local optimum of log probability.

For optimization, the mode is calculated without the Jacobian adjustment for con-
strained variables, which shifts the mode due to the change of variables. Thus modes
correspond to modes of the model as written.

Windows

> my_model optimize data file=my_data

Mac OS and Linux

> ./my_model optimize data file=my_data

Variational Inference

CmdStan can fit a variational approximation to the posterior. The approximation
is a Gaussian in the unconstrained variable space. Stan implements two variational
algorithms. The algorithm=meanfield option uses a fully factorized Gaussian for
the approximation. The algorithm=fullrank option uses a Gaussian with a full-rank
covariance matrix for the approximation.

Mac OS and Linux

> ./my_model variational algorithm=meanfield \
data file=my_data

36

> ./my_model variational algorithm=fullrank \
data file=my_data

Windows

> my_model variational algorithm=meanfield \
data file=my_data

> my_model variational algorithm=fullrank \
data file=my_data

8.2. Diagnostics

CmdStan has a basic diagnostic feature that will calculate gradients of the initial
state and compare them with those calculated with finite differences. If there are
discrepancies, there is a problem with the model or initial states (or a bug in Stan).
To run on the different platforms, use one of the following.

Mac OS and Linux

> ./my_model diagnose data file=my_data

Windows

> my_model diagnose data file=my_data

8.3. Command-Line Options

CmdStan executables are highly configurable, allowing the user to specify and cus-
tomize not only the calculation method but also the data, output, initialization, and
random number generation. The arguments are defined hierarchically so that, for
example, optimization settings are not necessary when sampling.

The atomic elements of the hierarchy (i.e., those without corresponding values)
are categorical arguments (sometimes called “flags”) which define self-contained cat-
egories of arguments.

CmdStan’s commands have more hierarchical structure than is typical of com-
mand line executables, which usually have at most two subgroups of commands.
Arguments grouped within a category are not ordered with respect to each other.
The only ordering is that the global options come before the method argument and

37

subcommand-specific options after the method argument. For example, the following
four commands all define the same configuration:2

> ./model sample output file=samples.csv \
diagnostic_file=diagnostics.csv \

random seed=1

> ./model sample output diagnostic_file=diagnostics.csv \
file=samples.csv \

random seed=1

> ./model sample random seed=1 \
output file=samples.csv \

diagnostic_file=diagnostics.csv

> ./model sample random seed=1 \
output diagnostic_file=diagnostics.csv \

file=samples.csv

The categorical arguments output and random can be in any order provided that
the subarguments follow their respective parent, here diagnostic_file and file
following output and seed coming after random. These four configurations exhaust
all valid combinations.

Categorical arguments may appear is isolation, for example when introducing
sample or random, or they may appear as the values for other arguments, such as
hmc which not only introduces a category of HMC related arguments but also defines
the value of the argument algorithm. A visual diagram of the available categorical
arguments is shown in Figure 8.1, with the mutual exclusivity of these arguments as
values shown in Figure 8.2. Specifying conflicting arguments causes the execution to
immediately terminate.

Note that any valid argument configuration must either specify a method or a help
request.

Method

All commands other than help must include at least one method, specified explicitly
as method=method_name or implicitly with only method_name. Currently CmdStan
supports the following methods:

2 The backslash (\) is used at the end of a line in a command to indicate that it continues on the next
line. The indentation to indicate the structure of the command is for pedagogical purposes only; the same
result would be obtained writing each command on one line with single spaces separating the elements.

38

id, data, init

random

seed

output

file, diagnostic_file, ...

method

-

-

-
diagnose

. . .

optimize

. . .

sample

num_samples, num_warmup, save_warmup, thin

adapt

. . .

algorithm

-

-

hmc

. . .

nuts

. . .

Figure 8.1: In the hierarchical argument structure, certain arguments, such as random and

output, introduce new categories of arguments. Categorical arguments may also appear as

values of other arguments, such as diagnose, optimize, and sample, which define the mutually

exclusive values for the argument method.

39

id, data, init

random

seed

output

file, diagnostic_file, ...

method

-

-

-
diagnose

. . .

optimize

. . .

sample

num_samples, num_warmup, save_warmup, thin

adapt

. . .

algorithm

-

-

hmc

. . .

nuts

. . .

Figure 8.2: A valid argument configuration defines only one mutually exclusive argument.

If conflicting arguments are specified, for example method=optimize method=sample, then

execution immediately terminates with a warning message.

40

Method Description

sample sample using MCMC
optimize find posterior mode using optimization

variational fit variational approximation (experimental)
diagnose diagnose models

All remaining configurations are optional, with default values provided for all argu-
ments not explicitly specified.

Help

Informative output can be retrieved either globally, by requesting help at the top-
level, or locally, by requesting help deeper into the hierarchy. Note that after any help
has been displayed the execution immediately terminates, even if a method has been
specified.

Top-Level Help

If help is specified as the only argument then a usage message is displayed. Similarly,
specifying help_all by itself displays the entire argument hierarchy.

Context-Sensitive Help

Specifying help after any argument displays a description and valid options for that
argument. For example,

./my_model sample help

provides the top-level options for the sample method.
Detailed information on the argument, and all arguments deriving from it, can

accessed by specifying help-all instead,

./my_model sample help-all

8.4. Full Argument Hierarchy

Here we present the full argument hierarchy, along with relevant details. Some typical
use-case examples are provided in the next section.

41

Typographical Conventions

The following typographical conventions are obeyed in the hierarchy.

• arg=<value-type>
Arguments with values; displays the value type, legal values, and default value

• arg
Isolated categorical arguments; displays all valid subarguments

• value
Values; describes effect of selecting the value

• avalue
Categorical arguments that appear as values to other arguments; displays all
valid subarguments

Top-Level Method Argument

Every command must have exactly one method specified as the very first argument.
The value type of list element means that the valid values are enumerated as a list.

method=<list element>
Analysis method (Note that method= is optional)
Valid values: sample, optimize, variational, diagnose
(Defaults to sample)

Sampling-Specific Arguments

The following arguments are specific to sampling. The method argument sample (or
method=sample) must come first in order to enable the subsequent arguments. The
other arguments are optional and may appear in any order.

↖

sample
Bayesian inference with Markov Chain Monte Carlo
Valid subarguments: num_samples, num_warmup, save_warmup,

thin, adapt, algorithm

↖ ↖

num_samples=<int>
Number of sampling iterations
Valid values: 0 ≤ num_samples
(Defaults to 1000)

42

I II II II II II III

-
Iteration

Figure 8.3: Adaptation during warmup occurs in three stages: an initial fast adaptation interval

(I), a series of expanding slow adaptation intervals (II), and a final fast adaptation interval (III).

For HMC, both the fast and slow intervals are used for adapting the step size, while the slow

intervals are used for learning the (co)variance necessitated by the metric. Iteration numbering

starts at 1 on the left side of the figure and increases to the right.

↖ ↖

num_warmup=<int>
Number of warmup iterations
Valid values: 0 ≤ warmup
(Defaults to 1000)

↖ ↖

save_warmup=<boolean>
Stream warmup samples to output?
Valid values: 0, 1
(Defaults to 0)

↖ ↖

thin=<int>
Period between saved samples
Valid values: 0 < thin
(Defaults to 1)

Sampling Adaptation-Specific Parameters

When adaptation is engaged the warmup period is split into three stages (Figure 8.3),
with two fast intervals surrounding a series of growing slow intervals. Here fast and
slow refer to parameters that adapt using local and global information, respectively;
the Hamiltonian Monte Carlo samplers, for example, define the step size as a fast pa-
rameter and the (co)variance as a slow parameter. The size of the the initial and final
fast intervals and the initial size of the slow interval are all customizable, although
user-specified values may be modified slightly in order to ensure alignment with the
warmup period.

The motivation behind this partitioning of the warmup period is to allow for more
robust adaptation. In the initial fast interval the chain is allowed to converge to-

43

wards the typical set,3 with only parameters that can learn from local information
adapted. After this initial stage parameters that require global information, for exam-
ple (co)variances, are estimated in a series of expanding, memoryless windows; often
fast parameters will be adapted here as well. Lastly the fast parameters are allowed
to adapt to the final update of the slow parameters.

Currently all Stan sampling algorithms utilize dual averaging to optimize the step
size (this optimization during adaptation of the sampler should not be confused with
running Stan’s optimization method). This optimization procedure is extremely flex-
ible and for completeness we have exposed each option, using the notation of (Hoff-
man and Gelman, 2011, 2014). In practice the efficacy of the optimization is sensitive
to the value of these parameters, and we do not recommend changing the defaults
without experience with the dual averaging algorithm. For more information, see the
discussion of dual averaging in (Hoffman and Gelman, 2011, 2014).

Variances or covariances are estimated using Welford accumulators to avoid a loss
of precision over many floating point operations.

The following subarguments are introduced by the categorical argument adapt.
Each subargument must contiguously follow adapt, though they may appear in any
order.

