
Tutorial: comparing randomization procedures

with randomizeR.

Diane Uschner

June 15, 2018

1 Introduction

randomizeR is a user-friendly package that allows the user to assess and com-
pare randomization procedures according to issues. This tutorial focuses on the
comparison of randomization procedures.

To install randomizeR from CRAN, run

install.packages("randomizeR")

in your R command line.

2 Main working example

Assume we are in the planning stage of a two-armed clinical trial with N = 24
patients. Assume further that we want to choose a randomization procedure
such that the potential for selection bias is minimized. randomizeR can help us
choose a suitable randomization procedure by comparing various randomization
procedures subject to their susceptibility to selection bias. In order to use the
functionality provided by randomizeR, we have to load it into the library:

library(randomizeR)

Blackwell and Hodges 1957 proposed the expected proportion of correct
guesses as a measure for the susceptibility to selection bias. They also showed
that the ”‘convergence strategy”’ is optimal if the randomization procedure
forces terminal balance. randomizeR represents the expected proportion of cor-
rect guesses with convergence strategy (”‘CS”’) as follows:

cg <- corGuess("CS")

cg

1

##

Object of class "corGuess"

##

TYPE = CS

Because we want to reuse this representation of the correct guesses, we as-
signed it to the variable cg. randomizeR supports five different criteria (aka.
issues) for the comparison of randomization procedures. The help page

?issues

provides an overview over all implemented criteria.
Now assume that we are interested in a comparison between the Permuted

Block Randomization with block length four (PBR(4)), Random Allocation Rule
(RAR) and the Big Stick Design with imbalance tolerance two (BSD(2)). (see
Rosenberger and Lachin 2002) Again, we can represent these randomization
procedures in randomizeR easily. Starting with RAR, we get

rar <- rarPar(24)

rar

##

Object of class "rarPar"

##

design = RAR

N = 24

groups = A B

For PBR(4), we need to define the block constellation bc, i.e. the sequence
of blocks that are forced to be balanced; and then pass it to pbrPar.

bc <- rep(4, 24/4)

pbr <- pbrPar(bc)

pbr

##

Object of class "pbrPar"

##

design = PBR(4)

bc = 4 4 4 4 4 4

N = 24

groups = A B

BSD(2) depends on the total sample size and the maximum tolerated im-
balance:

2

bsd <- bsdPar(24, 2)

bsd

##

Object of class "bsdPar"

##

design = BSD(2)

mti = 2

N = 24

groups = A B

The objects rar, pbr and bsd now represent the randomization procedures
RAR, PBR(4) and BSD(2) for N = 24 and we can use them in our calculations.
If you are interested in more randomzation procedures, you can similarly choose
any of the ten randomization procedures supported by randomizeR. The help
page

?randPar

provides an overview over all randomization procedures implemented.
randomizeR pursues a sequence based approach. That means that the ran-

domization procedures are compared based on the randomization sequences they
produce along with their probability of occurrence. Naturally, the sampling al-
gorithms of randomizeR implement the randomization procedures such that the
theoretical probabilities of occurence equal the sampled relative frequencies.

For the comparison of rar, pbr and bsd we thus need to generate sequences.
This is fairly easy in randomizeR

rarS <- genSeq(rar, r = 1000, seed = 123)

pbrS <- genSeq(pbr, r = 1000, seed = 124)

bsdS <- genSeq(bsd, r = 1000, seed = 125)

The resulting objects include 1000 random sequences from x for x ∈ {rar,
pbr, bsd}, along with the information of the randomization procedure.

bsdS

##

Object of class "rBsdSeq"

##

design = BSD(2)

seed = 125

N = 24

groups = A B

mti = 2

##

3

The first 3 of 1000 sequences of M:

##

1 B A A A B B B B A A ...

2 A B B A B A B A A A ...

3 A A B B B B A A B B ...

...

That way the information about how the sequences have been generated can
never get lost. The sequences themselves can be accessed via

getRandList(bsdS)

Now we are ready to actually compare the randomization procedures. This
is easy, because we can recycle all the objects that we have generated already.
In randomizeR, we simply call compare and pass all the arguments to it:

C <- compare(cg, rarS, pbrS, bsdS)

C

##

Comparison for propCG(CS)

##

RAR PBR.4. BSD.2.

mean 0.610 0.708 0.616

sd 0.047 0.024 0.043

max 0.750 0.750 0.729

min 0.521 0.625 0.479

x05 0.542 0.667 0.542

x25 0.583 0.688 0.583

x50 0.604 0.708 0.625

x75 0.646 0.729 0.646

x95 0.688 0.750 0.688

The first argument must be an issue, and the following arguments must be
of class randSeq, i.e. representations of randomization sequences.

From the table we can see that the maximum extent for selection bias is equal
for RAR and PBR, while it is slightly lower for BSD. Concerning the mean, RAR
and BSD keep nearly the same level. The minimum however is higher for RAR,
indicating that all RAR sequences have inflated type-I-error probability in case
a selection bias is present. To make things even more accessible, randomizeR
provides a function for visualizing this comparison:

plot(C)

Figure 1 shows the result of this call. The target value of the expected
proportion of correct guesses is 0.5. Figure 1 shows that BSD manages to keep

4

0.5

0.6

0.7

BSD(2) PBR(4) RAR

Randomization Procedures

pr
op

C
G

(C
S

)

Figure 1: Comparison of randomization procedures

5

this target value for some sequences, and extends to approximately the same
maximal value as RAR. PBR attains a higher extent of selection bias, yielding it
inferior to BSD and RAR. It can thus be concluded that BSD manages selection
bias best of the three investigated procedures.

3 Conclusion

randomizeR makes the comparison of different randomization procedures ac-
cording to one criterion easy. Furthermore, it comes with an extensive number
of randomization procedures and incorporates all relevant demands on random-
ization procedures. The user can thus choose a tailored randomization procedure
on a scientifically sound basis.

References

[BH57] D. Blackwell and J. Hodges. “Design for the control of selection bias”.
In: Annals of Mathematical Statistics 25 (1957), pp. 449–460.

[RL02] W. F. Rosenberger and J. M. Lachin. Randomization in Clinical Trials-
Theory and Practice. Wiley Series in probability and statistics, 2002.
url: http://books.google.de/books?id=Wy0hy4DPEPQC.

6

