
This introduction to the twinSIR modeling framework of the R package surveillance is based on a publication
in the Journal of Statistical Software – Meyer, Held, and Höhle (2017, Section 4) – which is the suggested

reference if you use the twinSIR implementation in your own work.
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Abstract

The availability of geocoded health data and the inherent temporal structure of com-
municable diseases have led to an increased interest in statistical models and software
for spatio-temporal data with epidemic features. The R package surveillance can handle
various levels of aggregation at which infective events have been recorded. This vignette
illustrates the analysis of individual-level surveillance data for a fixed population, of which
the complete SIR event history is assumed to be known. Typical applications for the mul-
tivariate, temporal point process model “twinSIR” of Höhle (2009) include the spread of
infectious livestock diseases across farms, household models for childhood diseases, and
epidemics across networks. We first describe the general modeling approach and then ex-
emplify data handling, model fitting, and visualization for a particularly well-documented
measles outbreak among children of the isolated German village Hagelloch in 1861.

Keywords: individual-level surveillance data, endemic-epidemic modeling, infectious disease
epidemiology, self-exciting point process, branching process with immigration.

1. Model class: twinSIR

The spatio-temporal point process regression model “twinstim” (Meyer, Elias, and Höhle
2012, illustrated in vignette("twinstim")) is indexed in a continuous spatial domain, i.e.,
the set of possible event locations consists of the whole observation region and is thus infinite.
In contrast, if infections can only occur at a known discrete set of sites, such as for livestock
diseases among farms, the conditional intensity function (CIF) of the underlying point process
formally becomes λi(t). It characterizes the instantaneous rate of infection of individual i at
time t, given the sets S(t) and I(t) of susceptible and infectious individuals, respectively (just
before time t). Höhle (2009) proposed the following endemic-epidemic multivariate temporal
point process model (“twinSIR”):

λi(t) = λ0(t) νi(t) +
∑

j∈I(t)

{

f(dij) + w⊤
ijα(w)

}

, (1)

if i ∈ S(t), i.e., if individual i is currently susceptible, and λi(t) = 0 otherwise. The rate
decomposes into two components. The first, endemic component consists of a Cox propor-
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tional hazards formulation containing a semi-parametric baseline hazard λ0(t) and a log-linear

predictor νi(t) = exp
(

zi(t)
⊤β

)

of covariates modeling infection from external sources. Fur-

thermore, an additive epidemic component captures transmission from the set I(t) of currently
infectious individuals. The force of infection of individual i depends on the distance dij to
each infective source j ∈ I(t) through a distance kernel

f(u) =
M
∑

m=1

α(f)
m Bm(u) ≥ 0 , (2)

which is represented by a linear combination of non-negative basis functions Bm with the

α
(f)
m ’s being the respective coefficients. For instance, f could be modeled by a B-spline

(Fahrmeir, Kneib, Lang, and Marx 2013, Section 8.1), and dij could refer to the Euclidean
distance ‖si − sj‖ between the individuals’ locations si and sj , or to the geodesic distance
between the nodes i and j in a network. The distance-based force of infection is modified
additively by a linear predictor of covariates wij describing the interaction of individuals i

and j further. Hence, the whole epidemic component of Equation 1 can be written as a single
linear predictor xi(t)

⊤α by interchanging the summation order to

M
∑

m=1

α(f)
m

∑

j∈I(t)

Bm(dij) +
K

∑

k=1

α
(w)
k

∑

j∈I(t)

wijk = xi(t)
⊤α , (3)

such that xi(t) comprises all epidemic terms summed over j ∈ I(t). Note that the use
of additive covariates wij on top of the distance kernel in (1) is different from twinstim’s
multiplicative approach. One advantage of the additive approach is that the subsequent linear
decomposition of the distance kernel allows one to gather all parts of the epidemic component
in a single linear predictor. Hence, the above model represents a CIF extension of what in the
context of survival analysis is known as an additive-multiplicative hazard model (Martinussen
and Scheike 2006). As a consequence, the twinSIR model could in principle be fitted with the
timereg package, which yields estimates for the cumulative hazards. However, Höhle (2009)
chooses a more direct inferential approach: To ensure that the CIF λi(t) is non-negative,
all covariates are encoded such that the components of wij are non-negative. Additionally,
the parameter vector α is constrained to be non-negative. Subsequent parameter inference is
then based on the resulting constrained penalized likelihood which gives directly interpretable
estimates of α. Future work could investigate the potential of a multiplicative approach for
the epidemic component in twinSIR.