↖ ↖

adapt
Warmup Adaptation
Valid subarguments: engaged, gamma, delta, kappa, t0

↖ ↖ ↖

engaged=<boolean>
Adaptation engaged?
Valid values: 0, 1
(Defaults to 1)

↖ ↖ ↖

gamma=<double>
Adaptation regularization scale
Valid values: 0 < gamma
(Defaults to 0.05)

↖ ↖ ↖

delta=<double>
Adaptation target acceptance statistic
Valid values: 0 < delta < 1
(Defaults to 0.8)

↖ ↖ ↖

kappa=<double>
Adaptation relaxation exponent

3The typical set is a concept borrowed from information theory and refers to the neighborhood (or
neighborhoods in multimodal models) of significant posterior probability mass through which the Markov
chain will travel in equilibrium.

44

Valid values: 0 < kappa
(Defaults to 0.75)

↖ ↖ ↖

t0=<double>
Adaptation iteration offset
Valid values: 0 < t0
(Defaults to 10)

↖ ↖ ↖

init_buffer=<unsigned int>
Width of initial fast adaptation interval
Valid values: All
(Defaults to 75)

↖ ↖ ↖

term_buffer=<unsigned int>
Width of final fast adaptation interval
Valid values: All
(Defaults to 50)

↖ ↖ ↖

window=<unsigned int>
Initial width of slow adaptation interval
Valid values: All
(Defaults to 25)

By setting the acceptance statistic delta to a value closer to 1 (its value must be
strictly less than 1 and its default value is 0.8), adaptation will be forced to use smaller
step sizes. This can improve sampling efficiency (effective samples per iteration)
at the cost of increased iteration times. Raising the value of delta will also allow
some models that would otherwise get stuck overcome their blockages; see also the
stepsize_jitter argument.

Sampling Algorithm- and Engine-Specific Arguments

The following batch of arguments are used to control the sampler used for sampling.
The top-level specification is for engine, the only valid value of which is hmc (this will
change in the future as we add new samplers).

↖ ↖

algorithm=<list element>
Sampling algorithm
Valid values: hmc, fixed_param
(Defaults to hmc)

Hamiltonian Monte Carlo is a very general approach to sampling that utilizes tech-
niques of differential geometry and mathematical physics to generate efficient MCMC
transitions. This generality manifests in a wealth of implementation choices.

45

↖ ↖ ↖

hmc
Hamiltonian Monte Carlo
Valid subarguments: engine, metric, stepsize, stepsize_jitter

All HMC implementations require at least two parameters: an integration step size
and a total integration time. We refer to different specifications of the latter as en-
gines.

In the static_hmc implementation the total integration time must be specified by
the user, where as the nuts implementation uses the No-U-Turn Sampler to determine
an optimal integration time dynamically.

↖ ↖ ↖ ↖

engine=<list element>
Engine for Hamiltonian Monte Carlo
Valid values: static, nuts
(Defaults to nuts)

The following options are activated for static HMC.

↖ ↖ ↖ ↖ ↖

static
Static integration time
Valid subarguments: int_time

↖ ↖ ↖ ↖ ↖ ↖
int_time=<double>

Total integration time for Hamiltonian evolution
Valid values: 0 < int_time
(Defaults to 2π)

These options are for NUTS, an adaptive version of HMC.

↖ ↖ ↖ ↖ ↖

nuts
The No-U-Turn Sampler
Valid subarguments: max_depth

Tree Depth

NUTS generates a proposal by evolving the initial system both forwards and back-
wards in time to form a balanced binary tree. At each iteration of the NUTS algorithm
the tree depth is increased by one, doubling the number of leapfrog steps and effec-
tively doubles the computation time. The algorithm terminates in one of two ways:
either the NUTS criterion is satisfied for a new subtree or the completed tree, or the
depth of the completed tree hits max_depth.

Both the tree depth and the actual number of leapfrog steps computed are re-
ported along with the parameters in the output as treedepth__ and n_leapfrog__,

46

respectively. Because the final subtree may only be partially constructed, these two
will always satisfy

2treedepth−1 − 1 < Nleapfrog ≤ 2treedepth − 1.

treedepth__ is an important diagnostic tool for NUTS. For example,
treedepth__ = 0 occurs when the first leapfrog step is immediately rejected and
the initial state returned, indicating extreme curvature and poorly-chosen step size
(at least relative to the current position). On the other hand, if treedepth__ =
max_depth then NUTS is taking many leapfrog steps and being terminated prema-
turely to avoid excessively long execution time. For the most efficient sampling
max_depth should be increased to ensure that the NUTS tree can grow as large as
necessary.

For more information on the NUTS algorithm see (Hoffman and Gelman, 2011,
2014).

↖ ↖ ↖ ↖ ↖ ↖

max_depth=<int>
Maximum tree depth
Valid values: 0 < max_depth
(Defaults to 10)

Euclidean Metric

All HMC implementations in Stan utilize quadratic kinetic energy functions which are
specified up to the choice of a symmetric, positive-definite matrix known as a mass
matrix or, more formally, a metric (Betancourt and Stein, 2011).

If the metric is constant then the resulting implementation is known as Euclidean
HMC. Stan allows for three Euclidean HMC implementations: a unit metric, a diagonal
metric, and a dense metric. These can be specified with the values unit_e, diag_e,
and dense_e, respectively.

Future versions of Stan will also include dynamic metrics associated with Rieman-
nian HMC (Girolami and Calderhead, 2011; Betancourt, 2012).

↖ ↖ ↖ ↖

metric=<list element>
Geometry of base manifold
Valid values: unit_e, diag_e, dense_e
(Defaults to diag_e)

↖ ↖ ↖ ↖ ↖

unit_e
Euclidean manifold with unit metric

↖ ↖ ↖ ↖ ↖

diag_e
Euclidean manifold with diag metric

47

↖ ↖ ↖ ↖ ↖

dense_e
Euclidean manifold with dense metric

Step Size and Jitter

All implementations of HMC also use numerical integrators requiring a step size.
We also allow that step size to be “jittered” randomly during sampling to avoid any
poor interactions with a fixed step size and regions of high curvature. The maximum
amount of jitter is 1, which will cause step sizes to be selected in the range of 0 to
twice the adapted step size. Low step sizes can get HMC samplers unstuck that would
otherwise get stuck with higher step sizes. The downside is that jittering below the
adapted value will increase the number of leapfrog steps required and thus slow down
iterations, whereas jittering above the adapted value can cause premature rejection
due to simulation error in the Hamiltonian dynamics calculation. See (Neal, 2011) for
further discussion of step-size jittering.

↖ ↖ ↖ ↖

stepsize=<double>
Step size for discrete evolution
Valid values: 0 < stepsize
(Defaults to 1)

↖ ↖ ↖ ↖
stepsize_jitter=<double>

Uniformly random jitter of the stepsize, in percent
Valid values: 0 ≤ stepsize_jitter ≤ 1
(Defaults to 0)

Fixed Parameter Sampler

The fixed parameter sampler generates a new sample without changing the cur-
rent state of the Markov chain; only generated quantities may change. This can
be useful when, for example, trying to generate pseudo-data using the generated
quantities block. If the parameters block is empty (no parameters) then using
algorithm=fixed_param is mandatory.

↖ ↖ ↖

fixed_param
Fixed Parameter Sampler

Optimization-Specific Commands

The following arguments are for the top-level method optimize. They allow control
of the optimization algorithm, and some of its configuration. The other arguments
may appear in any order.

48

↖

optimize
Point estimation
Valid subarguments: algorithm, iter, save_iterations

↖ ↖

algorithm=<list element>
Optimization algorithm
Valid values: bfgs, lbfgs, newton
(Defaults to lbfgs)

The following options are for the (L-)BFGS optimizer. L-BFGS is the default optimizer
and also much faster than the other optimizers.

Convergence monitoring in (L-)BFGS is controlled by a number of tolerance values,
any one of which being satisified causes the algorithm to terminate with a solution.

• The log probability is considered to have converged if∣∣logp(θi|y)− logp(θi−1|y)
∣∣ < tol_obj

or ∣∣logp(θi|y)− logp(θi−1|y)
∣∣

max
(∣∣logp(θi|y)

∣∣ ,∣∣logp(θi−1|y)
∣∣ ,1.0) < tol_rel_obj∗ ε.

• The parameters are considered to have converged if

||θi − θi−1|| < tol_param.

• The gradient is considered to have converged to 0 if

||gi|| < tol_grad

or
gTi Ĥ−1i gi

max
(∣∣logp(θi|y)

∣∣ ,1.0) < tol_rel_grad∗ ε.

Here, i is the current iteration, θi is the value of the parameters at iteration i, y is the
data, p(θi|y) is the posterior probability of θi up to a proportion, ∇θ is the gradient
operator with respect to θ, gi = ∇θ logp(θi|y) is the gradient at iteration i, Ĥi is
the estimate of the Hessian at iteration i, |u| is absolute value (L1 norm) of u, ||u||
is vector length (L2 norm) of u, and ε ≈ 2e − 16 is machine precision. Any of the
convergence tests can be disabled by setting its corresponding tolerance parameter
to zero.

