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Abstract

In this paper, a SAS program (macro) is written to generate factor and regression variables required for

implementing asymmetry, non-independence, non-symmetry + independence models as well as skew-

symmetry models in discussed in square a × a contingency tables having nominal or ordinal categories.

While several authors have developed similar factor variables for use with GLIM, we have extended

this to the non-independence and the non-symmetry+independence models. The former includes both

the Þxed and variable distance models as well as the quasi-ordinal symmetry model. Further, our

implementation of the asymmetry model in terms of the required factor variable is different from those

deÞned for implementation of same in GLIM. Most of the models described in this paper however

assume ordinal categories for the contingency table. The SAS macro developed can be applied to any

square table of dimension a.

We apply the models discussed in this paper to the 5× 5 Danish mobility data that have been widely

analyzed in various literatures.
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1 Introduction

Lawal (2002) has utilized the non-standard log-linear model approach to model asymmetry, non-independence,

skew-symmetry and non-symmetry + independence models in square two-way contingency tables. To im-

plement the non-standard log-linear model approach, we need to generate the relevant factor or regression

variables required for such model. Kateri (1993) and Kutylowski (1989) have discussed the generation

of factor variables required for the implementation of some of the models being considered in this paper

in GLIM. Our implementation of the symmetry model in this paper for instance is consistent with the

procedure proposed in Friedl (1995) except that our factor variable for the null symmetry model is deÞned

differently. Both ours and Friedl have I(I+1)
2 levels. The implementation of the null asymmetry model

therefore involves only this single factor variable whereas, the approach by Kateri and Kutylowski involves

two such factor variables designated as sc and ss in both their papers. Further, their programs are

written for GLIM.

The class of models considered and implemented in this paper are those described in Goodman (1985)

namely, the asymmetry, the non-independence and the non-symmetry+independence models. The Skew-

symmetry models are discussed in Yamagushi (1990) and we have presented in Appendix B, SAS Macro

%Factors(A) for generating the relevant factor and regression variables necessary for implementing the

models discussed in this paper. We demonstrate the use of this macro for the 5× 5 Danish social mobility

data which has been analyzed by various authors as an example. The macro can be utilized to Þt the

models discussed here to any square table of any dimension. All the cell entries for the factor or regression

variables generated to implement the models described in the following sections are presented in C for the

5×5 Danish table example. In Appendix B, also, we present the SAS Macro %Analysis(A,count,combined)

which utilizes the SAS macro %Factors(A) to implement all the models discussed in the present paper for

a square table with dimension A, the argument in the macro.
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2 Asymmetry Models

Asymmetry models (Goodman, 1985) are those models having the symmetry model as their baseline. That

is, these models measure deviations from the complete symmetry model S. Models belonging to this group

are described in (1a) to (1f) below.

(1a) The complete symmetry model represents the baseline or null asymmetry model (O) for this group.

The model is described in Goodman (1985) as the null-asymmetry model. To implement the null-

symmetry model (S) for instance, Lawal (2001) suggested generating the factor variable required to

Þt this model from the recurrence relation for an a× a table as:

Skh = S
k
h−1 + (a+ 2− h), for h = 2, ..., (a− k) (1)

where k =| i − j |= 0, 1, ..., (a − 1), k is the k-th diagonal and Sk1 = k + 1. For a 5 × 5 table for

instance, k =| i− j |= 0, 1, 3, 4. The main diagonal elements have k = 0 and h = 2, 3, 4, 5.

In the programming in SAS, the above recurrence relation and hence the entries for the factor variable

S are generated with the following expressions for all (i, j):

Sij =


(k + 1)− (i+ 1)(1

2 i+ 1) + (a+ 3)(i+ 1)− 3− 2a if i ≤ j
(k + 1)− (j + 1)( 1

2j + 1) + (a+ 3)(j + 1)− 3− 2a if i > j
(2)

where k and a are as deÞned above. We note here that when i = j, then k = 0 in (2). The S factor

variable has levels that equal a(a+ 1)/2 = 15 for a = 5.

