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Summary

In many factorial experiments where the factors have levels that are ordinal or quantita-
tive, a researcher may predict that the mean response in certain treatments will be higher
or lower than those in other treatments. One type of order that may be anticipated is called
lattice order, where average response tends to increase (or decrease) as the levels of any one
of the factors is increased, holding the others fixed. A Kendall-type statistic, which measures
the degree of lattice order in the data, can also be used to carry out a test involving lattice-
ordered means. In this article, tests for individual factors are developed to complement the
overall test of lattice order, and the methods are then applied to relevant and current data.
Programs in R and FORTRAN are included to carry out the tests.

1 Introduction

Researchers that perform factorial experiments or observational studies often have a good
idea about how some of the treatment means will be ordered. For example, in a 2x2 clinical
trial, some aspect of health may be measured on individuals that are taking two types of
vitamin supplements (no/yes for each). Taking either one of the supplements is expected
to improve health, and taking both is expected to improve health even more. Less certain
is how taking supplement “A” only compares with taking supplement “B” only. In an
observational study, lung cancer rates may be determined for groups of people classified
by smoking status (no/yes) and amount of occupational exposure to hazardous airborne
particles (none/low/high). It may be anticipated that an increase in exposure to particles
and/or smoking increases the incidence of cancer. It may not be readily clear how the rate
for smokers with a lower level of particle exposure compares with the rate for non-smokers
with a higher level of particle exposure.

For such experiments and studies, most researchers would probably use ANOVA to ana-
lyze the data. This includes an overall test for some difference in treatment means and tests
for main and interactive effects of the factors. One shortcoming of this approach is that
the anticipated ordering of the responses is not taken into consideration in the analysis. All
ANOVA tests are ‘two-tailed,’ where the hypotheses are set up simply to detect differences
between means, as opposed to a specific ordering of means. The assumption that the re-
sponses tend to have a certain order suggests that more specific alternatives could be tested.
In turn, proper conclusions made from ANOVA are not as specific as they could be.

There are different types of order that can be assumed on the treatment means for an
experiment, depending on the nature of the data. For the experiments previously described,
the assumption is of lattice-ordered means (Strand 2000, Higgins and Bain, 1999). To for-
mally define this for a two-factor experiment, let µi = µ(i1,i2) be the mean for treatment
i = (i1, i2), where i1 denotes level of factor A, i1 = 1, . . . , mA, and i2 denotes level of factor
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B, i2 = 1, . . . , mB. (Usually the factor levels are defined so that the higher the level, the
higher the dosage or amount of that factor.) Let j = (j1, j2) denote another treatment. The
relation i ≤ j means that i1 ≤ i2 and j1 ≤ j2, while i < j means the same, but with a strict
inequality holding for at least one pair. The treatment means are lattice ordered increasing
if

µi ≤ µj, i ≤ j. (1)

Similarly, the treatment means are lattice ordered decreasing if the ‘≤’ between the means in
(1) is changed to ‘≥’. For the previous examples, the assumption would be that of lattice-
ordered-increasing means. Figure 1 gives a graphical representation of lattice order.

Figure 1: Illustration of lattice-ordered-increasing means for a 3x4 factorial experiment, using treatment
(2,2) as a reference. Shaded means above and/or to the left are no greater than µ(2,2); shaded means below
and/or to the right are no less than µ(2,2). Unshaded means (µ(1,3), µ(1,4) and µ(3,1)) have no hypothesized
order with µ(2,2). The pattern is similar when considering another treatment as a reference.

ì(1,1) ì(1,2) ì(1,3) ì(1,4)

ì(2,1) ì(2,2) ì(2,3) ì(2,4)

ì(3,1) ì(3,2) ì(3,3) ì(3,4)

The following real experiments illustrate when the assumption of lattice-ordered means
may be very reasonable. The data for these experiments are analyzed in Section 6.

Application 1: lattice-ordered-decreasing means. Myostatin is a muscle-specific
protein that regulates muscle mass in cattle and experimental animals. Cattle and mice
with mutations of the myostatin gene have a marked increase in muscularity, suggesting
that myostatin is an inhibitor of skeletal muscle mass. These observations have stimulated
enormous pharmaceutical and agricultural interest in myostatin because of its potential as
a target for the development of drugs that might increase meat production in cattle and
improve muscle mass and function in human disease states characterized by muscle wasting
such as AIDS wasting syndrome, end stage renal disease, chronic obstructive lung disease,
and many types of cancer. However, the mechanisms by which myostatin inhibits muscle
mass are unknown.

