
Libstable: Fast, Parallel and High-Precision

Computation of α-Stable Distributions in

C/C++ and MATLAB

Javier Royuela-del-Val
Image Processing Laboratory
Universidad de Valladolid

November 4, 2013

1 Introduction

α-stable distributions [4] are a family of well-known probability distributions.
However, the lack of closed analytical expressions hinders their application.
Currently, several tools have been developed to numerically evaluate their den-
sity and distribution functions or to estimate their parameters, but available
solutions either do not reach sufficient precision on their evaluations or are ex-
cessively slow for practical purposes. Moreover, they do not take full advantage
of the parallel processing capabilities of current multi-core machines. Other
solutions work only on a subset of the α-stable parameter space. We present
a C/C++ library and a MATLAB front-end that permits fully parallelized,
fast and high precision evaluation of density, distribution and quantile func-
tions (PDF, CDF and CDF−1 respectively), random variable generation and
parameter estimation of α-stable distributions in their whole parameter space.

2 Usage of libstable

Libstable has been developed at the Image Processing Laboratory (LPI) to give
support for various research projects based on α-stable distributions, where it
is used on a regular basis both in C/C++ and in MATLAB developments. It has
been thoroughly tested on specific applications. Its source code and sample
programs are publicly available at http://www.lpi.tel.uva.es/stable under
the GPLv3 [5] license.

2.1 Compiling the library

The developed library can be easily compiled from the source code with the
make command. Libstable depends on several numerical methods provided

1



by the GSL, which must be installed in the system. After compilation, both
shared (libstable.so) and static (libstable.a) versions of the library are
produced. Several example programs to test the main functions of the library are
also provided and compiled against the static version of the library by default.
Further documentation on the library functions can be found within the library
distribution.

2.2 Usage in C/C++ developments

The next example program (example.c) illustrates how to use libstable to
evaluate the PDF of an α-stable distribution with given parameters and with 0
parameterization at a single point x:

#include <stdio.h>

#include <stable_api.h>

int main (void)

{

double alpha = 1.25, beta = 0.5, sigma = 1.0, mu = 0.0;

int param = 0;

double x = 10;

StableDist *dist = stable_create(alpha,beta,sigma,mu,param);

double pdf = stable_pdf_point(dist,x,NULL);

printf("PDF(%g;%1.2f,%1.2f,%1.2f,%1.2f) = %1.15e\n",

x,alpha,beta,sigma,mu,pdf);

stable_free(dist);

return 0;

}

The output of one execution of the example is:

PDF(10;1.25,0.50,1.00,0.00) = 3.225009046591384e-03

2.2.1 Compiling and linking

If the libstable header files and compiled library are not located on the stan-
dard search path of the compiler and linker respectively, their location must be
provided as command line flag to compile and link the previous program. The
program must also be linked to the GSL and system math libraries. Typical
command for compilation and static linking of a source file example.c with the
GNU C compiler gcc is

$ gcc -O3 -I/path/to/headers -c example.c

$ gcc example.o /path/to/libstable/libstable.a -lgsl -lgslcblas -lm

The -O3 option activates several optimization procedures of the gcc com-
piler. Other options can also be considered. When linking with the shared
version of the library, the path to libstable.so must be provided to the sys-
tem’s dynamic linker, typically by defining the shell variable LD_LIBRARY_PATH.
The path to the shared library must also be provided when linking the program:

2



$ gcc -L/path/to/libstable example.o -lgsl -lgslcblas -lm -lstable

2.2.2 Setting general parameters

Some general parameters can be adjusted on the library, such as precision re-
quired or available number of threads. These parameters are stored as global
variables that can be read and modified with the functions described below.

In multi-core systems, the functions

unsigned int stable_get_THREADS()

void stable_set_THREADS(unsigned int threads)

return and set up, respectively, the number of threads of execution used by the
library. When setting the number of threads to 0, the library will use as many
threads as processing cores available in the system.