Hence, the resulting vector (this is indicated as a factor variable in SAS) necessary for implementing

the complete symmetry or null asymmetry model which is generated from the above expression for a

5× 5 table is:

S =


1 2 3 4 5
2 6 7 8 9
3 7 10 11 12
4 8 11 13 14
5 9 12 14 15


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We note here that the factor variable deÞned for S has entries that do not exactly match those

generated in Friedl (1995), but the common feature of both vectors here is that both have 15 levels

as expected. The S0 in Friedl (1995) is generated from the expression:

S0 = 2(i−1) + 2(j−1) for (i, j) = 1, 2, ..., a

The null asymmetry model (S) is based on (a− 1)(a− 2)/2 degrees of freedom.

(1b) The triangle asymmetry (T) model is described in Goodman (1985). This model is the composite

model S+T where T is a regression variable deÞned as:

Tij =


1 if i < j

2 if i > j

3 if i = j

(3)

This model is equivalent to the conditional symmetry model described in McCullagh (1978), and is

based on (a+ 1)(a− 2)/2 degrees of freedom.

(1c) The diagonals-parameter symmetry model (DPS) is described in Agresti (1983). The model is the

composite model S+D where D is a factor variable generated such that we have:

Dij =


|i− j| if i < j

|i− j|+ a− 1 if i > j

2a− 1 if i = j

(4)

The model is based on (a − 1)(a − 2)/2 degrees of freedom and is described in Goodman (1985) as

the diagonals asymmetry model (D).

(1d) The linear diagonals-parameter symmetry model (LDPS) is described in Agresti (1983) and Tomizawa

(1992). It is the composite model S+F, where F is a regression variable pertaining to the Þxed distance

model (Haberman, 1978; Lawal, 1996) and is generated as:

Fij =

(
|i− j|+ 1 if i < j

1 elsewhere
(5)
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The model is equivalent to the ordinal quasi symmetry (OQS) model described in Agresti (1996). The

model is based on (a+ 1)(a− 2)/2 degrees of freedom and will be described here as the asymmetry

Þxed distance (F) model.

(1e) The odds-symmetry model types I & II (OS1 & OS2) are fully described in Tomizawa (1985) and are

composite models S+OS1 and S+OS2 respectively where OS1 and OS2 are factor variables generated

as:

(OS1)ij =


i if i < j

(a− 1) + j if i > j

2a− 1 for i = j

(6)

and

(OS2)ij =


(2a− j) if i < j

(a+ 1)− i if i > j

2a− 1 for i = j

(7)

respectively. Both models are based on (a − 1)(a − 2) degrees of freedom. Both models will be

designated as the asymmetry odds I and II (OS1) & (OS2) models.

(1f) Lawal (2002) has described the 2-ratio parameter symmetry (2RPS) model introduced in Tomizawa

(1987) as the 2-ratio parameter asymmetry (2RPA) model which has the multiplicative formulation:

πij = γ πji δ
j−i for (i 6= j) (8)

This model is the composite model (S)+ (T )+ (F ) and is based on (a2−a− 4)/2 degrees of freedom

and reduces to the asymmetry triangles model when δ = 1 in equation (8) above.

3 Skew-Symmetry Models

These class of models have the quasi-symmetry (QS) model as its baseline model. The models are proposed

in Yamagushi (1990). Again, these models measure deviations from the baseline QS model. Also belonging

to this group are the following models:
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(2a) The quasi-symmetry model (QS) which is the null (O) model for this class of asymmetry models.

The model is described by Goodman (1985) as the asymmetry (RC) model. Yamagushi described

it as the null skew-asymmetry model. The model is the composite R+C+S, where R and C refer

respectively to rows and column factor variables, where

Rij = i for (i, j) = 1, 2, ...a (9)

and,

Cij = j for (i, j) = 1, 2, ...a (10)

The model is based on (a− 1)(a− 2)/2 degrees of freedom.