Taylor, et al. (2001) carried out several experiments to test hypotheses that myostatin
inhibits muscle mass by its effects on muscle protein synthesis or degradation. Pure, recom-
binant myostatin protein was generated in an in vitro expression system and its effects on
protein synthesis and degradation were examined using L − [1 −14 C] leucine pulse labeling
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of muscle cells. C2C12 muscle cells in culture were used because this skeletal muscle cell line
has been extensively used to characterize the effects of a number of muscle growth factors.

One of the factorial experiments involved measuring protein degradation over three times
(24 hr, 48 hr, and 72 hr), and in the absence and presence of myostatin. The rate of decay
of L − [1 −14 C] leucine served as a marker of the rate of protein degradation. (After cells
were incubated and labelled with L − [1 −14 C] leucine, they were treated so that no more
proliferation of this leucine was possible.) For each treatment, muscle cells were grown in four
separate tissue culture wells, thus providing a balanced experiment with n = 4. Myostatin
and time were labelled as the A and B factors, respectively, so that mA = 2 and mB = 3.

It was anticipated that the L − [1 −14 C] leucine levels would decrease over time in both
the myostatin and control (no-myostatin) groups. In addition, the myostatin group was
expected to have greater protein degradation (i.e. lower L − [1 −14 C] leucine levels) than
the no-myostatin group, at each time level. In other words, it was assumed that the means
would be lattice ordered decreasing. Table 1 contains the data for the experiment and does
indeed show a decreasing trend for the values, moving between treatments from left to right
and top to bottom.

Table 1: Protein degradation data from the Myostatin experiment (Taylor, et. al., 2001). Degradation was
measured by amount of L− [1−14 C] leucine (cpm x 103) remaining in muscle cells. Experiment-wide ranks
are given in parentheses.

Time

Group 24 hours 48 hours 72 hours

Control 6568 (20) 4992 (8) 4092 (4)
6802 (22) 5242 (11) 4331 (5)
7198 (23) 5285 (12) 5135 (9)
7280 (24) 6284 (17) 6087 (16)

Myostatin 5516 (14) 4512 (6) 3076 (1)
6023 (15) 4706 (7) 3209 (2)
6334 (18) 5175 (10) 3462 (3)
6400 (19) 6612 (21) 5364 (13)

Application 2: lattice-ordered-increasing means. Bhasin, et. al. (1996) conducted
a 2x2 experiment to determine the effects of anabolic-androgenic steroids (no-placebo / yes-
600mg) and exercise (no/yes) on quadriceps muscle volume. It was expected that either
exercise or steroid use would increase muscle mass, and that the combination of the two
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would be no worse than having just one. However, it was not as certain how the steroid-only
group would compare with the exercise-only group. Thus, it was assumed that the means
would be lattice ordered increasing. The ranks for percent change in quadriceps muscle
volume over the 10-week treatment period (1 was lowest increase, 30 was highest increase)
for the subjects in the experiment follow. Placebo, no exercise: 1, 2, 5, 6, 7, 8, 11; placebo,
exercise: 3, 4, 9, 10 , 12, 13, 15, 18, 22; testosterone, no exercise: 14, 16, 17, 19, 21, 24;
testosterone, exercise: 20, 23, 25, 26, 27, 28, 29, 30. (See also Strand, 2000.) As will be seen
forthcoming, ranks are sufficient for the lattice-ordered tests.

The methodology for lattice ordered tests are discussed in Sections 2 through 5, which
are then applied to data from the previously described experiments in Section 6, using the
associated computer programs. The relationship between interaction and lattice order is
discussed in Section 7, among other issues.