2. Data structure: epidata

New SIR-type event data typically arrive in the form of a simple data frame with one row
per individual and sequential event time points as columns. For the 1861 Hagelloch measles
epidemic, which has previously been analyzed by, e.g., Neal and Roberts (2004), such a data
set of the 188 affected children is contained in the surveillance package:

R> data("hagelloch")

R> head(hagelloch.df, n = 5)

PN NAME FN HN AGE SEX PRO ERU CL DEAD IFTO SI

1 1 Mueller 41 61 7 female 1861-11-21 1861-11-25 1st class <NA> 45 10

https://CRAN.R-project.org/package=timereg
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2 2 Mueller 41 61 6 female 1861-11-23 1861-11-27 1st class <NA> 45 12

3 3 Mueller 41 61 4 female 1861-11-28 1861-12-02 preschool <NA> 172 9

4 4 Seibold 61 62 13 male 1861-11-27 1861-11-28 2nd class <NA> 180 10

5 5 Motzer 42 63 8 female 1861-11-22 1861-11-27 1st class <NA> 45 11

C PR CA NI GE TD TM x.loc y.loc tPRO tERU tDEAD tR tI

1 no complicatons 4 4 3 1 NA NA 142.5 100.0 22.71 26.23 NA 29.23 21.71

2 no complicatons 4 4 3 1 3 40.3 142.5 100.0 24.21 28.79 NA 31.79 23.21

3 no complicatons 4 4 3 2 1 40.5 142.5 100.0 29.59 33.69 NA 36.69 28.59

4 no complicatons 1 1 1 1 3 40.7 165.0 102.5 28.12 29.03 NA 32.03 27.12

5 no complicatons 5 3 2 1 NA NA 145.0 120.0 23.06 28.42 NA 31.42 22.06

The help("hagelloch") contains a description of all columns. Here we concentrate on the
event columns PRO (appearance of prodromes), ERU (eruption), and DEAD (day of death if
during the outbreak). We take the day on which the index case developed first symptoms,
30 October 1861 (min(hagelloch.df$PRO)), as the start of the epidemic, i.e., we condition
on this case being initially infectious. As for twinstim, the property of point processes that
concurrent events have zero probability requires special treatment. Ties are due to the interval
censoring of the data to a daily basis – we broke these ties by adding random jitter to the
event times within the given days. The resulting columns tPRO, tERU, and tDEAD are relative
to the defined start time. Following Neal and Roberts (2004), we assume that each child
becomes infectious (S → I event at time tI) one day before the appearance of prodromes,
and is removed from the epidemic (I → R event at time tR) three days after the appearance
of rash or at the time of death, whichever comes first.

For further processing of the data, we convert hagelloch.df to the standardized epidata

structure for twinSIR. This is done by the converter function as.epidata, which also checks
consistency and optionally pre-calculates the epidemic terms xi(t) of Equation 3 to be incor-
porated in a twinSIR model. The following call generates the epidata object hagelloch:

R> hagelloch <- as.epidata(hagelloch.df,

+ t0 = 0, tI.col = "tI", tR.col = "tR",

+ id.col = "PN", coords.cols = c("x.loc", "y.loc"),

+ f = list(household = function(u) u == 0,

+ nothousehold = function(u) u > 0),

+ w = list(c1 = function (CL.i, CL.j) CL.i == "1st class" & CL.j == CL.i,

+ c2 = function (CL.i, CL.j) CL.i == "2nd class" & CL.j == CL.i),

+ keep.cols = c("SEX", "AGE", "CL"))

The coordinates (x.loc, y.loc) correspond to the location of the household the child lives
in and are measured in meters. Note that twinSIR allows for tied locations of individuals,
but assumes the relevant spatial location to be fixed during the entire observation period.
By default, the Euclidean distance between the given coordinates will be used. Alterna-
tively, as.epidata also accepts a pre-computed distance matrix via its argument D without
requiring spatial coordinates. The argument f lists distance-dependent basis functions Bm

for which the epidemic terms
∑

j∈I(t) Bm(dij) shall be generated. Here, household (xi,H(t))
and nothousehold (xi,H̄(t)) count for each child the number of currently infective children
in its household and outside its household, respectively. Similar to Neal and Roberts (2004),
we also calculate the covariate-based epidemic terms c1 (xi,c1(t)) and c2 (xi,c2(t)) counting
the number of currently infective classmates. Note from the corresponding definitions of wij1

and wij2 in w that c1 is always zero for children of the second class and c2 is always zero for
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children of the first class. For pre-school children, both variables equal zero over the whole
period. By the last argument keep.cols, we choose to only keep the covariates SEX, AGE,
and school CLass from hagelloch.df.