(2b) The quasi conditional symmetry (QCS) model (Tomizawa, 1992) is equivalent to the uniform skew-

symmetry level model in Yamagushi (1990) and is the composite model QS+T, where T is the

regression variable deÞned in (3). The model is equivalent to the triangles-parameter skew-symmetry

(SP SK) model in Yamagushi (1990).

(2c) The quasi-diagonals parameter symmetry model (QDPS) is the model described in Yamagushi as

the diagonals-parameter skew-symmetry model, designated as the (DP SK) model. The model is the

composite model QS+D, with D being a factor variable deÞned in (4). The model has (a(a− 3)/2)

degrees of freedom.

(2d) The quasi-odds symmetry (QOS) model (Tomizawa, 1985) is described in Yamagushi as the middle-

value-effect skew-symmetry model and is designated as the (M SK) model. The model is described

in Bishop et. al. (1975) as the adjusted quasi-symmetry (AOS) model. It is the composite model

QS+OS1 or QS+OS2. The model is based on (a− 2)(a− 3)/2 degrees of freedom.

4 Non-Independence Models

This class of models have the independence model as its baseline or null. Consequently, all the models

described in this section models the interaction structure or deviations from the independence model in
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the table. Belonging to this category are the following:

(3a) The null or independence model (O) has:

πij = αiβj , for all (i, j) (11)

where αi and βj relate to the row and column marginals respectively. Thus, the null (O) model is

the composite model R+C where R and C are the rows and column factor variables deÞned in (9)

and (10) respectively.

(3a) The Þxed and variable distance models (F and V). Both the Þxed distance and variable distance

models are described in Haberman (1978). The model has been implemented in Lawal & Upton

(1990, 1995) and Lawal (1992). The models are often designated as (F) and (V) respectively (Lawal

and Upton, 1990). Both models are composite models: O+F and O +V1 − V(a−1), where F is

a regression variable deÞned in (5) and Vh = {V1, · · · ,V(a−1)} are factor or regression variables

deÞned for h = 1, 2, ...., (a− 1) as:

Vhij =

(
2 for (i, j) = 1, ..., h and (i, j) = h+ 1, ..., a

1 otherwise
(12)

Both models (F) and (V) belong to the principal diagonal class models (Upton, 1985) satisfying

Φij = 0 unless i = j.

where Φij is the log-odds ratio under this model.

(3b) The quasi-independence model (Q), the non-independence triangles model (T) and the loyalty model

(L) belong to the diagonal band models discussed in Upton (1985). For this class of models, the

log-odds ratios satisfy:

Φij = 0 unless |i− j| = 1
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The models are composite models O+Q, O+T and O+L respectively where Q and L are factor and

regression variables deÞned as:

Qij =

(
i if i = j

(a+ 1) if i 6= j (13)

and,

Lij =

(
1 if i = j

2 if i 6= j (14)

respectively. T is considered as a factor variable in this case. Model (T) is the triangles (Goodman,

1972) model while (L) is the uniform loyalty model discussed in Upton & Sarlvik (1981) in the context

of political election studies. The non-independence models (L), (T) and (Q) have respectively, the

degrees of freedom a(a− 2), (a2 − 2a− 1) and (a2 − 3a+ 1).

(3c) The non-independence diagonals-parameter model (D) and the non-independence absolute diagonals-

parameter model (DA) are described in Goodman (1972, 1985) as the asymmetric minor diagonal

and symmetric minor diagonal models respectively. The models are the composite models O+D and

O+DA respectively, where D is a factor variable deÞned in (4) and DA is also a factor variable deÞned

as:

DAij =

(
a if i = j

|i− j| if i 6= j (15)

Models (D) and (DA) have respectively (a−2)2 and (a−1)(a−2) degrees of freedom. The diagonals-

absolute triangle (DAT) nonindependence model is the composite model O+DA+T and is based on

(a2 − 3a+ 1) degrees of freedom.

