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Abstract

We describe an add-on package for the language and environment R which allows
simultaneous fitting of several non-linear regression models. The focus is on analysis of
dose response curves, but the functionality is applicable to arbitrary non-linear regression
models. Features of the package is illustrated in examples.
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1. Introduction

Bioassays are experiments with biologically active compounds. In herbicide selectivity studies
it is common to run suites of bioassays with dose response curves for different plant species
and/or different herbicide preparations. The same principles apply to the study of compounds
in toxicology and pharmacology. In herbicide research and development, potencies of com-
pounds usually are compared at some a priori response levels, say 50% reduction (ED50) in
biomass or other response variables. For example, ED10 denotes 10% effect, that is 90% of
the untreated control. To describe herbicide selectivity we compare tolerance of crops, say
ED10, and sensitivity of weeds, say ED90. These ways of comparing compound potencies
and/or species sensitivity also are widely used in ecotoxicology of xenobiotics.

Therefore, it is relevant to develop software which is capable of carrying out simultaneous
non-linear regression analysis on several bioassays. In this paper we will demonstrate the use
of the software package drc for analysis of multiple dose response curves. The functions in drc
provide a convenient means for specifying models, controlling the minimization and retrieving
relevant results, including comparisons of parameters of interest.

The package drc is an add-on package for the language and environment R (R Development
Core Team 2004) which is open source and freely available (see http://www.R-project.org).
R is an implementation of the language S.

http://www.jstatsoft.org/
http://www.R-project.org
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The approach taken is to illustrate the functionality through several examples, where the
function calls in R and the resulting output are interwoven into explanatory text. In this
manner we present applications of the main functions contained in drc. We do not give an
exhaustive description of the numerous facilities in drc. However, we wish to emphasize that
various non-linear regression models can be fit using drc.

Sections 2 introduces the relevant statistical models and some aspects related to the parame-
ters in the models. An overview of the package drc is given in section 3. In sections 4, 5, 6, 7
and 8 we illustrate some of the features and functionality of drc for various aspects of fitting
non-linear regression models with emphasis on bioassay analysis.

2. Non-linear regression models for bioassay data

We consider a suite of n dose response curves and we assume that for each dose response curve
the response follows a non-linear curve specified by the function f , which is known apart from
a parameter vector that may be different for different curves. Thus, the model for the ith
dose response curve is

yij = f(xij , αi) + εij j = 1, . . . ,mi, i = 1, . . . , n,

where xij denotes the jth dose value in the ith dose response curve and yij is the resulting
response value, αi is the unknown parameter vector for dose response curve i and εij is the
measurement error for the response yij . The measurement errors ε11, . . . , εnmn are assumed
mutually independent and normally distributed N(0, σ2). In particular, all observations have
the same variance (variance homogeneity).

The parameters are estimated using non-linear least squares which amounts to minimizing
the sum of squares

n∑
i=1

mi∑
j=1

(yij − f(xij , αi))
2

with respect to the parameters (α1, . . . , αn).

2.1. Commonly used models

Two models for sigmoidal dose response curves are widely used: The logistic model and the
Gompertz model. We will briefly discuss these models.

The four-parameter logistic function is given by the formula

f(x, (b, c, d, e)) = c +
d − c

1 + exp {b( log(x) − log(e))}
(1)

with 4 parameters b, c, d, e. The parameter e is also denoted ED50 and it is the dose pro-
ducing a response half-way between the upper limit, d, and lower limit, c. The parameter
b denotes the relative slope around e. The interpretation of the parameters is discussed by
Streibig, Rudemo, and Jensen (1993). The logistic function is symmetric around e. The
three-parameter logistic model with the lower limit equal to 0 has the form:
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f(x, (b, d, e)) =
d

1 + exp {b( log(x) − log(e))}

and the five-parameter logistic model (Finney 1979) is given by the formula

f(x, (b, c, d, e, f)) = c +
d − c

(1 + exp {b( log(x) − log(e))})f
. (2)

Letting the parameter f be equal to 1 in (2) yields the four-parameter logistic model (1).