The relative tolerance indicates the precision required when calculating the
PDF and CDF. The following functions return the current relative tolerance
and set the desired one, respectively:

double stable_get_relTOL()

void stable_set_relTOL(double reltol)

2.2.3 Managing distributions

The library defines the structure StableDist which contains some values asso-
ciated to an α-stable distribution, such as its parameters, the parameterization
employed and a random number generator. An α-stable distribution with de-
sired parameters α, β, σ and µ in parameterization param can be created by

StableDist * stable_create(double alpha, double beta,

double sigma, double mu, int param)

The function returns a pointer to a StableDist structure. This pointer is
passed as an argument to other functions. Once the StableDist structure is
created, the parameters of a distribution can be easily changed:

int stable_setparams(StableDist * dist, double alpha, double beta,

double sigma, double mu, double param)

The returned value can be one of the following predefined constants:

INVALID: Invalid or out of range parameters introduced
STABLE: General α-stable case
ALPHA 1: α = 1 case
GAUSS: Gaussian distribution (α = 2)
CAUCHY: Cauchy distribution (α = 1 and β = 0)
LEVY: Lévy distribution (α = 0.5 and β = 1)

A copy of an existing distribution can be obtained by

3



StableDist * stable_copy(StableDist * src_dist);

To delete a distribution and free its associated memory resources call

void stable_free(StableDist * dist)

2.2.4 Calculating PDF, CDF and CDF−1

This section describes the functions provided to calculate the PDF, CDF and
CDF−1 of α-stable distributions. The calculation is based the equations pro-
vided by Nolan [3]. Two possibilities are provided for each: a single point
function and an array function. The prototypes of the single point functions
are:

double stable_cdf_point(StableDist * dist, const double x, double * err)

double stable_pdf_point(StableDist * dist, const double x, double * err)

double stable_inv_point(StableDist * dist, const double q, double * err)

Each function returns the value of the stable function being evaluated and
stores in err an estimation of the absolute error committed. If this estimation
is not required, a NULL pointer can be passed as argument instead. For the array
functions:

void stable_cdf(StableDist * dist, const double * x, const int Nx,

double * pdf, double * err)

void stable_pdf(StableDist * dist, const double * x, const int Nx,

double * cdf, double * err)

void stable_inv(StableDist * dist, const double * q, const int Nq,

double * inv, double * err)

the number of evaluation points (Nx, Nq, respectively) must be provided. An
estimation of the absolute error committed at each point of evaluation is stored
in an array err. If this estimation is not required, a NULL pointer can be passed
as argument instead.

2.2.5 Random sample generation

In order to generate an α-stable random sample with desired parameters and
population size, a distribution must be created with those parameters as exposed
above. Once the parameters have been set, the function

double stable_rnd_point(StableDist * dist)

returns a single realization of an α-stable random variable. To obtain an array
of realizations the function

void stable_rnd(StableDist * dist, double * rnd, const unsigned int N)

stores in the rnd array N independent realizations of an α-stable random vari-
able.

When generating random samples, the function

4



void stable_rnd_seed(StableDist * dist, unsigned long int s)

initializes the internal random generator to a desired seed. This allows to repro-
duce results across different executions. Nevertheless, it will be usually desirable
to obtain different results in different realizations, which involves to initialize the
random generator to different seeds. This can be easily achieved by initializing
to a time dependent seed such as

stable_rnd_seed(dist,time(NULL))

2.2.6 Parameter estimation

Several methods are available in Libstable to estimate the parameters of α-
stable distributions from a data sample. Given its speed and simplicity, [2]
method is always used as initial approximation to the final estimation. It can
be invoked by the function

void stable_fit_init(StableDist * dist, const double * data,

const unsigned int N, double * nu_c,double * nu_z)

This function sets the parameters of the distribution structure dist to the
estimation realized from the sample in data, of length N. stable_fit_init is
employed in other iterative estimation methods which make use of the values
stored in nu_c and nu_z. If these values are not required, a NULL pointer can
be passed as an argument.