The other command-line argument for (L-)BFGS is init_alpha, which is the first
step size to try on the initial iteration. If the first iteration takes a long time (and
requires a lot of function evaluations), set init_alpha to be the roughly equal to

49

the alpha used in that first iteration. init_alpha has a tiny default value, which is
reasonable for many problems but might be too large or too small depending on the
objective function and initialization. Being too big or too small just means that the
first iteration will take longer (i.e., require more gradient evaluations) before the line
search finds a good step length. It’s not a critical parameter, but for optimizing the
same model multiple times (as you tweak things or with different data) being able to
change it can save some real time.

Finally, L-BFGS has a additional command-line argument, history_size, which
controls how much memory is used maintaining the approximation of the Hessian.
This should be less than the dimensionality of the parameter space and, in general,
relatively small values (5 - 10) are sufficient. If L-BFGS performs badly but BFGS is
performing well, then consider increasing this. Note that increasing this will increase
the memory usage, although this is unlikely to be an issue for typical Stan models.

↖ ↖ ↖

(l)bfgs
(L-)BFGS with linesearch
Valid subarguments: init_alpha, tol_obj, tol_rel_obj, tol_grad,
tol_rel_grad, tol_param, history_size (lbfgs only)

↖ ↖ ↖ ↖

init_alpha=<double>
Line search step size for first iteration
Valid values: 0 ≤ init_alpha
(Defaults to 0.001)

↖ ↖ ↖ ↖

tol_obj=<double>
Convergence tolerance on changes in objective function value
Valid values: 0 ≤ tol_obj
(Defaults to 1e-12)

↖ ↖ ↖ ↖

tol_rel_obj=<double>
Convergence tolerance on relative changes in objective function value
Valid values: 0 ≤ tol_rel_obj
(Defaults to 1e+4)

↖ ↖ ↖ ↖

tol_grad=<double>
Convergence tolerance on the norm of the gradient
Valid values: 0 ≤ tol_grad
(Defaults to 1e-8)

↖ ↖ ↖ ↖

tol_rel_grad=<double>
Convergence tolerance on the relative norm of the gradient
Valid values: 0 ≤ tol_rel_grad
(Defaults to 1e+7)

50

↖ ↖ ↖ ↖

tol_param=<double>
Convergence tolerance on changes in parameter value
Valid values: 0 ≤ tol_param
(Defaults to 1e-8)

↖ ↖ ↖ ↖

history_size=<int>
Number of update vectors to use in Hessian approximations (lbfgs only)
Valid values: 0 < history_size
(Defaults to 5)

The following argument is for Newton’s optimization method; there are currently no
configuration parameters for Newton’s method, and it is not recommended because
of the slow Hessian calculation involving finite differences.

↖ ↖ ↖

newton
Newton’s method

The remaining arguments apply to all optimizers.

↖ ↖

iter=<int>
Total number of iterations
Valid values: 0 < iter
(Defaults to 2000)

↖ ↖

save_iterations=<boolean>
Stream optimization progress to output?
Valid values: 0, 1
(Defaults to 0)

Variational Inference-Specific Commands

The following arguments are for the top-level method variational. They allow con-
trol of the variational inference algorithm, and some of its configuration.

↖

variational
Variational inference
Valid subarguments: algorithm, iter, grad_samples, elbo_samples,
eta, adapt, tol_rel_obj, eval_elbo, output_samples

↖ ↖

algorithm=<list element>
Variational inference algorithm
Valid values: meanfield, fullrank
(Defaults to meanfield)

51

↖ ↖

iter=<int>
Maximum number of iterations
Valid values: 0 < iter
(Defaults to 10000)

↖ ↖

grad_samples=<int>
Number of samples for Monte Carlo estimate of gradients
Valid values: 0 < grad_samples
(Defaults to 1)

↖ ↖

elbo_samples=<int>
Number of samples for Monte Carlo estimate of ELBO (objective function)
Valid values: 0 < elbo_samples
(Defaults to 100)

↖ ↖

eta=<double>
Stepsize weighting parameter for adaptive stepsize sequence
Valid values: 0 < eta
(Defaults to 1.0)

↖ ↖

adapt
Warmup Adaptation
Valid subarguments: engaged, iter

↖ ↖ ↖

engaged=<boolean>
Adaptation engaged?
Valid values: 0, 1
(Defaults to 1)

↖ ↖ ↖

iter=<int>
Maximum number of adaptation iterations
Valid values: 0 < iter
(Defaults to 50)

↖ ↖

tol_rel_obj=<double>
Convergence tolerance on the relative norm of the objective
Valid values: 0 < tol_rel_obj
(Defaults to 0.01)

↖ ↖

eval_elbo=<int>
Evaluate ELBO every Nth iteration
Valid values: 0 < eval_elbo
(Defaults to 100)

52

↖ ↖

output_samples=<int>
Number of posterior samples to draw and save
Valid values: 0 < output_samples
(Defaults to 1000)

Diagnostic-Specific Arguments

The following arguments are specific to diagnostics. As of now, the only diagnostic is
gradients of the log probability function.

↖

diagnose
Model diagnostics
Valid subarguments: test

↖ ↖

test=<list element>
Diagnostic test
Valid values: gradient
(Defaults to gradient)

↖ ↖ ↖

gradient
Check model gradient against finite differences Valid subarguments: epsilon,
error

↖ ↖ ↖ ↖

epsilon=<real>
Finite difference step size
Valid values: 0 < epsilon
(Defaults to 1e-6)

↖ ↖ ↖ ↖

error=<real>
Error threshold
Valid values: 0 < error
(Defaults to 1e-6)

General-Purpose Arguments

The following arguments may be used with any of the previous configurations. They
may come either before or after the other subarguments of the top-level method.

Process Identifier Argument

id=<int>
Unique process identifier, used to advance random number generator so that
random numbers do not overlap across chains

53

Valid values: 0 < id
(Defaults to 0)

Input Data Arguments

data
Input data options
Valid subarguments: file

↖

file=<string>
Input data file
Valid values: Path to existing file
(Defaults to empty path)

Initialization Arguments

Initialization is only applied to parameters defined in the parameters block. Any ini-
tial values supplied for transformed parameters or generated quantities are ignored.

init=<string>
Initialization method:
• real number x > 0 initializes randomly bewteen [-x, x];
• 0 initializes to 0;
• non-number interpreted as a data file

Valid values: All
(Defaults to 2)

Random Number Generator Arguments

random
Random number configuration
Valid subarguments: seed

↖

seed=<unsigned int>
Random number generator seed
Valid values:
• seed ≥ 0 generates seed;
• seed < 0 uses seed generated from time

(Defaults to -1)

54

Output Arguments

output
File output options
Valid subarguments: file, diagnostic_file, refresh

↖

file=<string>
Output file
Valid values: Valid path
(Defaults to output.csv)

↖

diagnostic_file=<string>
Auxiliary output file for diagnostic information
Valid values: Valid path
(Defaults to empty path)

↖

refresh=<int>
Number of interations between screen updates
Valid values: 0 < refresh
(Defaults to 100)

8.5. Command-Line Option Examples

The hierarchical structure of the command-line options can be intimidating, and here
we provide an example workflow to help ease the introduction to new users, especially
those used to Stan 1.3 or earlier releases. The examples in this section are for Mac
OS and Linux; on Windows, just remove the ./ before the executable and change the
line-continuation character from Unix’s \ to DOS’s ^. As in previous sections, the
indentation on continued lines is for pedagogical purposes only and does not convey
any content to the executable.

Let’s say that we’ve just built our model, model, and are ready to run. We begin
by specifying data and init files,

> ./model data file=model.data.R init=model.init.R

but our model doesn’t run. Instead, the above command prints

A method must be specified!
Failed to parse arguments, terminating Stan

The problem is that we forgot to specify a method.
All Stan arguments have default values, except for the method. This is the only

argument that must be specified by the user and a model will not run without it (not

55

to say that the model will run without error, for example a model that requires data
will eventually fail unless an input file is specified with file under data). Assuming
that we want to draw MCMC samples from our model, we can either specify a method
implicitly,

> ./model sample data file=model.data.R init=model.init.R

or explicitly,

> ./model method=sample data file=model.data.R \
init=model.init.R

In either case our model now executes without any problem.
Now let’s say that we want to customize our execution. In particular we want to

set the seed for the random number generator, but we forgot the specific argument
syntax. Information for each argument can displayed by calling help,

> ./model random help

which returns

random
Random number configuration
Valid subarguments: seed

...

before printing usage information. For information on the seed argument we just call
help one level deeper,

> ./model random seed help

which returns

seed=<unsigned int>
Random number generator seed
Valid values: seed > 0, if negative seed is generated from time
Defaults to -1
...