The four-parameter Gompertz model is given by the formula

f(x, (b, c, d, e)) = c + (d − c) exp{− exp{b(log(x) − e)}}. (3)

The parameters c and d are the lower and upper limits, as for four-parameter logistic model,
b is the relative slope around e, and the e parameter is the logarithm of the inflection point.
The Gompertz model is not symmetric around any point. The three-parameter Gompertz
model with the lower limit equal to 0 is then

f(x, (b, d, e)) = d exp{− exp{b(log(x) − e)}}.

Besides the Gompertz model and the logistic model, Brain-Cousens’ model (Brain and Cousens
1989) is used in situations where hormesis is present: For small doses the herbicide has the
adverse effect resulting in response values above the level of the control group (Calabrese
and Baldwin 2001, 2003). Brain-Cousens model is obtained by modifying the four-parameter
logistic model

f(x, (b, c, d, e)) = c +
d + fx − c

1 + exp {b( log(x) − log(e))}
(4)

adding the linear term fx in the numerator. Again we could also consider the modification
where the lower limit is set equal to 0.

Notice that the b and e parameters are different in (1), (2), (3) and (4), respectively. In
this paper we assume that the response is a decreasing function of the dose (from maximum
response to lower limit), corresponding to positive b, but the models also apply to situation
where the response is increasing with the dose.

2.2. Initial parameter values and self starter functions

Contrary to linear regression, estimation of parameters in non-linear regression requires the
specification of initial parameter values. The choice of the values may influence on the con-
vergence of the estimation algorithm, in the worst case yielding no convergence and in the
best case convergence in few iterations.

For many non-linear functions it may be possible to obtain sensible initial parameter values
using the interpretation of the parameters. For the four-parameter logistic function this is
done by using the maximum (initial value of d) and minimum (initial value of c) value of the
ys and then making the transformation
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log
(

d − y

y − c

)
= b(log(x) − log(e)). (5)

Now linear regression can be used to obtain initial values of b and e. The procedure described
can be captured in a function which for a given data set returns starting values. We will refer
to such a function as a self starter function. A similar approach can be used for the Gompertz
model and Brain-Cousens’ model. For another example see section 7.

2.3. Comparison of parameters

Having several fitted dose response curves, it may be of interest to compare parameters across
curves, for instance comparing lower limits for different curves.

Typically, in bioassay analysis, the main interest lies in comparing quantities that are functions
of the parameters. The common approach has been to re-parameterize and re-fit the model
for each function of interest (Schabenberger, Tharp, Kells, and Penner 1999). This approach
is relatively computer-intensive, requires some skill in manipulating mathematical expressions
and moreover is vulnerable to lack of convergence of the non-linear least squares algorithm,
as the re-parameterization could result in strongly correlated parameters depending upon the
distribution of the responses between the lower and upper limits. Therefore we implement a
single-model approach where a single model is fit and the delta method (van der Vaart 1998,
chap. 3), is used to calculate approximate standard errors for functions of the parameters.

The quantities effective dosage (ED) and selectivity index (SI) are commonly used to compare
different herbicides. Both ED and SI are functions of the parameters: EDy is defined as the
dose that yields a response which is (100-y)% of the maximal response d (a reduction of y%).
For instance, EDy can be expressed by means of the parameters b and e in the four-parameter
logistic model

EDy = e(y/(100 − y))1/b.

The Gompertz model yields a similar formula. For Brain-Cousens’ model there are no closed-
form solutions, but numerical methods can be applied; we use the bisection method. SI(x,y)
is the ratio between EDx for one curve and EDy for another curves.

SI(x,y) = EDx/EDy

In section 5 we will illustrate the interpretation of ED and SI based on an example.

3. About the package

The drc package consists entirely of interpreted R lines. This paper describes version 0.3-3.
The current version as well as future versions can be found at http://www.bioassay.dk.