5 Non-symmetry + Independence Models

This class of models has as its baseline, the null non-symmetry+independence model deÞned in Goodman

(1985) as:
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πij = αiαj , for all (i, j) (16)

The model is the model in (11) with βj = αj . The model deÞned in (16) is the familiar Halfway (H)

model described in Hope (1982). This model is generalized in Goodman (1985) to the triangle non-

symmetry+independence model (T) which is a composite model H+T where H comprises of (a − 1)

regression variables such that Hi is deÞned (Hope, 1982) as:

fi =

(
1 if cell in row i

0 elsewhere
, and si =

(
1 if cell in column i

0 elsewhere

Thus,

Hi = fi + si, i = 1, 2, ..., (I − 1).

Similarly the non-symmetry+independence diagonals (D), diagonals-absolute (DA) and diagonals-absolute

triangles (DAT) are composite modelsH+D,H+DA andH+DA+T respectively. The non-symmetry+independence

models (O), (T), (D), (DA) and (DAT) have degrees of freedom a(a−1), (a−1)(a−2), (a+1)(a−2), (a−1)2,

and a(a− 2) respectively.

6 Applications

The data below is the well analyzed 5 × 5 Danish social mobility data which gives the cross-classiÞcation

of father�s and son�s occupational status categories in Denmark (Bishop et al., 1975).

TABLE 1 about here

The results of applying all the models discussed in the previous sections to the Danish Social mobility

data in Table 1 are presented in Table 2, where G2 and X2 refer to the likelihood ratio and Pearson�s

(Goodness-of-Þt: GOF) test statistics deÞned respectively as:

G2 = 2
X
ij

nij ln

µ
nij
mij

¶
, X2 =

X
ij

(nij −mij)
2

mij
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TABLE 2 here

7 Conclusions

Results obtained from the implementation of this macro to the 5 × 5 Danish social mobility data agree

with results previously published in various literature. Composite models can easily be implemented

with the macro. Further, models with main diagonal deleted as in Goodman (1985) can similarly be

easily implemented from the SAS program in Appendix B. A detailed program description is provided in

appendix A.
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APPENDICES

A Program Description

***************************************************************

This SAS program has 3 steps.

Step 1. Compile macro program FACTORS locally or

store the compiled macro in a permanent SAS catalog

This macro generates the factor and regression variables for

Asymmetry, Non-independence and Skew-symmetry models

in Square Contingency Tables.

The macro has three parameters

FACTORS(A,Lib=work,FactorDSN=generate)

A = dimension of the square contingency table

LIB = the SAS library name where you wish to

store the factor variables SAS data set

It is a Keyword so the default value is WORK

which means the factor variables data set will

be stored in the work library unless you provide

a different value in the macro statement after

the equals sign. Note: If you accept the default

value, then you only need to specify the

dimension parameer A.

FactorsDSN = SAS data set name you wish to give the

factor variables data set. The default value is

GENERATE.

Example1: %Factors(5)

or %Factors(5,Lib=work,FactorDSN=generate)

Specifies a 5x5 contingency table will be analyzed.

Default values Work and Generate will be used for

the Library and Data set name for the Factors.

Example2: %Factors(5,Lib=C,FactorDSN=Table)

Specifies dimension 5 again.

The factor variables data set will be stored in a

library named C and be given the name TABLE.

This assumes that a Library C has been formed in your

SAS session. We usually do this in Step 3 below.

Step 2. Compile macro program ANALYSIS locally or

store the compiled macro in a permanent SAS catalog

This macro merges the Count data (from the contingency

table) with the Factor variables generated by the macro

in Step 1.
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The macro has 5 parameters:

Analysis(A,DepVar,CombinedDSN,Lib=work,FactorDSN=generate)

A = dimension of the square contingency table

DepVar = name of your dependent variable in your count

data from your contingency table. This data

is read into a SAS data set in Step 3 below.