Fully informed, we can now run with a given seed,

> ./model method=sample data fle=model.data.R \
init=model.init.R \
random seed=5

56

The arguments method, data, init, and random are all top-level arguments. To
really see the power of a hierarchical argument structure let’s try to drill down and
specify the metric we use for HMC: instead of the default diagonal Euclidean metric,
we want to use a dense Euclidean metric. Attempting to specify the metric we try

> ./model method=sample data file=model.data.R \
init=model.init.R \
random seed=5 \
metric=unit

only to have the execution fail with the message

metric=unit_e is either mistyped or misplaced.
Perhaps you meant one of the following valid configurations?
method=sample algorithm=hmc metric=<list_element>

Failed to parse arguments, terminating Stan

The argument metric does exist, but not at the top-level. In order to specify it we
have to drill down into sample by first specifying the sampling algorithm, as noted in
the suggestion,

> ./model method=sample algorithm=hmc metric=unit \
data file=model.data.R \
init=model.init.R \
random seed=5

Unfortunately we still messed up,

unit is not a valid value for "metric"
Valid values: unit_e, diag_e, dense_e

Failed to parse arguments, terminating Stan

Tweaking the metric name we make one last attempt,

> ./model method=sample algorithm=hmc metric=unit_e \
data file=model.data.R \
init=model.init.R \
random seed=5

which successfully runs.
Finally, let’s consider the circumstance where our model runs fine but the NUTS

iterations keep saturating the default tree depth limit of 10. We need to change the
limit, but how do we specify NUTS let alone the maximum tree depth? To see how

57

let’s take advantage of the help-all option which prints all arguments that derive
from the given argument. We know that NUTS is somehow related to sampling, so we
try

> ./model method=sample help-all

which returns the verbose output,

sample

Bayesian inference with Markov Chain Monte Carlo

Valid subarguments: num_samples, num_warmup,

save_warmup, thin, adapt, algorithm

num_samples=<int>

Number of sampling iterations

Valid values: 0 <= num_samples

Defaults to 1000

num_warmup=<int>

Number of warmup iterations

Valid values: 0 <= warmup

Defaults to 1000

save_warmup=<boolean>

Stream warmup samples to output?

Valid values: [0, 1]

Defaults to 0

thin=<int>

Period between saved samples

Valid values: 0 < thin

Defaults to 1

adapt

Warmup Adaptation

Valid subarguments: engaged, gamma, delta, kappa, t0

engaged=<boolean>

Adaptation engaged?

Valid values: [0, 1]

Defaults to 1

gamma=<double>

Adaptation regularization scale

Valid values: 0 < gamma

58

Defaults to 0.05

delta=<double>

Adaptation target acceptance statistic

Valid values: 0 < delta < 1

Defaults to 0.65

kappa=<double>

Adaptation relaxation exponent

Valid values: 0 < kappa

Defaults to 0.75

t0=<double>

Adaptation iteration offset

Valid values: 0 < t0

Defaults to 10

algorithm=<list element>

Sampling algorithm

Valid values: hmc

Defaults to hmc

hmc

Hamiltonian Monte Carlo

Valid subarguments: engine, metric, stepsize,

stepsize_jitter

engine=<list element>

Engine for Hamiltonian Monte Carlo

Valid values: static, nuts

Defaults to nuts

static

Static integration time

Valid subarguments: int_time

int_time=<double>

Total integration time for Hamiltonian evolution

Valid values: 0 < int_time

Defaults to 2 * pi

nuts

The No-U-Turn Sampler

Valid subarguments: max_depth

59

max_depth=<int>

Maximum tree depth

Valid values: 0 < max_depth

Defaults to 10

metric=<list element>

Geometry of base manifold

Valid values: unit_e, diag_e, dense_e

Defaults to diag_e

unit_e

Euclidean manifold with unit metric

diag_e

Euclidean manifold with diag metric

dense_e

Euclidean manifold with dense metric

stepsize=<double>

Step size for discrete evolution

Valid values: 0 < stepsize

Defaults to 1

stepsize_jitter=<double>

Uniformly random jitter of the stepsize, in percent

Valid values: 0 <= stepsize_jitter <= 1

Defaults to 0

...

Following the hierarchy, the maximum tree depth derives from nuts, which itself is a
value for the argument engine which derives from hmc. Adding this to our previous
call we attempt

> ./model method=sample \
algorithm=hmc \

metric=unit_e \
engine=nuts max_depth=-15 \

data file=model.data.R \
init=model.init.R \
random seed=5 \

which yields

60

-1 is not a valid value for "max_depth"
Valid values: 0 < max_depth

Failed to parse arguments, terminating Stan

Where did that negative sign come from? Clumsy fingers are nothing to be embar-
rassed about, especially with such complex argument configurations. Removing the
guilty character, we try

> ./model method=sample \
algorithm=hmc \

metric=unit_e \
engine=nuts max_depth=15 \

data file=model.data.R \
init=model.init.R \
random seed=5

which finally runs without issue.

8.6. Command Templates

This section provides templates for all of the arguments deriving from each of the
possible methods: sample, optimize, variational and diagnose. Arguments in
square brackets are optional, those not in square brackets are required for the tem-
plate.

Sampling Templates

The No-U-Turn sampler (NUTS) is the default (and recommended) sampler for Stan.
The full set of configuration options is in Figure 8.4.

A standard Hamiltonian Monte Carlo (HMC) sampler with user-specified integra-
tion time may also be used. Its set of configuration options are shown in Figure 8.5.

Both NUTS and HMC may be configured with either a unit, diagonal or dense
Euclidean metric, with a diagonal metric the default.4 A unit metric provides no
parameter-by-parameter scaling, a diagonal metric scales each parameter indepen-
dently, and a dense metric also rotates the parameters so that correlated parameters
may move together. Although dense metrics offer the hope of superior simulation
performance, they require more computation per iteration. Specifically form samples
of a model with n parameters, the dense metric requires O(n3 log(m)+ n2m) opera-
tions, whereas diagonal metrics require only O(nm). Furthermore, dense metrics are
difficult to estimate, given the O(n2) components with complex interdependence.

4In Euclidean HMC, a diagonal metric emulates different step sizes for each parameter. Explicitly varying

61

> ./my_model sample \

algorithm=hmc \

engine=nuts \

[max_depth=<int>] \

[metric={unit_e,diag_e,dense_e}] \

[stepsize=<double>] \

[stepsize_jitter=<double>] \

[num_samples=<int>] \

[num_warmup=<int>] \

[save_warmup=<boolean>] \

[thin=<int>] \

[adapt \

[engaged=<boolean>] \

[gamma=<double>] \

[delta=<double>] \

[kappa=<double>] \

[t0=<double>]] \

[data file=<string>] \

[init=<string>] \

[random seed=<int>] \

[output \

[file=<string>] \

[diagnostic_file=<string>] \

[refresh=<int>]]

Figure 8.4: Command skeleton for invoking the no-U-turn sampler (NUTS). This is the same

skeleton as that for basic HMC in Figure 8.5. Elements in braces are optional. All arguments and

their default values are described in detail in Section 8.4.

Optimization Templates

CmdStan supports several optimizers. These share many of their configuration op-
tions with the samplers. The default optimizer is the the limited memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) method; Nocedal and Wright (2006) contains an
excellent overview of both the BFGS and L-BFGS algorithms. The command skeleton
for L-BFGS is in Figure 8.6 and the one for BFGS is in Figure 8.7. Stan also supports
Newton’s method; see (Nocedal and Wright, 2006) for more information. This method
is the least efficient of the three, but has the advantage of setting its own step size.
Other than not having a stepsize argument, the skeleton for Newton’s method shown
in Figure 8.8 is identical to that for BFGS.

step sizes were used in Stan 1.3 and before; Neal (2011) discusses the equivalence.

62

> ./my_model sample \

algorithm=hmc \

engine=static \

[int_time=<double>] \

[metric={unit_e,diag_e,dense_e}] \

[stepsize=<double>] \

[stepsize_jitter=<double>] \

[num_samples=<int>] \

[num_warmup=<int>] \

[save_warmup=<boolean>] \

[thin=<int>] \

[adapt \

[engaged=<boolean>] \

[gamma=<double>] \

[delta=<double>] \

[kappa=<double>] \

[t0=<double>]] \

[data file=<string>] \

[init=<string>] \

[random seed=<int>] \

[output \

[file=<string>] \

[diagnostic_file=<string>] \

[refresh=<int>]]

Figure 8.5: Command skeleton for invoking the basic Hamiltonian Monte Carlo sampler (HMC).

This is the same as the NUTS command skeleton shown in Figure 8.4 other than for the engine.

Elements in braces are optional. All arguments and their default values are described in detail

in Section 8.4.

Variational Inference Templates

CmdStan implements Automatic Differentiation Variational Inference (Kucukelbir
et al., 2015). The command skeleton for the meanfield algorithm is in Figure 8.9.
The command skeleton for the fullrank algorithm is in Figure 8.10.

Diagnostic Command Skeleton

Stan reports on gradients for the model at a specified or randomly generated initial
value. The command-skeleton in this case is very simple, and shown in Figure 8.11.