2 Measuring the Degree of Lattice Order in the Data

The response for treatment i and replicate r will be denoted by Yir, for r = 1, . . . , ni. The
Kendall-type statistic that can be used to measure the degree of lattice order in the data is

L =
2

N

∑
i

∑
j>i

(
ni∑

r=1

nj∑
s=1

I(Yir ≤ Yjs)

)
− 1

=
1

N

∑
i

∑
j>i

(
ni∑

r=1

nj∑
s=1

[I(Yir ≤ Yjs) − I(Yir > Yjs)]

)
, (2)

where

N =
∑
i

∑
j>i

ninj . (3)

The statistic L can be computed if one only has ranks of the original data. The closer
L is to +1, the more the responses are lattice ordered and increasing, while the closer L is
to −1, the more the responses are lattice ordered and decreasing. A value that is near zero
indicates no real trend. Thus the scale for L is much like that of other common measures
of correlation. In some cases the researcher might expect increasing responses as one factor
is increased but the other is decreased. In such a case, measuring lattice order may still be
practical and can be done if the levels of one factor are arranged so that the anticipated
order of responses is that of either lattice-ordered-increasing or decreasing means.
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3 The Overall Test for Lattice Order

The statistic L can be used carry out a test for means that are lattice ordered and either
increasing or decreasing. For the increasing case, the null hypothesis is that of equal treat-
ment means, and the alternative is that of lattice-ordered-increasing means, minus the case
of equal means. It is assumed that all responses are independent and that the response Yir

has a continuous c.d.f. Fi for all i and all r. The test is appropriate if

Fi(x) ≥ Fj(x), i ≤ j (4)

for all real x. If (4) is satisfied, then it follows that the means are lattice ordered increasing
and that all responses have a common distribution under the null hypothesis of equal means.
A special case of (4) is when the treatment means follow (1) and there exists some c.d.f. F
such that

Fi(x) = F (x − µi)

for all i and all real x. In this case, all distributions differ only by location.
For tests involving means that are lattice ordered decreasing, the assumption for distri-

butions is the same as (4), but replacing ‘≥’ with ‘≤’. The null hypothesis is that of equal
means, and the alternative hypothesis is that of lattice-ordered-decreasing means, minus the
case of equal means.

Under the null hypothesis, all responses are iid, in which case the mean and variance of
L will be denoted by E0(L) and V ar0(L), respectively. (Note: when the response variables
have continuous c.d.f.’s, as is considered here, ties are not possible and one may replace the
‘≤’ appearing in (2) with ‘<’.) It is easy to verify that E0(L) = 0. The variance of L under
H0 is

V ar0(L) =
N + Q

3N2
, (5)

where

Q =
∑
i

ni

(∑
j<i

nj −
∑
j>i

nj

)2

and N is as given in (3). When all treatments have n replicates (i.e. the balanced data
case), the formulas for N and Q can be expressed in closed form. They are

N = n2

((
mA + 1

2

)(
mB + 1

2

)
− mAmB

)

6



and

Q =
2n3

3
(mAmB − 1)

(
mA + 1

2

)(
mB + 1

2

)
.

More general results for V ar0(L) are derived in Strand (2000), for factorial experiments
with any number of factors, for both balanced and unbalanced data cases.

If one believes that the means are lattice ordered increasing (minus the equal means
case), then the null hypothesis may be rejected for values of L that are sufficiently close to
1. Similarly, one may reject the null for sufficiently small values of L, those close enough to
−1, if the alternative hypothesis involves lattice-ordered-decreasing means.

4 Tests for Individual Factors

If the overall test for lattice order is performed, tests for individual factors may still be
desired. It should be stressed that even if the null hypothesis for the overall test of lattice
order is rejected, that does not imply that all of the individual factors are significant. The
statistic L is computed by comparing all unique pairs of responses between treatments that
have an expected order on means. The pairs can be classified into three types: pairs between
levels of A but within a level of B, pairs between levels of B but within a level of A, and pairs
between levels of both A and B. The first two types can be used to construct Kendall-type
statistics to test for individual effects of factors A and B. For the rest of this article, results
will be derived for the factor A test, and results for B can be derived similarly.

Denoting response Yir as Y(i1,i2)r and treatment sample size ni as n(i1,i2), a statistic that
is built upon all unique pairs of responses between levels of A but within levels of B is

LA =
2

NA

mB∑
h=1

(∑
i1

∑
j1>i1

[∑
r

∑
s

I(Y(i1,h)r ≤ Y(j1,h)s)

])
− 1, (6)

where

NA =
mB∑
h=1

(∑
i1

∑
j1>i1

n(i1,h)n(j1,h)

)
. (7)

As before, the ‘≤’ appearing in (6) can be replaced with ‘<’ when the response variables are
continuous.
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Defining the marginal means for factor A as µi1· = (
∑mB

i2=1 µ(i1,i2))/mB, 1 ≤ i1 ≤ mA, the
statistic LA can be used to test H0 versus HA : H1 − H0, where

H0 : µ1· = µ2· = . . . = µmA·
and

H1 : µ1· ≤ µ2· ≤ . . . ≤ µmA· .