CombinedDSN = name of the SAS data set after merging the

count data with the factor variables.

Lib = the SAS library name where you wish to

store the combined SAS data set

It is a Keyword so the default value is WORK

which means the factor variables data set will

be stored in the work library unless you provide

a different value in the macro statement after

the equals sign. Note: If you accept the default

value then you only need to specify the

dimension parameer A.

FactorsDSN = SAS data set name you wish to give the

factor variables data set. The default value is

GENERATE.

Example1. %Analysis(5,Count,Combined)

or %Analysis(5,Count,Combined,Lib=work,FactorDSN=generate)

Specifies dimension 5 for the contingency table.

Indicates that the dependent variable in our

contingency table data is named COUNT

The SAS data set that merges the factors with the count

data will be named COMBINED

The Library where COMBINED will be stored is the default

Work library.

The factors variable SAS data set was named GENERATE by

default in Step 1.

Example 2. %Analysis(5,Count,Combined,Lib=C,FactorDSN=Table)

The first three parameters are the same as in Example 1.

The last two parameters are the same as Example 2 of Step 1.

Step 3. Read in count data --- name the SAS data set with the macro

variable DataDSN. You can use any valid SAS data set name.

We use the name Data1 in the program below.

Store the data in a SAS library of your choice. The library

name is to be specified by the macro variable DataLib. We use

the Work library in the program below.

We make both of these macro variables global so their values

can be referred to in the macro program Analysis in Step 2 above.
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Two Libname statements are optionally given.

The first Libname statement sets up the library where the

count data set (DataDSN) will be stored. If you use the

temporary Work library then you can leave this statement

commented out. If you want to store the data permanently

you will need to provide the correct path to the library

in the libname statement.

The second Libname statement sets up the library where the

Factors data set and the Combined data set will be stored.

Again you can leave this commented out if you use the temporary

Work library. If you want to store the data permanently

you will need to provide the correct path to the library

and the library name that you intend to use when executing

the FACTORS and ANALYSIS macros. (we have AAAAA in the

statement below just as a place holder where the name you

want will go)

Our example data set has dimension 5 (5x5 contingency table).

The data is input into one column in the following order:

The first row elements, second row elements, etc giving us a

data set with one column and 25 rows.

Finally we execute the two macros to get our analyses.
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B SAS macros for implementing the models
****************************************************************;

*** Step 1 ***
Compile the macro FACTORS (see below).

*** Step 2 ***
Compile the macro ANALYSIS (see below).

*** Step 3 ***
Run the following program;

options nodate nonumber ls=85 ps=66;
%let DataLib = work;
%let DataDSN=data1;
%global DataLib DataDSN;

* libname &DataLib ’Provide the correct path here’;
* libname AAAAA ’Provide the correct path here’;

data &DataLib..&DataDSN;
INPUT COUNT @@;

datalines;
18 17 16 4 2
24 105 109 59 21
23 84 289 217 95
8 49 175 348 198
6 8 69 201 246
;
run;

%Factors(5);
%Analysis(5,count,combined);

************** STEP 1 Macro ****************;

%macro Factors(a,lib=work,FactorDSN=generate);

data generate1;
do R=1 to &a;

do C=1 to &a;

***************************************
create vectors for
S symmetry
L vertical mobility

T Triangles
Q Quasi-Independencefactor variable
DA Diagonal Absolute
D Diagonal factor variable
F Fixed distance

OS1 Odds symmetry I
OS2 Odds symmetry II

****************************************;

if R lt C then
do;

k=abs(R-C);
S=k+1-(R+1)*((0.5*R)+1)+(&a+3)*(R+1)-3-2*&a;