63

> ./my_model optimize \

algorithm=lbfgs \

[init_alpha=<double>] \

[tol_obj=<double>] \

[tol_rel_obj=<double>] \

[tol_grad=<double>] \

[tol_rel_grad=<double>] \

[tol_param=<double>] \

[history_size=<int>] \

[iter=<int>] \

[save_iterations=<boolean>] \

[data file=<string>] \

[init=<string>] \

[random seed=<int>] \

[output \

[file=<string>] \

[diagnostic_file=<string>] \

[refresh=<int>]]

Figure 8.6: Command skeleton for invoking the L-BFGS optimizer. All arguments and their

default values are described in detail in Section 8.4.

> ./my_model optimize \

algorithm=bfgs \

[init_alpha=<double>] \

[tol_obj=<double>] \

[tol_rel_obj=<double>] \

[tol_grad=<double>] \

[tol_rel_grad=<double>] \

[tol_param=<double>] \

[iter=<int>] \

[save_iterations=<boolean>] \

[data file=<string>] \

[init=<string>] \

[random seed=<int>] \

[output \

[file=<string>] \

[diagnostic_file=<string>] \

[refresh=<int>]]

Figure 8.7: Command skeleton for invoking the BFGS optimizer. All arguments and their default

values are described in detail in Section 8.4.

64

> ./my_model optimize \

algorithm=newton \

[iter=<int>] \

[save_iterations=<boolean>] \

[data file=<string>] \

[init=<string>] \

[random seed=<int>] \

[output \

[file=<string>] \

[diagnostic_file=<string>] \

[refresh=<int>]]

Figure 8.8: Command skeleton for invoking the Newton optimizer. All arguments and their

default values are described in detail in Section 8.4.

> ./my_model variational \

algorithm=meanfield \

[iter=<int>] \

[grad_samples=<int>] \

[elbo_samples=<int>] \

[eta=<double>] \

[adapt \

[engaged=<boolean>] \

[iter=<int>]] \

[tol_rel_obj=<double>] \

[eval_elbo=<int>] \

[output_samples=<int>] \

[data file=<string>] \

[init=<string>] \

[random seed=<int>] \

[output \

[file=<string>] \

[diagnostic_file=<string>] \

[refresh=<int>]]

Figure 8.9: Command skeleton for invoking the meanfield variational inference algorithm. All

arguments and their default values are described in detail in Section 8.4.

65

> ./my_model variational \

algorithm=fullrank \

[iter=<int>] \

[grad_samples=<int>] \

[elbo_samples=<int>] \

[eta=<double>] \

[adapt \

[engaged=<boolean>] \

[iter=<int>]] \

[tol_rel_obj=<double>] \

[eval_elbo=<int>] \

[output_samples=<int>] \

[data file=<string>] \

[init=<string>] \

[random seed=<int>] \

[output \

[file=<string>] \

[diagnostic_file=<string>] \

[refresh=<int>]]

Figure 8.10: Command skeleton for invoking the fullrank variational inference algorithm. All

arguments and their default values are described in detail in Section 8.4.

> ./my_model diagnose \

[test=gradient] \

[epsilon=<real>] \

[error=<real>] \

[data file=<string>] \

[init=<string>] \

[random seed=<int>] \

Figure 8.11: Command skeleton for invoking model diagnostics. All arguments and their de-

fault values are described in detail in Section 8.4.

66

Appendices

67

A. Licensing

CmdStan, Stan, and Stan’s three dependent libraries, Stan Math Library, Boost, and
Eigen, are distributed under liberal freedom-respecting1 licenses approved by the
Open Source Initiative.2

In particular, the licenses for CmdStan and its dependent libraries have no “copy-
left” provisions requiring applications of CmdStan to be open source if they are re-
distributed.

This chapter describes the licenses for the tools that are distributed with Cmd-
Stan. The next chapter explains some of the build tools that are not distributed with
CmdStan, but are required to build and run Stan models.

A.1. CmdStan’s License

CmdStan is distributed under the BSD 3-clause license (BSD New).

http://www.opensource.org/licenses/BSD-3-Clause

A.2. Stan’s License

Stan is distributed under the BSD 3-clause license (BSD New).

http://www.opensource.org/licenses/BSD-3-Clause

A.3. Stan Math Library’s License

The Stan Math Library is distributed under the BSD 3-clause license (BSD New).

http://www.opensource.org/licenses/BSD-3-Clause

A.4. Boost License

Boost is distributed under the Boost Software License version 1.0.

http://www.opensource.org/licenses/BSL-1.0

1The link http://www.gnu.org/philosophy/open-source-misses-the-point.html leads to a dis-
cussion about terms “open source” and “freedom respecting.”

2See http://opensource.org.

68

http://www.opensource.org/licenses/BSD-3-Clause
http://www.opensource.org/licenses/BSD-3-Clause
http://www.opensource.org/licenses/BSD-3-Clause
http://www.opensource.org/licenses/BSL-1.0
http://www.gnu.org/philosophy/open-source-misses-the-point.html
http://opensource.org

A.5. Eigen License

Eigen is distributed under the Mozilla Public License, version 2.

http:/http://opensource.org/licenses/mpl-2.0

A.6. CVODES License

CVODES is distributed under the BSD 3-clause license (BSD New).

http://computation.llnl.gov/projects/sundials-suite-nonlinear-differential-algebraic-equation-solvers/
license

A.7. Google Test License

CmdStan uses Google Test for unit testing; it is not required to compile or execute
models. Google Test is distributed under the BSD 2-clause license.

http://www.opensource.org/licenses/BSD-License

69

http:/http://opensource.org/licenses/mpl-2.0
http://computation.llnl.gov/projects/sundials-suite-nonlinear-differential-algebraic-equation-solvers/license
http://computation.llnl.gov/projects/sundials-suite-nonlinear-differential-algebraic-equation-solvers/license
http://www.opensource.org/licenses/BSD-License

B. Installation and Compatibility

This appendix describes the hardware and software required to run CmdStan. The
software required includes CmdStan and its libraries, as well as a contemporary C++

compiler. CmdStan requires hardware powerful enough to build and execute the
models. Ideally, that will be a 64-bit computer with at least 4GB of memory and
multiple processor cores.

B.1. Operating System

CmdStan is written in portable C++ without C++11 features, as are the libraries on
which it depends. Therefore, CmdStan should run on any machine for which a suit-
able C++ compiler is available. In practice, CmdStan, like the Boost and Eigen libraries
on which it depends, is very hard on the compiler and linker.

CmdStan has been tested on the following operating systems.

• Linux (Debian, Ubuntu, Red Hat)

• Mac OS X (10.10 “Yosemite,” 10.9 “Mavericks,” 10.8 “Mountain Lion,” 10.7
“Lion,” and 10.6 “Snow Leopard”)

• Windows (XP, 7, 8).

CmdStan should work on other versions of these operating systems if compatible C++

compilers can be found. The plan is to keep up with new versions of these operating
systems and gradually phase out testing on older versions.

B.2. Required Software and Tools

The only two absolute requirements for running CmdStan are the CmdStan source
code (and dependent libraries) and a C++ compiler.

CmdStan Source

In order to compile Stan program, the CmdStan source code is required. The Cmd-
Stan source code distribution includes CmdStan’s source code, Stan’s source code,
documentation, build scripts, unit tests, documentation and source for the required
libraries, Stan Math Library, Boost, and Eigen, and the source for an optional testing
library, Google Test.

70

CmdStan: Stable Releases

The latest release version of CmdStan can be downloaded from the CmdStan home
page:

http://mc-stan.org/cmdstan.html

CmdStan: Development Source Control

The source code repository is hosted by GitHub, and contains the latest versions of
CmdStan (and Stan) underdevelopment. See:

http://mc-stan.org/source-repos.html

Stan Library Source

The source code for Stan’s parse and implementation of inference algorithms are in
the Stan library.

• Home: http://mc-stan.org/stan.html

• License: BSD

• Tested Version: 2.14.0

The Stan source code is distributed with CmdStan.

Stan Math Library Source

Stan’s mathematical functions and inference algorithm rely on the reverse-mode au-
tomatic differentiation implemented in the Stan Math Library.

• Home: http://mc-stan.org

• License: BSD

• Tested Version: 2.14.0

The Stan Math Library source code is distributed with CmdStan

71

http://mc-stan.org/cmdstan.html
http://mc-stan.org/stan.html
http://mc-stan.org

Boost C++ Library Source

Stan’s parser and some of its mathematical functions and template metaprogramming
facilities are implemented with the Boost C++ Library.

• Home: http://www.boost.org/users/license.html

• License: Boost Software License

• Tested Version: 1.58.0

The Boost source code is distributed with CmdStan.

Eigen Matrix and Linear Algebra Library Source

Stan’s matrix algebra depends on the Eigen C++ matrix and linear algebra library.

• Home: http://eigen.tuxfamily.org

• License: Mozilla Public License, version 2.0

• Tested Version: 3.2.4

The Eigen source code is distributed with CmdStan.