(This test would be of interest when (1) is assumed. Similarly, one can use LA to perform a
test for marginal means in the lattice-ordered-decreasing case, for which the inequalities in
H1 above would be reversed.) At first glance, these order-restricted main-effect hypotheses
may not seem to be consistent with the statistic that does not directly involve marginal
means. However, note that if the treatment means are lattice ordered increasing as in (1),
then for any i1,j1 and h within the levels tested,

µ(i1,h) < µ(j1,h) ⇒ µi1· < µj1· .

Also, if the means are lattice ordered increasing and µi1· < µj1· , then there exists at least
one set of i1,j1 and h such that µ(i1,h) < µ(j1,h). Without the lattice order assumption, these
clearly would not be true.

As before, it is easy to verify that E0(L
A) = 0. Calculating the variance can be done by

employing V ar0(L). Specifically, note that (6) can be rewritten as

LA =

∑mB
j=1 NA

j LA
j∑mB

j=1 NA
j

,

where LA
j and NA

j are calculated as in (2) and (3), respectively, but for the (mAx1) data for
level j of factor B only. (Note: one-way data can be considered a special case of two-way
data, where one of the factors has just one level.)
Now

V ar0(L
A) =

∑mB
j=1 (NA

j )
2
V ar0(L

A
j )

(
∑mB

j=1 NA
j )2

,

where V ar0(L
A
j ) is calculated as in (5), but for the (mA x 1) data at the jth level of B only.

This result follows because V ar0(L
A
j ), j = 1, . . . , mB are independent. In the balanced data

case where all treatments have n replicates, the variance reduces to

V ar0(L
A) =

4n(mA + 1) + 6

9mA(mA − 1)n2mB
.
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5 Determining observed levels of significance

There are at least three ways that p-values can be obtained for the statistic L (or LA or LB):
(i) Obtain the exact permutation distribution of L and find the proportion of permutations
that result in values of L that are at least as large as the observed L (for the lattice ordered
increasing case), (ii) Same as (i), but using a random sample of permutations, and (iii) use
the fact that L is asymptotically normal for increasing N to approximate the p-value. Ager
and Brent (1978) show that a generalization of L is asymptotically normally distributed.
The fact that LA (or LB) is asymptotically normal follows from the fact that it is a linear
combination of independent U-statistics, each of which converge to normal distributions.

For all but very small sample sizes, (i) is not practical. Even for a 2x2 experiment with
only n = 3 per cell, N = 369600. Approach (ii) can be used regardless of the size of the
experiment, using a fixed number of permutations. The standard error on the estimated

p-value in this case would be
√

p(1−p)
n

, where n is the number of permutations used and p is
the true p-value. The easiest approach is (iii), which yields approximate p-values that are
quite accurate for even relatively small sample sizes.

To carry out (iii), one can create a z-statistic that includes a continuity correction, and
then find P (Z ≥ z). The continuity correction based on the usual approach would be 1/N .
To illustrate why, consider the 2x2 experiment with n = 1 in each cell. In this case, N = 5
and possible values of L are -1, -0.6, -0.2, 0.2, 0.6 and 1. If the observed value of L is
0.6, then L − (1/N) = 0.6-0.2 = 0.4, which is halfway between possible values. Thus, the

Z-statistic would be Z = [L − (1/N)]/
√

(V ar(L)). Ager and Brent (1978) mention such a

statistic and use ′1/(2N)′ as the continuity correction (after changing notation). Whether
their correction choice was an error or due to other reasons, using either 1/N or 1/(2N) will
yield fairly accurate answers and both are an improvement over not using any continuity
correction.