L=1;
T=1;
Q=&a+1;
DA=abs(R-C);
D=abs(R-C);
F=abs(R-C)+1;
OS1=R;
OS2=2*&a-C;

end;

if R gt C then
do;

k=abs(R-C);
S=(k+1)-(C+1)*(.5*C+1)+(&a+3)*(C+1)-3-2*&a;

L=1;
T=2;
Q=&a+1;
DA=abs(R-C);
D=abs(R-C)+(&a-1);
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F=1;
OS1=(&a-1)+C;
OS2=(&a+1)-R;

end;

if R eq C then
do;

S=1-(C+1)*(.5*C+1)+(&a+3)*(C+1)-3-2*&a;
L=2;
T=3;
Q=R;
DA=&a;
D=2*&a-1;
F=1;
OS1=2*&a-1;
OS2=2*&a-1;

end;

U=R*C;
output;
drop k;
end; end;

run;

* generate FF,SS, H, and DD vectors;
* use ID variable to help in merging with the V vectors;

data generate2;
set generate1;
ID=_N_;
ARRAY FF(&a);
ARRAY SS(&a);
ARRAY H(&a);
ARRAY DD(&a);

do i=1 TO &a;
if R=i then FF(i)=1;

else FF(i)=0;
if C=i then SS(i)=1;

else SS(i)=0;
H(i)=FF(i)+SS(i);
DD(i)=FF(i)-SS(i);

end;
drop i;

run;

*** create the V vectors;
%global h;

%do h=1 %to %eval(&a-1);
data vdata&h;
ID=0;
%do i=1 %to &a;

%do j=1 %to &a;
ID=ID+1;

%If &i<=%eval(&h) and &j <=%eval(&h) %then %do;
v&h=2; %end;

%else %if &i >=%eval(&h+1) and &j>=%eval(&h+1)
%then %do; v&h=2; %end;

%else %do; v&h=1; %end;
output;

%end;
%end;
proc sort data=vdata&h; by ID;

%end;
run;

*** combine v vectors with other factors ---;

data &lib..&FactorDSN(drop=ID);
merge generate2

%do k=1 %to %eval(&a-1);
vdata&k

%end;
;
by ID;
run;

%mend factors;

*********** STEP 2 Macro ************************;
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%macro analysis(a,depvar,CombinedDSN,lib=work,FactorDSN=generate);

data &lib..&CombinedDSN;
merge &DataLib..&DataDSN &lib..&FactorDSN;

*** Fit asymetry models O, F, T, D, OS1, OS2, 2RPA, LDPS respectively ***;
%let b = %eval(&a-1);
proc genmod data=&lib..&CombinedDSN;

class s;
model &depvar= s /dist=poi;

title ’Asymetry Model’;
title2 ’O Model’;

proc genmod data=&lib..&CombinedDSN;
class s;
model &depvar= s f/dist=poi;
title2 ’LDPS Model’;

proc genmod data=&lib..&CombinedDSN;
class s t;
model &depvar= s t /dist=poi;
title2 ’T Model’;

proc genmod data=&lib..&CombinedDSN;
class s d;
model &depvar= s d /dist=poi;
title2 ’D Model’;

proc genmod data=&lib..&CombinedDSN;
class s os1;
model &depvar= s os1 /dist=poi;
title2 ’OS1 Model’;

proc genmod data=&lib..&CombinedDSN;
class s os2;
model &depvar= s os2 /dist=poi;
title2 ’O Model’;

proc genmod data=&lib..&CombinedDSN;
class s t;
model &depvar= s t f /dist=poi;
title2 ’2RPA Model’;

run;

*** Fit skew-symmetry models O, T, D, QOS respectively ***;

proc genmod data=&lib..&CombinedDSN;
class r c s;
model &depvar= r c s /dist=poi;

title ’Skew-symmetry Model’;
title2 ’O Model’;

proc genmod data=&lib..&CombinedDSN;
class r c s t;
model &depvar= r c s t /dist=poi;
title2 ’T Model’;

proc genmod data=&lib..&CombinedDSN;
class r c s d;
model &depvar= r c s d /dist=poi;
title2 ’D Model’;

proc genmod data=&lib..&CombinedDSN;
class r c s os1;
model &depvar= r c s os1 /dist=poi;
title2 ’QOS Model’;

run;