As previously exposed, McCulloch estimator has low accuracy. Libstable

provides other estimators when higher accuracy is required. [1] iterative esti-
mation is provided by the function

int stable_fit_koutrouvelis(StableDist * dist, const double * data,

const unsigned int N)

In this case, the parameters stored in the distribution dist when calling
the function are considered as initial guesses of the final estimation. Therefore,
stable_fit_init could be used in first place to obtain such approximation.
The parameters in dist are then actualized by the estimator procedure. If
the iterative method finishes correctly, the function returns 0. In other case, a
different value indicates that an error has occurred, such as no convergence of
the iterative method or estimated parameter values out of range.

The high performance achieved in the calculation of the PFC allows to per-
form ML estimation, although its recommended to apply it only with a reduced
size of data samples. Besides, the library should be set to require a lower relative
precision than the maximum achievable (a value of 10−8 is recommended). Both
indications intend to reduce computational costs associated to the evaluation
of the likelihood function. Under these conditions, ML estimation of α-stable
distributions can be realized by

int stable_fit_mle(StableDist *dist, const double *data,

const unsigned int N)

5



In order to overcome the limitations related to the high computational cost of
ML estimation a modified ML method is provided. It performs an optimization
procedure only the α − β 2D space, what simplifies the procedure and reduces
number of evaluations of the likelihood function required to find a solution. This
method is implemented by the function

int_stable_fit_mle2d(StableDist *dist, const double *data,

const unsigned int N)

As in Koutrouvelis estimator, ML and modified ML use the parameters in
dist when calling the corresponding function are used as initial guesses then
actualized by the method. A return value different from 0 indicates that some
error has occurred during the execution of the algorithm.

An example of how to use the library to calculate the PDF, CDF and CDF−1

with desired parameters, generate a random sample and, given the sample,
estimate the parameters of an α-stable distribution that better fits the generated
data follows:

#include <stable_api.h>

[...]

int main(void) {

double x[100],q[100],pdf[100],

cdf[100],inv[100],rnd[100];

double alpha=1.5, beta=0.5, sigma=2.0, mu=4.0;

for (i=0;i<100;i++) {

x[i] = -5+i*0.1;

q[i] = 0.01*(i+0.5);

}

dist=stable_create(alpha,beta,sigma,mu,0));

stable_pdf(dist,x,100,pdf,NULL);

stable_cdf(dist,x,100,cdf,NULL);

stable_inv(dist,q,100,inv,NULL);

stable_rnd_seed(dist,time(NULL));

stable_rnd(dist,rnd,100);

stable_fit_init(dist,rnd,100,NULL,NULL);

stable_fit_koutrouvelis(dist,rnd,100);

printf("Estimated parameters: %f %f %f %f\n",

dist->alpha,dist->beta,dist->sigma,dist->mu_0);

stable_free(dist);

return 0;

}

6



2.3 Usage in MATLAB environment

MATLAB environment supports loading shared C libraries by calling the loadlibrary
function. The shared version of the proposed library (libstable.so) and the
header file stable_api.h are required. In order to start using Libstable exe-
cute the following command in MATLAB environment:

loadlibrary(’libstable’,’stable_api.h’)

Paths to libstable.so and stable_api.h must be in current folder or
included in MATLAB search path.

When the library is no longer needed, it can be unloaded by executing

unloadlibrary(’libstable’)

Several MATLAB functions in the form of .m files are provided to access the
capabilities of Libstable library. These files can be easily modified by the user
to adjust library parameters as needed. The managing of α-stable distributions
described in section 2.2 is performed by the provided functions, so it is not
necessary to create or to delete the distributions.