C++ Compiler

Compiling CmdStan programs requires a C++ compiler. CmdStan has been primarily
developed with clang++ and g++ and no promises are made for other compilers. The
full set of compilers for which CmdStan has been tested is

• g++

Tested Versions: Mac 4.2.1, 4.6, Linux 4.4–4.7 (plus trunk 4.8, 4.9), Windows
4.6.3
Home: http://gcc.gnu.org/
License: GPL3+

• clang++, Mac 2.9–3.1, 6.1, Linux 2.9–3.1
Home: http://clang.llvm.org/
License: BSD

• mingw-64, version 2.0 (Windows 7, cross-compiled from Debian Linux)

72

http://www.boost.org/users/license.html
http://eigen.tuxfamily.org
http://gcc.gnu.org/
http://clang.llvm.org/

B.3. Step-by-Step Windows Install Instructions

CmdStan has been tested on Windows XP, Windows 7, and Windows 8.
CmdStan also runs under Cygwin, which provides a unix-like shell on top of Win-

dows. Instructions for Cygwin installation are provided below in their own subsec-
tion.

Windows Tips

Opening a Command Shell

To open a Windows command shell, first open the Start Menu (usually in the lower
left of the screen), select option All Programs, then option Accessories, then pro-
gram Command Prompt.

Alternatively, enter [Windows+r] (both keys together on the keyboard), and enter
cmd into the text field that pops up in the Run window, then press [Return] on the
keyboard to run.

32-bit Builds

CmdStan defaults to a 64-bit build. On a 32-bit operating system, include BIT=32 in
make/local. See Appendix B.6 for more details.

Rtools C++ Development Environment

The simplest way to install a full C++ build environment that will work for CmdStan
is to use the Rtools package designed for R developers on Windows (even if you don’t
plan to use R).

First, download the latest frozen (i.e., stable) version of Rtools from the Rtools
home page, using

http://cran.r-project.org/bin/windows/Rtools/

Next, double click on the downloaded file to open the Rtools install wizard, then
proceed through its options.

• Language: select language, click Next,

• Welcome: click Next,

• Information: click Next,

• Setup Location: accept default (c:\Rtools), click Next,

73

http://cran.r-project.org/bin/windows/Rtools/

• Select Components: select default, Package Authoring, click Next,

• Select Additional Tasks: check Edit Path and Save Version in Registry,
click Next,

• System Path Report: ensure that that the paths to c:\Rtools\bin and
c:\Rtools\gcc-4.6.3\bin are listed at the beginning of the path and click
Next,

• Ready to Install: click Next, wait for the install to complete, then

• Finish: click Finish.

• Confirm Path: After the install has completed, open a command prompt and
type PATH to ensure that the new path is activated and the Rtools folders are in
the system path.

Checking the Path

Make sure that c:\Rtools\bin has been added to your PATH environment variable,
and then open another command window. You should be able to follow the last step,
Comfirm Path, above.

Note: if you see an error like “FIND: Parameter format not correct,” please
check to see that c:\Rtools\bin is listed at the beginning of the path.

Verifying Tools

To verify that g++ is installed, use the following command.

> g++ -v

This should report version information for g++. Next, verify that make is installed with
the following command.

> make -v

This should print version information for make.

Downloading and Unpacking CmdStan

The CmdStan source code distribution is named cmdstan-2.14.0.tar.gz; the ver-
sions here are major version 2, minor version 7, and patch level 0. Download the
latest CmdStan source tarball from the CmdStan downloads page,

https://github.com/stan-dev/cmdstan/releases

74

https://github.com/stan-dev/cmdstan/releases

to any non-temporary folder. (If in doubt, select My Documents on Windows XP or
Documents on Windows 7.)

Change to the download directory (aka folder) using one of the following com-
mands, replacing <username> with a Windows user name.

• Windows XP : From the default starting directory, use the following commands
(quotes and all):

> cd "My Documents"

The full path (including quotes) will work from anywhere,

> cd "c:\Documents and Settings\<username>\My Documents"

• Windows 7 : From the default starting directory, use

> cd Documents

or use the full path, including quotes, from anywhere,

> cd "c:\Users\<username>\Documents"

To verify that the downloaded CmdStan.tar.gz file is there, list the directory con-
tents using:

> dir

Finally, unpack the distribution using the tar command (which is installed as part
of Rtools).

> tar --no-same-owner -xzf cmdstan-2.14.0.tar.gz

The -no-same-owner flag is not strictly necessary, but it removes a bunch of irrele-
vant warnings.

64-bit Cygwin Install Instructions

CmdStan can be run under Cygwin, the Unix look-and-feel environment for Windows.
Cygwin must have recent versions of make and g++ (part of gcc) installed. Within a
Cygwin shell, CmdStan will behave as under other Unixes. Follow the directions in
Appendix B.5.

B.4. Step-by-Step Mac Install Instructions

This section provides step-by-step install instructions for the Mac. CmdStan has been
tested on Mac OS X versions Mavericks, Snow Leopard, Lion, and Mountain Lion.

75

Install Xcode C++ Development Environment

The easiest (but not the only) way to install a C++ development environment on a Mac
is to use Apple’s Xcode development environment.

From the Xcode home page,

https://developer.apple.com/xcode/

click View in Mac App Store.
From the App Store, click Install, enter an Apple ID, and wait for Xcode to finish

installing.
Open the Xcode application, click top-level menu Preferences, click top-row but-

ton Downloads, click button for Components, click on the Install button to the right
of the Command Line Tools entry, then wait for it to finish installing.

Click the top-level menu item Xcode, then click item Quit Xcode to quit.
To test, open the Terminal application and enter

> make --version

> g++ --version

Verify that make is at version 3.81 or later and g++ is at 4.2.1 or later.

Download and Unpack CmdStan Source

Download the most recent version of cmdstan-2.14.0.tar.gz from the CmdStan
downloads list,

https://github.com/stan-dev/cmdstan/releases

Open the folder containing the download in the Finder (typically, the user’s top-
level Downloads folder).

If the Mac OS has not automatically unpacked the .tar.gz file into file
cmdstan-2.14.0.tar, double-click the .tar.gz file to unpack.

Double click on the .tar file to unarchive directory cmdstan-2.14.0.
Move the resulting directory to a location where it will not be deleted, henceforth

called <cmdstan-home>.

B.5. Step-by-Step Linux Install Instructions

CmdStan has been tested on various Linux installations, including Ubuntu, Debian,
and Red Hat.

76

https://developer.apple.com/xcode/
https://github.com/stan-dev/cmdstan/releases

Installing C++ Development Tools

On Linux, C++ compilers and make are often installed by default.
To see if the g++ compiler and make build system are already installed, use the

commands

> g++ --version

> make --version

If these are at least at g++ version 4.2.1 or later and make version 3.81 or later, no
additional installations are necessary. It may still be desirable to update the C++

compiler g++, because later versions are faster.
To install the latest version of these tools (or upgrade an older version), use the

commands

> sudo apt-get install g++

> sudo apt-get install make

A password will likely be required by the superuser command sudo.

Downloading and Unpacking CmdStan Source

Download the most recent stable version of CmdStan, cmdstan-2.14.0.tar.gz,
from the CmdStan downloads page,

https://github.com/stan-dev/cmdstan/releases

to the directory where Stan will reside.
In a command shell, change directories to where the tarball was downloaded, say

<download-dir>, with

> cd <download-dir>

where <download-dir> is replaced with the actual path to the directory.
Then, unpack the distribution into the subdirectory

<download-dir>/cmdstan-2.14.0

with

> tar -xzf cmdstan-2.14.0.tar.gz

77

https://github.com/stan-dev/cmdstan/releases

B.6. make Options

Setting a Variable

CmdStan uses make for building the CmdStan tools and compiling Stan programs
as executables. Users can customize how the tools are built by editing make/local
inside the <cmdstan-home> directory.

Customization is done by setting variables or appending to them. For each
variable that needs to be set, write <variable>=<value> on its own line inside
make/local. To append to existing variables, write <variable>+=<value>.

Customizing make Options

Compiler Settings

The most common options to set are the compiler options:

• CC. The compiler used to build CmdStan and the Stan executables. The default
is CC=g++.

• O. The optimization level for the compiler. The default is O=3. Both g++ and
clang++ recognize 0,1,2,3, and s.

stanc Options

There are two options for controlling stanc:

• STANCFLAGS. These flags are passed to stanc. To allow func-
tions in Stan programs that are declared, but undefined, use
STANCFLAGS = --allow_undefined and update USER_HEADER appropri-
ately.

• USER_HEADER. If --allow_undefined is passed to stanc, the value of this
variable is the additional include that is passed to the C++ linker when compiling
the program. The file in USER_HEADER must have a definition of the function
if the function is used and not defined in the Stan program. This defaults to
user_header.hpp in the directory of the Stan program being compiled.

Changing Library Locations

The next set of variables allow for easy replacement of dependent libraries. CmdStan
depends on Stan, Boost, Eigen, and CVODES. Although CmdStan is bundled with a
particular verison of Stan, other versions can be used. The same is true with Boost,
Eigen, and CVODES.