*** Fit non-independence models as they appear respectively in Table 2 ***;

proc genmod data=&lib..&CombinedDSN;
class r c;
model &depvar= r c /dist=poi;

title ’Non-Independence Model’;
title2 ’O Model’;

proc genmod data=&lib..&CombinedDSN;
class r c;
model &depvar= r c f/dist=poi;
title2 ’F Model’;
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proc genmod data=&lib..&CombinedDSN;
class r c;
model &depvar= r c u/dist=poi;
title2 ’U Model’;

proc genmod data=&lib..&CombinedDSN;
class r c v1-v&b;
model &depvar= r c v1-v&b /dist=poi;
title2 ’V Model’;

proc genmod data=&lib..&CombinedDSN;
class r c;
model &depvar= r c L /dist=poi;
title2 ’L Model’;

proc genmod data=&lib..&CombinedDSN;
class r c t;
model &depvar= r c t /dist=poi;
title2 ’T Model’;

proc genmod data=&lib..&CombinedDSN;
class r c q;
model &depvar= r c q /dist=poi;
title2 ’Q Model’;

proc genmod data=&lib..&CombinedDSN;
class r c d;
model &depvar= r c d /dist=poi;
title2 ’D Model’;

proc genmod data=&lib..&CombinedDSN;
class r c da;
model &depvar= r c da /dist=poi;
title2 ’DA Model’;

proc genmod data=&lib..&CombinedDSN;
class r c da t;
model &depvar= r c da t /dist=poi;
title2 ’DAT Model’;

proc genmod data=&lib..&CombinedDSN;
class r c;
model &depvar= r c u f /dist=poi;
title2 ’UF Model’;

*** Fit Non-symmetry + independence models ***;
*** O, F, U, T, D, DA, and DAT respectively ***;

proc genmod data=&lib..&CombinedDSN;
model &depvar= h1-h&b /dist=poi;

title ’Non-symmetry and Independence Model’;
title2 ’O Model’;

proc genmod data=&lib..&CombinedDSN;
model &depvar= h1-h&b f /dist=poi;
title2 ’F Model’;

proc genmod data=&lib..&CombinedDSN;
model &depvar= h1-h&b u /dist=poi;
title2 ’U Model’;

proc genmod data=&lib..&CombinedDSN;
class t;
model &depvar= h1-h&b t /dist=poi;
title2 ’T Model’;

proc genmod data=&lib..&CombinedDSN;
class d;
model &depvar= h1-h&b d /dist=poi;
title2 ’D Model’;

proc genmod data=&lib..&CombinedDSN;
class da;
model &depvar= h1-h&b da /dist=poi;
title2 ’DA Model’;

proc genmod data=&lib..&CombinedDSN;
class da t;

17



model &depvar= h1-h&b da t /dist=poi;
title2 ’DAT Model’;

run;

%mend analysis;
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C Vectors generated for fitting the Models