2.3.1 Calculating PDF, CDF and CDF−1

The functions

pdf = stable_pdfC(p,x,param)

cdf = stable_cdfC(p,x,param)

inv = stable_invC(p,q,param)

returns a vector containing the evaluation of the PDF, CDF and CDF−1, respec-
tively, at the points in x (q for the CDF−1). The parameters of the distribution
are indicated in p = [alpha, beta, sigma, mu], and param is the parameter-
ization employed. The returned vector will have the same size as x.

By default, previous functions set the library to use the maximum number of
available threads of execution and establish the relative precision of the library
to a fixed value of 10−12. This values can be easily changed by modifying the
corresponding .m files.

The letter “C” on the functions names is included to indicate that a C shared
library is being invoked when calling the function.

2.3.2 Random variable generation

The generation of α-stable random variables is provided by the function

rnd = stable_rndC(p,N,param)

A column vector containing N independent realizations of an α-stable random
variable with parameters p = [alpha, beta, sigma, mu] in parameterization
param is returned.

By default, the random generator seed is established to system time each
time stable_rndC is called. These behavior can be modified in the function
file.

7



2.3.3 Parameter estimation

A MATLAB function is provided for each of the estimation methods described in
section 2.2:

p = stable_fit_initC(data)

p = stable_fit_koutrouvelisC(data)

p = stable_fit_mleC(data)

p = stable_fit_mle2dC(data)

These functions perform McCulloch, Koutrouvelis, ML and modified ML esti-
mation, respectively, in the sample data data. The estimated parameters are re-
turned in p vector. By default, McCullock estimator is used by the rest of meth-
ods as initial estimation of the parameters. A user defined initial estimation can
be used by passing an additional argument p_ini = [alpha_ini, beta_ini, sigma_ini, mu_ini],
e.g.:

p = stable_fit_mle2dC(data, p_ini)

Following lines serve as an example of a MATLAB session in which Libstable

is used to calculate the PDF, CDF and CDF−1 of an α-stable distribution with
desired parameters, generate a random sample and, given the sample, estimate
the parameters of the α-stable distribution.

In first place, the library must be loaded:

>> loadlibrary(’libstable’,’stable_api.h’)

Vectors of points of evaluation and parameters are initialized. parameteri-
zation employed is also indicated:

>> x = -5:.1:5;

>> q = 0.005:0.01:0.995;

>> p = [1.5, 0.5, 0.5, -1.0];

>> param = 0;

PDF, CDF, CDF−1 are evaluated and the results stored in corresponding
vectors:

>> pdf = stable_pdfC(p, x, param);

>> cdf = stable_cdfC(p, x, param);

>> inv = stable_invC(p, q, param);

A sample of N=500 realizations of the α-stable random variable is generated:

>> N = 500;

>> rnd = stable_rndC(p,N,param);

From the generated sample, the original parameters are estimated by Koutrou-
velis method:

8



>> p_est = stable_koutrouvelisC(rnd)

p_est =

1.6819 -0.6550 0.5816 -0.8226

Once the session has finished, the library can be unloaded:

>> unloadlibrary(’libstable’);

References

[1] Ioannis A. Koutrouvelis. An iterative procedure for the estimation of the
parameters of stable laws. Communications in Statistics - Simulation and
Computation, 10(1):17–28, 1981.

[2] John H. McCulloch. Simple consistent estimators of stable distribution pa-
rameters. Communications in Statistics – Simulation and Computation,
15(4):1109–1136, 1986.

[3] John P. Nolan. Numerical calculation of stable densities and distribution
functions. Stochastic Models, 13(4):759–774, 1997.

[4] Gennady Samorodnitsky and Murad S. Taqqu. Stable non-Gaussian Ran-
dom Processes: Sstochastic Models with Infinite Variance. Chapman and
Hall/CRC, Boca Raton, CA, USA, 1994.

[5] The Free Software Foundation. Gnu general public license, version 3, June
2007. Last retrieved 10-30-2013.

9