Another approach to (iii) is to simply compute

pz =
N∑

i=c

f(i) (8)

where f(·) is the probability density function of the normal distribution with mean N/2 and
variance (N2/4)V ar(L), and c is an observed value of C = N(L+1)/2, which is the number
of pairs of responses that are lattice ordered, among those that can be compared under
lattice order. Similar results can be derived for LA and LB. The accuracy of this approach is
generally at least as good as the approach involving the standardized test statistic, and it is
computationally much easier. This approach is like creating a normal probability histogram
that approximates C (and hence L), and then adding the bars over the values of c that are
at least as big as that which was observed. Note that the width of each bar is 1, and hence
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P (C = i) ≈ 1 ∗ f(i) = f(i), for i = 0, . . . , N . For left tailed p-values, bars are added over
values of c that are no greater than that which was observed. This approach is used in the
computer algorithm.

The rates of convergence to normal distributions occur very quickly for these statistics,
particularly for L. For a simple 2x2 experiment, with only n = 3 in each cell, Table 2 shows
exact upper tail p-values with those based on normal approximations using (8), for both L
and LA. For most practitioners, these approximations would be quite sufficient, and they
would only get better for experiments involving more replicates.

Table 2a: Comparison of exact and normally approximated p-values for L in a 2x2 experiment, with n = 3
for each treatment.

P (L ≥ x) under null

Normal
x Exact Approximation

0.333 0.150 0.146
0.422 0.091 0.088
0.511 0.049 0.049
0.600 0.024 0.025
0.689 0.010 0.012
0.778 0.004 0.005

Table 2b: Comparison of exact and normally approximated p-values for LA in a 2x2 experiment, with n = 3
for each treatment.

P (LA ≥ x) under null

Normal
x Exact Approximation

0.333 0.228 0.218
0.444 0.145 0.137
0.555 0.085 0.080
0.666 0.045 0.043
0.777 0.020 0.020
0.888 0.008 0.008
1.000 0.003 0.003
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6 Analysis of data from real experiments

Application 1: The lattice order test results for the Myostatin data presented in Table 1
are given in Table 3. The overall test indicates that the treatment means are lattice ordered
and decreasing, but not equal (p < 0.0001). The individual tests indicate that both factors
are associated with this decrease. In other words, mean L− [1−14 C] leucine counts decrease
over time (p < 0.0001), and cells with myostatin exhibited greater protein loss than for the
control group, on average (p = 0.0049). These test results can be obtained using either the
associated R or FORTRAN programs. The raw input and output for this application using
either program are given in the Appendix.

Table 3: Results of lattice order tests for the Myostatin experiment. Note: For factor A, ‘N ’ and ‘L’
represent NA and LA, respectively. Similar for B.

Test N L V ar0(L) p-value (normal app.)

Overall 192 -0.76 0.0365 < 0.0001
A=Myostatin 48 -0.67 0.0625 0.0049
B=Time 96 -0.77 0.0405 < 0.0001

For comparison, the results of the ANOVA analysis are given in Table 4. The overall
test for some difference in treatment means yielded p = 0.0004. The effect of time was also
strong (p < 0.0001), but the effect of myostatin was shown to be only marginally significant
(p = 0.028). Since the ANOVA and lattice order tests are based on different hypotheses,
one cannot expect the p-values to be the same. In particular, the greater significance for the
lattice order tests is likely due to the more restrictive hypotheses, which the data tend to
follow.

Table 4: ANOVA test results for the Myostatin experiment.

Test df F p-value

Overall (Model) 5 8.02 0.0004
Myostatin 1 5.74 0.0277
Time 2 16.38 < 0.0001
Myostatin*Time 2 0.82 0.4577

11



Application 2: Results for the lattice-ordered tests were also significant for the Testos-
terone and Exercise experiment presented in the Introduction. Table 5 summarizes these
results.

Table 5: Results of lattice order tests for the Testosterone and Exercise experiment (Bhasin, et. al., 1996).
Note: For factor A, ‘N ’ and ‘L’ represent NA and LA, respectively. Similar for B.

Test N L V ar0(L) p-value (normal app.)

Overall 281 0.89 0.0332 < 0.0001
A=Exercise 111 0.73 0.0485 0.0005
B=Steroids 114 0.98 0.0483 < 0.0001

7 Discussion

While ANOVA is still the most common method of carrying out tests for data from factorial
experiments, researchers and analysts should be aware that there are alternatives in certain
cases. Not only do tests involving a particular order on the treatment means allow the
researcher to make more specific conclusions, more significant results will often occur with
such tests relative to ANOVA. The implication is that, in many cases, researchers may be
able to use smaller sample sizes in order to detect differences in means. For experiments in
which replicates are very costly, this is a very crucial issue. But a word of caution: a good
statistician will warn researchers not to look at the data before determining hypotheses for
tests on that same data. Otherwise, significant results will be claimed more often than they
should be.