The first few rows of the generated epidata object are shown below:

R> head(hagelloch, n = 5)

BLOCK id start stop atRiskY event Revent x.loc y.loc SEX AGE CL

1 1 1 0 1.136 1 0 0 142.5 100.0 female 7 1st class

2 1 2 0 1.136 1 0 0 142.5 100.0 female 6 1st class

3 1 3 0 1.136 1 0 0 142.5 100.0 female 4 preschool

4 1 4 0 1.136 1 0 0 165.0 102.5 male 13 2nd class

5 1 5 0 1.136 1 0 0 145.0 120.0 female 8 1st class

household nothousehold c1 c2

1 0 1 0 0

2 0 1 0 0

3 0 1 0 0

4 0 1 0 1

5 0 1 0 0

The epidata structure inherits from counting processes as implemented by the Surv class of
package survival and also used in timereg. Specifically, the observation period is split up into
consecutive time intervals (start; stop] of constant conditional intensities. As the CIF λi(t)
of Equation (1) only changes at time points, where the set of infectious individuals I(t) or
some endemic covariate in νi(t) change, those occurrences define the break points of the time
intervals. Altogether, the hagelloch event history consists of 375 time BLOCKs of 188 rows,
where each row describes the state of individual id during the corresponding time interval.
The susceptibility status and the I- and R-events are captured by the columns atRiskY,
event and Revent, respectively. The atRiskY column indicates if the individual is at risk of
becoming infected in the current interval. The event columns indicate, which individual was
infected or removed at the stop time. Note that at most one entry in the event and Revent

columns is 1, all others are 0.

Apart from being the input format for twinSIR models, the epidata class has several associ-
ated methods (Table 1), which are similar in spirit to the methods described for epidataCS.

Display Subset Modify

print [ update

summary

plot

animate

stateplot

Table 1: Generic and non-generic functions applicable to epidata objects.

For example, Figure 1 illustrates the course of the Hagelloch measles epidemic by counting
processes for the number of susceptible, infectious and removed children, respectively. Figure 2
shows the locations of the households. An animated map can also be produced to view the
households’ states over time and a simple stateplot shows the changes for a selected unit.

https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=timereg
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R> plot(hagelloch, xlab = "Time [days]")

0 20 40 60 80

0
5
0

1
0
0

1
5
0

Time [days]

N
u
m

b
e
r 

o
f 
in

d
iv

id
u
a
ls

susceptible

infectious

removed

Figure 1: Evolution of the 1861 Hagelloch measles epidemic in terms of the numbers of
susceptible, infectious, and recovered children. The bottom rug marks the infection times tI.

R> hagelloch_coords <- summary(hagelloch)$coordinates

R> plot(hagelloch_coords, xlab = "x [m]", ylab = "y [m]",

+ pch = 15, asp = 1, cex = sqrt(multiplicity(hagelloch_coords)))

R> legend(x = "topleft", pch = 15, legend = c(1, 4, 8), pt.cex = sqrt(c(1, 4, 8)),

+ title = "Household size")
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Figure 2: Spatial locations of the Hagelloch households. The size of each dot is proportional
to the number of children in the household.
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3. Modeling and inference

3.1. Basic example

To illustrate the flexibility of twinSIR we will analyze the Hagelloch data using class room and
household indicators similar to Neal and Roberts (2004). We include an additional endemic
background rate exp(β0), which allows for multiple outbreaks triggered by external sources.
Consequently, we do not need to ignore the child that got infected about one month after the
end of the main epidemic (see the last event mark in Figure 1). Altogether, the CIF for a
child i is modeled as

λi(t) = Yi(t) ·
[

exp(β0) + αHxi,H(t) + αc1xi,c1(t) + αc2xi,c2(t) + αH̄xi,H̄(t)
]

, (4)

where Yi(t) = ✶(i ∈ S(t)) is the at-risk indicator. By counting the number of infectious
classmates separately for both school classes as described in the previous section, we allow
for class-specific effects αc1 and αc2 on the force of infection. The model is estimated by
maximum likelihood (Höhle 2009) using the call

R> hagellochFit <- twinSIR(~household + c1 + c2 + nothousehold, data = hagelloch)

and the fit is summarized below:

R> set.seed(1)

R> summary(hagellochFit)

Call:

twinSIR(formula = ~household + c1 + c2 + nothousehold, data = hagelloch)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

household 0.026868 0.006113 4.39 1.1e-05 ***

c1 0.023892 0.005026 4.75 2.0e-06 ***

c2 0.002932 0.000755 3.88 0.0001 ***

nothousehold 0.000831 0.000142 5.87 4.3e-09 ***

cox(logbaseline) -7.362644 0.887989 -8.29 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Total number of infections: 187

One-sided AIC: 1245 (simulated penalty weights)