S =


1 2 3 4 5
2 6 7 8 9
3 7 10 11 12
4 8 11 13 14
5 9 12 14 15

 D =


9 1 2 3 4
5 9 1 2 3
6 5 9 1 2
7 6 5 9 1
8 7 6 5 9

 DA =


5 1 2 3 4
1 5 1 2 3
2 1 5 1 2
3 2 1 5 1
4 3 2 1 5



T =


3 1 1 1 1
2 3 1 1 1
2 2 3 1 1
2 2 2 3 1
2 2 2 2 3

 OS1 =


9 1 1 1 1
5 9 2 2 2
5 6 9 3 3
5 6 7 9 4
5 6 7 8 9

 OS2 =


9 8 7 6 5
4 9 7 6 5
3 3 9 6 5
2 2 2 9 5
1 1 1 1 9



F =


1 2 3 4 5
1 1 2 3 4
1 1 1 2 3
1 1 1 1 1
1 1 1 1 1

 Q =


1 6 6 6 6
6 2 6 6 6
6 6 3 6 6
6 6 6 4 6
6 6 6 6 5

 V 1 =


2 1 1 1 1
1 2 2 2 2
1 2 2 2 2
1 2 2 2 2
1 2 2 2 2



V 2 =


2 2 1 1 1
2 2 1 1 1
1 1 2 2 2
1 1 2 2 2
1 1 2 2 2

 V 3 =


2 2 2 1 1
2 2 2 1 1
2 2 2 1 1
1 1 1 2 2
1 1 1 2 2

 V 4 =


2 2 2 2 1
2 2 2 2 1
2 2 2 2 1
2 2 2 2 1
1 1 1 1 2



R =


1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
5 5 5 5 5

 C =


1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

 U =


1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20
5 10 15 20 25



H1 =


2 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

 H2 =


0 1 0 0 0
1 2 1 1 1
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0

 H3 =


0 0 1 0 0
0 0 1 0 0
1 1 2 1 1
0 0 1 0 0
0 0 1 0 0



H4 =


0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
1 1 1 2 1
0 0 0 1 0


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TABLE 1

Danish Occupational mobility data, Svalastoga (1959).

Father’s Son’s Status
Status (1) (2) (3) (4) (5) Total

(1) 18 17 16 4 2 57
(2) 24 105 109 59 21 318
(3) 23 84 289 217 95 708
(4) 8 49 175 348 198 778
(5) 6 8 69 201 246 530

Total 79 263 658 829 562 2391

where:

(1) Professional and high administrative

(2) Managerial, executive and high supervisory

(3) Low inspectional and supervisory

(4) Routine non-manual and skilled manual

(5) Semi- and unskilled manual
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TABLE 2

Results of fitting all models discussed in this paper to the data in Table 1

Degrees of GOF Statistics
Models Freedom G2 X2 P-value
Asymmetry models:

S (O) 10 24.8021 24.4211 0.0057
S+F (F) 9 19.0543 18.9374 0.0247
S+T (T) 9 18.8188 18.5221 0.0268
S+D (D) 6 14.8378 14.8837 0.0216
S+OS1 (OS1) 6 4.5557 4.3781 0.6019
S+OS2 (OS2) 6 15.9891 15.6910 0.0138
S+T+F (2RPA) 8 18.6809 18.4421 0.0167
Skew-asymmetry models:

QS (O) 6 6.4681 6.3070 0.3728
QS+T (T) 5 6.4001 6.2287 0.2692
QS+D (D) 3 4.4401 4.3971 0.2177
QS+OS1 (QOS) 3 3.2280 3.1016 0.3578
Non-independence models:

O 16 654.2073 754.1043 0.0000
F 15 41.8886 38.7366 0.0002
U 15 47.9921 68.4557 0.0000
V 12 32.8302 29.9336 0.0010
L 15 350.5954 332.6755 0.0000
T 14 349.7620 331.1906 0.0000
Q 11 248.6958 270.2523 0.0000
D 9 10.2278 10.1403 0.3324
DA 12 12.4137 12.2081 0.4131
DAT 11 12.3294 12.1606 0.3394
UF 14 17.7791 19.6632 0.2170
Non-symmetry+Independence models:

O 20 667.3834 758.9443 0.0000
F 19 555.6246 546.1145 0.0000
U 19 64.7302 85.2490 0.0000
T 18 360.1853 342.1155 0.0000
D 12 20.1404 19.7887 0.0645
DA 16 30.1046 29.5336 0.0175
DAT 15 24.1213 23.6868 0.0631

where in the Table above, the P-value is computed as P (G2 ≥ χ2
ν) and the QS model is implemented as

R+C+S.
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