78

The Stan developers typically replace the tagged version of Stan in
<cmdstan-home>/stan with an updated version and do not set these variables. That
said, it is easy to point CmdStan to other versions of these libraries in other directo-
ries.

• STAN. The location of the Stan source directory. The default is
STAN=stan_2.14.0/. Note: the trailing forward slash is necessary.

• MATH. The location of the Stan Math Library. The default is
MATH=stan/l../stan_math_2.13.0/.

• BOOST. The location of the Boost library. If BOOST is not explicitly set, this will
default to the lib/boost_1.60.0/ folder within MATH.

• EIGEN. The location of the Eigen library. If EIGEN is not explicitly set, this will
default to the lib/eigen_3.2.8/ folder within MATH.

• CVODES. The location of the CVODES library. If CVODES is not explicity set, this
will default to the lib/cvodes_2.8.2/ folder with MATH.

Additional Options

These are the additional options and typically do not need to be set.

• O_STANC. The optimization level for building stanc. The default is O_STANC=0.

• CFLAGS. The compiler flags for building CmdStan programs. The default value
is dependent on the operating system.

• LDLIBS. The libraries used for linking CmdStan programs. The default value is
dependent on the operating system.

• LDLIBS_STANC. The libraries used for linking the Stan compiler, stanc. The
default is the value of LDLIBS.

• BIT. The bitness of the executable. This variable only applies to Windows. The
default is BIT=64. If building on a 32-bit Windows machine, BIT=32 must be
set.

• TEMPLATE_DEPTH. The maximum instantiation depth for template classes which
is passed to g++ or clang++. This variable only applies to Mac OS X due to the
current compilers distributed through Xcode not specifying enough depth by
default.

• EXE. The file extension for executables. The default is operating system depen-
dent. On Windows, the default is EXE=.exe. On other operating systems, the
default is empty, EXE=.

79

Rebuilding CmdStan

When compiler flags are changed, CmdStan needs to be rebuilt in order for the
changes to take place. The easiest way to do this is to type:

> make clean-all

Then rebuild CmdStan and the Stan programs of interest.

B.7. MKL Compiler Instructions

Getting the MKL

To purchase a license, see

http://software.intel.com/en-us/intel-mkl

For non-commercial development, see

http://software.intel.com/non-commercial-software-development

Compiling with MKL

In order to use Intel’s math kernel library (MKL) for C++, a few lines need to be added
to make/local.

• CC = icc. Set the compiler to icc.

• MKLROOT = /apps/intel/2013/mkl. Create a new variable with the location
of the MKL path.

• CFLAGS += -I $(MKLROOT)/include -DEIGEN_USE_MKL_ALL. This tells
Eigen to use MKL and where to find the necessary header files.

• LDLIBS += -L$(MKLROOT)/lib/intel64 -lmkl_intel_lp64 and
LDLIBS += -lmkl_core -lmkl_sequential -lpthread -lm. This links
in the MKL library for the CmdStan executables. The exact implementation will
depend on the particular system. Use the MKL link line advisor for help.

Note: Make sure to do the above changes before compiling for the first time - other-
wise Stan will be compiled with g++ and you won’t see any performance gains.

80

http://software.intel.com/en-us/intel-mkl
http://software.intel.com/non-commercial-software-development

Additional compiler options

By default, Intel’s compiler trades off accuracy for speed. This, unfortunately, isn’t
ideal behavior for the inference algorithms and may cause divergent transitions. Add
these flags to make/local to force more accurate floating point computations:

• CFLAGS += -fp-model precise -fp-model source

B.8. Optional Components for Developers

CmdStan is developed using the following set of tools. The various command ex-
amples in this manual have assumed they can be found on the command path. The
makefile allows precise locations to be plugged in.

GNU Make Build Tool

CmdStan automates the build, test, documentation, and deployment tasks using
scripts in the form of makefiles to run with GNU Make.

• Home: http://www.gnu.org/software/make

• License: GPLv3+

• Tested Versions: 3.81 (Mac OS X), 3.79 (Windows 7)

Doxygen Documentation Generator

CmdStan’s API documentation is generated using the Doxygen Tool.

• Home: http://www.stack.nl/~dimitri/doxygen/index.html

• License: GPL2

• Tested Version(s): Mac OS X 1.8.2, Windows 1.8.2

Git Version Control System

CmdStan uses the Git version control system for its software, libraries, and documen-
tations. Git is required to interact with the most recent versions of code in the version
control repository.

• Home: http://git-scm.com/

• License: GPL2

• Tested Version(s): Mac versions 1.8.2.3 and 1.7.8.4; Windows version 1.7.9

81

http://www.gnu.org/software/make
http://www.stack.nl/~dimitri/doxygen/index.html
http://git-scm.com/

Google Test C++ Testing Framework

CmdStan’s unit testing is based on the Google’s googletest C++ testing framework.

• Home: http://code.google.com/p/googletest/

• License: BSD

• Tested Version(s): 1.7.0

The Google Test framework is distributed with Stan.

B.9. Tips for Mac OS X

Finding and Opening Mac Applications and Files

To open an application, use [Command-Space] (press both keys at once on the key-
board) to open Spotlight, enter the application’s name in the text field, then click
on the application in the pop-up menu or [Return] if the right file or application is
highlighted.

Spotlight can be used in the same way to find files or folders, such as the default
Downloads folder for web downloads.

Open a Terminal for Shell Commands

To run shell commands, open the built-in Terminal application (see the previous sub-
section for details on how to find and open applications).

Install Xcode

Apple’s Xcode contains both the clang++ and g++ compilers and make, all of the tools
needed to work with CmdStan as a user. The version of Xcode to install depends on
the version of Mac OS X.

Alternative, GCC-Only Installer

A stripped down installer for just the GCC package, including the C++ compilers g++
and clang++, available for Mac OS X 10.6 (“Snow Leopard”) or later,

https://github.com/kennethreitz/osx-gcc-installer/

The fill list of tools in this distribution is available at:

http://www.opensource.apple.com/release/
developer-tools-41/

82

http://code.google.com/p/googletest/
https://github.com/kennethreitz/osx-gcc-installer/
http://www.opensource.apple.com/release/developer-tools-41/
http://www.opensource.apple.com/release/developer-tools-41/

More Recent Compilers

Alternative compilers to those distributed by Apple as part of Xcode are available at
the following locations.

Homebrew

One way to get pre-built binaries for Mac OS X is to use Homebrew, which is available
from the following link.

http://mxcl.github.com/homebrew/

MacPorts

MacPorts hosts recent versions of compilers for the Macintosh.

https://distfiles.macports.org/MacPorts/

After finding the appropriate .dmg file, clicking on it, then double clicking on the
resulting .pkg file, and clicking through some more menus, the following will need
to be entered from a terminal window to install it.

> sudo port install gccVersion

In this command, gccVersion is the name of a compiler version, such as g++-mp-4.6,
for version 4.6. Errors may arise during the install such as the following.

Error: Target org.macports.activate returned: Image error:

/opt/local/include/gmp.h already exists and does not belong to

a registered port. Unable to activate port gmp. Use ’port -f

activate gmp’ to force the activation.

This issue can be resolved by running the following command.

> sudo port -f activate gmp

LATEX Typesetting Package

CmdStan uses the LATEX typesetting package for generating manuals, talks, and other
materials (Doxygen is used for API documentation; see below). The first step is to
download the MacTeX .mpkg file from the following URL [warning: the download is
approximately 2GB and the installation approximately 3.5GB].

http://www.tug.org/mactex/2011/

Once it is downloaded, just click on the .mpkg file and then follow the installer in-
structions. The installer will add the command to the PATH environment variable so
that the pdflatex used by Stan is available from the command line.

83

http://mxcl.github.com/homebrew/
https://distfiles.macports.org/MacPorts/
http://www.tug.org/mactex/2011/

C. Dump Data Format

For representing structured data in files, CmdStan uses the dump format introduced
in S and used in R and JAGS (and in BUGS, but with a different ordering). A dump file
is structured as a sequence of variable definitions. Each variable is defined in terms
of its dimensionality and its values. There are three kinds of variable declarations,
one for scalars, one for sequences, and one for general arrays.

C.1. Creating Dump Files

Dump files can be created from R using RStan. The function is stan_rdump in package
rstan.

Using R’s native dump() function can produce dump files which Stan cannot read
in. The underlying cause is that R supports complicated data structures, some of
which are not used in CmdStan. For example, R’s dump() can write a numerical vector
with names for each element.

C.2. Scalar Variables

A simple scalar value can be thought of as having an empty list of dimensions. Its
declaration in the dump format follows the S assignment syntax. For example, the
following would constitute a valid dump file defining a single scalar variable y with
value 17.2.

y <-
17.2

A scalar value is just a zero-dimensional array value.

C.3. Sequence Variables

One-dimensional arrays may be specified directly using the S sequence notation. The
following example defines an integer-value and a real-valued sequence.

n <- c(1,2,3)
y <- c(2.0,3.0,9.7)

Arrays are provided without a declaration of dimensionality because the reader just
counts the number of entries to determine the size of the array.