There is a partial relationship between lattice order and interaction. Specifically, if the
means are lattice ordered, then certain types of interaction cannot occur. In a two-factor
experiment, no interaction can be expressed mathematically as µ(i1,i2) − µ(i1,j2) − µ(j1,i2) +
µ(j1,j2) = 0 for all (i1, i2) and (j1, j2). Figure 2 illustrates means from hypothetical 2x2
experiments. Panel (d) shows a type of interaction that could occur if the means are lattice
ordered. However, the types of interaction shown in panels (a) and (b) could not occur if
the means are lattice ordered. Panel (c) shows a case where the means are lattice ordered
and there is no interation. (Note: no interaction implies lattice order for 2x2 experiments,
but this is not necessarily true for larger experiments.)
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Figure 2: Examples of 2x2 experiments illustrating the relationship between lattice order and interaction
for treatment means. The values of the means are displayed vertically.

The lattice order assumption will be plausible in many cases, but researchers should use
their expertise and discretion in knowing exactly when it is appropriate. Certain types of
interaction might spoil the lattice order assumption. To help illustrate, consider a hypo-
thetical 2x2 experiment involving two drugs, both designed to reduce hypertension. Drug A
alone may reduce hypertension, as may drug B. However, taking both drugs might have a
detrimental effect on subjects. Even if taking both drugs reduces hypertension, compared
with taking no drugs, it is possible that taking two drugs is not as effective as taking the
best of drug A alone or drug B alone, and in turn, the means are not lattice ordered. If
the reseacher does have some doubt about the mean response for some factor combinations,
then using a testing procedure with fewer order restrictions is probably more appropriate.
(When the control group is expected to have lower/higher responses than all of the remaining
groups, then a tree order is assumed. Tree order has fewer assumed orders among treatments
than lattice order.)

Strand (2000) discusses the overall test for lattice-ordered means for factorial experiments
involving any number of factors. Generalizations of the tests for individual factors to ex-
periments with more than two factors are straightforward. In the three factor case, a test
for factor A can be constructed by looking at the pairs of responses between levels of A but
within levels of B and C.

Along with the Kendall-type statistic considered here, a test for lattice-ordered means
has also been derived using a Spearman-type statistic (Higgins and Bain, 1999, and Bain,
1994). These nonparametric tests for lattice order are relatively easy to grasp, conceptually,
and for which computations of test statistics and variances can be done by hand or with a
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simple computer algorithm. Similar tests based on parametric theory (see Robertson, 1988)
require more restrictive distributional assumptions and involve calculations that certainly
require computer help. Distributions for the test statistics under the null hypothesis of iid
responses have only been explicitly defined for special cases for these parametric tests. As
the test statistics based on either parametric or nonparametric theory can be normalized for
even relatively small experiments, the nonparametric tests have the advantage of simplicity.
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Appendix

This Appendix shows the Myostatin data input file to be used with the FORTRAN or R
programs and the resulting output.

Input file (myostatin.txt):

Myostatin Time RankDeg

1 1 20

1 1 22

1 1 23

1 1 24

1 2 8

1 2 11

1 2 12

1 2 17

1 3 4

1 3 5

1 3 9

1 3 16

2 1 14

2 1 15

2 1 18

2 1 19

2 2 6

2 2 7

2 2 10

2 2 21

2 3 1

2 3 2

2 3 3

2 3 13
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Output:

Outcome variable analyzed = RankDeg

-----------------------------

Overall test of lattice order

N = 192

COUNT = 23

L = -0.7604167

VAR(L) = 3.6458332E-02

PVALUE = 3.8157079E-05

-----------------------------

Test for row factor (A)

Variable name = Myostatin

N^A = 48

COUNT = 8

L^A = -0.6666667

VAR(L^A) = 6.2500000E-02

PVALUE = 4.8502577E-03

-----------------------------

Test for column factor (B)

Variable name = Time

N^B = 96

COUNT = 11

L^B = -0.7708333

VAR(L^B) = 4.0509257E-02

PVALUE = 7.8478726E-05
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