Log-likelihood: -619

Number of log-likelihood evaluations: 119

The results show, e.g., a 0.0239 / 0.0029 = 8.149 times higher transmission between individuals
in the 1st class than in the 2nd class. Furthermore, an infectious housemate adds 0.0269 /
0.0008 = 32.32 times as much infection pressure as infectious children outside the household.
The endemic background rate of infection in a population with no current measles cases is
estimated to be exp(β̂0) = exp(−7.363) = 0.0006345. An associated Wald confidence interval
(CI) based on the asymptotic normality of the maximum likelihood estimator (MLE) can be
obtained by exp-transforming the confint for β0:
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R> exp(confint(hagellochFit, parm = "cox(logbaseline)"))

2.5 % 97.5 %

cox(logbaseline) 0.0001113 0.003617

Note that Wald confidence intervals for the epidemic parameters α are to be treated carefully,
because their construction does not take the restricted parameter space into account. For
more adequate statistical inference, the behavior of the log-likelihood near the MLE can be
investigated using the profile-method for twinSIR objects. For instance, to evaluate the
normalized profile log-likelihood of αc1 and αc2 on an equidistant grid of 25 points within the
corresponding 95% Wald CIs, we do:

R> prof <- profile(hagellochFit,

+ list(c(match("c1", names(coef(hagellochFit))), NA, NA, 25),

+ c(match("c2", names(coef(hagellochFit))), NA, NA, 25)))

The profiling result contains 95% highest likelihood based CIs for the parameters, as well as
the Wald CIs for comparison:

R> prof$ci.hl

idx hl.low hl.up wald.low wald.up mle

c1 2 0.015219 0.034969 0.014041 0.033744 0.023892

c2 3 0.001576 0.004535 0.001453 0.004411 0.002932

The entire functional form of the normalized profile log-likelihood on the requested grid as
stored in prof$lp can be visualized by:

R> plot(prof)
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Figure 3: Normalized log-likelihood for αc1 and αc2 when fitting the twinSIR model formu-
lated in Equation (4) to the Hagelloch data.
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The above model summary also reports the one-sided AIC (Hughes and King 2003), which
can be used for model selection under positivity constraints on α as described in Höhle (2009).
The involved parameter penalty is determined by Monte Carlo simulation, which is why we
did set.seed before the summary call. The algorithm is described in Silvapulle and Sen (2005,
p. 79, Simulation 3) and involves quadratic programming using package quadprog (Turlach
2013). If there are less than three constrained parameters in a twinSIR model, the penalty
is computed analytically.

3.2. Model diagnostics

Display Extract Other

print vcov simulate

summary logLik

plot AIC

intensityplot extractAIC

checkResidualProcess profile

residuals

Table 2: Generic and non-generic functions for twinSIR. There are no specific coef or
confint methods, since the respective default methods from package stats apply outright.

Table 2 lists all methods for the twinSIR class. For example, to investigate how the conditional
intensity function decomposes into endemic and epidemic components over time, we produce
Figure 4a by:

R> plot(hagellochFit, which = "epidemic proportion", xlab = "time [days]")
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(a) Epidemic proportion.
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(b) Transformed residuals.

Figure 4: Diagnostic plots for the twinSIR model formulated in Equation 4.

https://CRAN.R-project.org/package=quadprog
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Note that the last infection was necessarily caused by the endemic component since there
were no more infectious children in the observed population which could have triggered the
new case. We can also inspect temporal Cox-Snell-like residuals of the fitted point process
using the function checkResidualProcess as for the spatio-temporal point process models
in vignette("twinstim"). The resulting Figure 4b reveals some deficiencies of the model
in describing the waiting times between events, which might be related to the assumption of
fixed infection periods.

To illustrate AIC-based model selection, we may consider a more flexible model for local
spread using a step function for the distance kernel f(u) in Equation 2. An updated model
with B1 = I(0;100)(u), B2 = I[100;200)(u), B3 = I[200;∞)(u) can be fitted as follows:

R> knots <- c(100, 200)

R> fstep <- list(

+ B1 = function(D) D > 0 & D < knots[1],

+ B2 = function(D) D >= knots[1] & D < knots[2],

+ B3 = function(D) D >= knots[2])

R> hagellochFit_fstep <- twinSIR(

+ ~household + c1 + c2 + B1 + B2 + B3,

+ data = update(hagelloch, f = fstep))

R> set.seed(1)

R> AIC(hagellochFit, hagellochFit_fstep)

df AIC

hagellochFit 5 1245

hagellochFit_fstep 7 1246

Hence the simpler model with just a nothousehold component instead of the more flexible
distance-based step function is preferred.

4. Simulation

Simulation from fitted twinSIR models is described in detail in Höhle (2009, Section 4). The
implementation is made available by an appropriate simulate-method for class twinSIR. We
skip the illustration here and refer to help("simulate.twinSIR").
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