Sequence variables may alternatively be represented with R’s colon-based nota-
tion. For instance, the first example above could equivalently be written as

84

n <- 1:3

The sequence denoted by 1:3 is of length 3, running from 1 to 3 inclusive. The colon
notation allows sequences going from high to low, as in the first of the following
examples, which is equivalent to the second.

n <- 2:-2
n <- c(2,1,0,-1,-2)

As a special case, a sequence of zeros can also be represented in the dump format
by integer(x) and double(x), for type int and double, respectively. Here x is a
non-negative integer to specify the length. If x is 0, it can be ommitted. The following
are some examples.

x1 <- integer()
x2 <- integer(0)
x3 <- integer(2)
y1 <- double()
y2 <- double(0)
y3 <- double(2)

C.4. Array Variables

For more than one dimension, the dump format uses a dimensionality specification.
For example,

y <- structure(c(1,2,3,4,5,6), .Dim = c(2,3))

This defines a 2× 3 array. Data is stored in column-major order, meaning the values
for y will be as follows.

y[1,1] = 1 y[1,2] = 3 y[1,3] = 5
y[2,1] = 2 y[2,2] = 4 y[2,3] = 6

The structure keyword just wraps a sequence of values and a dimensionality decla-
ration, which is itself just a sequence of non-negative integer values. The product of
the dimensions must equal the length of the array.

If the values happen to form a contiguous sequence of integers, they may be
written with colon notation. Thus the example above is equivalent to the following.

y <- structure(1:6, .Dim = c(2,3))

85

The same applies to the specification of dimensions, though it is perhaps less likely
to be used. In the above example, c(2,3) could be written as 2:3.

Arrays of more than two dimensions are written in a last-index major form. For
example,

z <- structure(1:24, .Dim = c(2,3,4))

produces a three-dimensional int (assignable to real) array z with values

z[1,1,1] = 1 z[1,2,1] = 3 z[1,3,1] = 5
z[2,1,1] = 2 z[2,2,1] = 4 z[2,3,1] = 6

z[1,1,2] = 7 z[1,2,2] = 9 z[1,3,2] = 11
z[2,1,2] = 8 z[2,2,2] = 10 z[2,3,2] = 12

z[1,1,3] = 13 z[1,2,3] = 15 z[1,3,3] = 17
z[2,1,3] = 14 z[2,2,3] = 16 z[2,3,3] = 18

z[1,1,4] = 19 z[1,2,4] = 21 z[1,3,4] = 23
z[2,1,4] = 20 z[2,2,4] = 22 z[2,3,4] = 24

The sequence of values inside structure can also be integer(x) or double(x).
In particular, if one or more dimensions is zero, integer() can be put inside
structure. For instance, the following example is supported by the dump format.

y <- structure(integer(), .Dim = c(2, 0))

C.5. Matrix- and Vector-Valued Variables

The dump format for matrices and vectors, including arrays of matrices and vectors,
is the same as that for arrays of the same shape.

Vector Dump Format

The following three declarations have the same dump format for their data.

real a[K];
vector[K] b;
row_vector[K] c;

86

Matrix Dump Format

The following declarations have the same dump format.

real a[M,N];
matrix[M,N] b;

Arrays of Vectors and Matrices

The key to undertanding arrays is that the array indexing comes before any of the
container indexing. That is, an array of vectors is just that — provide an index and
get a vector. See the chapter on array and matrix types in the user’s guide section of
the languag emanual for more information.

For the dump data format, the following declarations have the same arrangement.

real a[M,N];
matrix[M,N] b;
vector[N] c[M];
row_vector[N] d[M];

Similarly, the following also have the same dump format.

real a[P,M,N];
matrix[M,N] b[P];
vector[N] c[P,M];
row_vector[N] d[P,M];

C.6. Integer- and Real-Valued Variables

There is no declaration in a dump file that distinguishes integer versus continuous
values. If a value in a dump file’s definition of a variable contains a decimal point
(e.g., 132.3) or uses scientific notation (e.g., 1.323e2), Stan assumes that the values
are real.

For a single value, if there is no decimal point, it may be assigned to an int or
real variable in Stan. An array value may only be assigned to an int array if there
is no decimal point or scientific notation in any of the values. This convention is
compatible with the way R writes data.

The following dump file declares an integer value for y.

y <-
2

87

This definition can be used for a Stan variable y declared as real or as int. Assigning
an integer value to a real variable automatically promotes the integer value to a real
value.

Integer values may optionally be followed by L or l, denoting long integer values.
The following example, where the type is explicit, is equivalent to the above.

y <-
2L

The following dump file provides a real value for y.

y <-
2.0

Even though this is a round value, the occurrence of the decimal point in the value,
2.0, causes Stan to infer that y is real valued. This dump file may only be used for
variables y declared as real in Stan.

Scientific Notation

Numbers written in scientific notation may only be used for real values in Stan. R will
write out the integer one million as 1e+06.

Infinite and Not-a-Number Values

Stan’s reader supports infinite and not-a-number values for scalar quantities (see the
section of the reference manual section of the language manaul for more information
on Stan’s numerical data types). Both infinite and not-a-number values are supported
by Stan’s dump-format readers.

Value Preferred Form Alternative Forms

positive infinity Inf Infinity, infinity
negative infinity -Inf -Infinity, -infinity

not a number NaN

These strings are not case sensitive, so inf may also be used for positive infinity, or
NAN for not-a-number.

C.7. Quoted Variable Names

In order to support JAGS data files, variables may be double quoted. For instance, the
following definition is legal in a dump file.

"y" <-
c(1,2,3)

88

C.8. Line Breaks

The line breaks in a dump file are required to be consistent with the way R reads in
data. Both of the following declarations are legal.

y <- 2
y <-
3

Also following R, breaking before the assignment arrow are not allowed, so the fol-
lowing is invalid.

y
<- 2 # Syntax Error

Lines may also be broken in the middle of sequences declared using the c(...)
notation., as well as between the comma following a sequence definition and the
dimensionality declaration. For example, the following declaration of a 2×2×3 array
is valid.

y <-
structure(c(1,2,3,
4,5,6,7,8,9,10,11,
12), .Dim = c(2,2,
3))

Because there are no decimal points in the values, the resulting dump file may be
used for three-dimensional array variables declared as int or real.

C.9. BNF Grammar for Dump Data

A more precise definition of the dump data format is provided by the following
(mildly templated) Backus-Naur form grammar.

definitions ::= definition+

definition ::= name ("<-" | '=') value optional_semicolon

name ::= char*
| ''' char* '''

| '"' char* '"'

value ::= value<int> | value<double>

89

value<T> ::= T

| seq<T>

| zero_array<T>

| 'structure' '(' seq<T> ',' ".Dim" '=' seq<int> ')'

| 'structure' '(' zero_array<T> ',' ".Dim" '=' seq<int> ')'

seq<int> ::= int ':' int

| cseq<int>

zero_array<int> ::= "integer" '(' <non-negative int>? ')'

zero_array<real> ::= "double" '(' <non-negative int>? ')'

seq<real> ::= cseq<real>

cseq<T> ::= 'c' '(' vseq<T> ')'

vseq<T> ::= T

| T ',' vseq<T>

The template parameters T will be set to either int or real. Because Stan allows
promotion of integer values to real values, an integer sequence specification in the
dump data format may be assigned to either an integer- or real-based variable in
Stan.

90

Bibliography

Betancourt, M. (2012). A general metric for Riemannian manifold Hamiltonian Monte
Carlo. arXiv, 1212.4693. 47

Betancourt, M. and Stein, L. C. (2011). The geometry of Hamiltonian Monte Carlo.
arXiv, 1112.4118. 47

Girolami, M. and Calderhead, B. (2011). Riemann manifold Langevin and Hamiltonian
Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 73(2):123–214. 47

Hoffman, M. D. and Gelman, A. (2011). The no-U-turn sampler: Adaptively setting
path lengths in Hamiltonian Monte Carlo. arXiv, 1111.4246. 44, 47

Hoffman, M. D. and Gelman, A. (2014). The No-U-Turn Sampler: Adaptively Setting
Path Lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research,
15:1593–1623. 44, 47

Kucukelbir, A., Ranganath, R., Gelman, A., and Blei, D. M. (2015). Automatic variational
inference in Stan. arXiv, 1506.03431. 63

Neal, R. (2011). MCMC using Hamiltonian dynamics. In Brooks, S., Gelman, A., Jones,
G. L., and Meng, X.-L., editors, Handbook of Markov Chain Monte Carlo, pages 116–
162. Chapman and Hall/CRC. 48, 62

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer-Verlag, Berlin,
second edition. 62

91

	I Introduction
	Overview
	Getting Started

	II CmdStan Tools
	Overview
	stanc: Translating Stan to C++
	print: Output Analysis (deprecated)
	stansummary: Output Analysis

	III CmdStan Executables
	Compiling CmdStan Exectuables
	Running a CmdStan Program

	Appendices
	Licensing
	Installation and Compatibility
	Dump Data Format
	Bibliography