The main function is multdrc which carries out the estimation of parameters and returns
a model fit, an object of class "drc". The default optimisation method is a variant of the
Newton algorithm, but this setting can be changed in multdrc. The functions described in
subsection 2.1 are built-in in multdrc and available by specifying the fct argument. Table 1
provides a list of some of the built-in functions available.

http://www.bioassay.dk
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Function Model
g3() Three-parameter Gompertz
g4() Four-parameter Gompertz
l3() Three-parameter logistic
l4() Four-parameter logistic (default)
l5() Five-parameter logistic
bcl3() Brain-Cousens three-parameter logistic
bcl4() Brain-Cousens four-parameter logistic

Table 1: Built-in functions in the package drc.

The default value is the four-parameter logistic model, that is l4() (which need not be spec-
ified). It is possible to specify initial parameter values manually (the startVal argument),
but as it may be difficult to guess at values of the parameters for the less experienced re-
searcher, the built-in functions in drc have self starter functions. User-defined functions with
a user-defined self starter function can be specified (see section 7).

Once a model fit is obtained using multdrc, the following methods are available for objects
of class "drc", for extracting information

• anova: lack-of-fit test or test for reduction between two models

• coef: parameter estimates

• fitted: fitted values

• logLik log likelihood value

• plot: plot of the fitted curves

• residuals: raw residuals

• summary: summary of the model fit

• vcov: estimated variance-covariance matrix

In addition the function plotdrc produces a plot of the observations, all curves in a single
plot or a plot for each curve. The functions compParm, ED and SI provide comparisons of
parameters, ED values and SI values, respectively. The functions ED and SI work with the
built-in nonlinear functions. User-defined functions can also be made to work with ED and SI,
but it requires that they provide additional formulas for the calculation of ED values and their
standard errors. The function diagnostics supplies brief information about convergence of
the estimation algorithm.

4. Fitting a single dose response curve

To get started we need to load the package drc. This is done using the library function

> library(drc)
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The data sets that we will use in this paper are all part of the package. In this section we
use the data set FA consisting of a single dose response curve (use data(FA) to load the data
set). The first 5 lines (rows) of the data set are displayed by typing FA[1:5,]

> data(FA)

> FA[1:5, ]

MEANLR MM
1 7.580000 0
2 8.000000 0
3 8.328571 0
4 7.250000 0
5 7.375000 0

The variable MM is the dose of ferulic acid in mM and MEANLR is the root length of perennial
ryegrass (Inderjit, Streibig, and Olofsdotter 2002).

As already mentioned the main function in drc for fitting dose response curves is multdrc
which can be used to fit data from one or more dose response curves. By default a four-
parameter logistic model is fitted to the data. In order to fit this model to the data set FA we
write

> modelex1 <- multdrc(FA)

The argument to the function multdrc is a data frame which is a collection of columns of the
same length, usually forming a data set or part of a data set. The above R call, multdrc(FA),
produces no output. All relevant information of the fit of the model to the data is stored
in the object modelex1. The package drc provides extractors for extracting various types of
information from modelex1. We will now introduce some of these extractors.

The anova function can be used to obtain a lack-of-fit test, comparing the four-parameter
logistic model to a one-way ANOVA model

> anova(modelex1)

ANOVA table

ModelDf RSS Df F value p value
One-way ANOVA 17 5.1799
DRC model 20 5.4002 3 0.2411 0.8665

The test is not significant, implying that the four-parameter logistic model provides as good
a fit as the one-way ANOVA. A summary of the fit, including the type of model fitted, the
parameter estimates and their standard deviations, is obtained using the summary function

> summary(modelex1)
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A ’logistic’ model was fit.

Parameter estimates:

Estimate Std. Error t-value p-value
b:(Intercept) 2.98224 0.46507 6.41244 2.961e-06
c:(Intercept) 0.48141 0.21219 2.26875 0.0345
d:(Intercept) 7.79296 0.18857 41.32714 3.822e-21
e:(Intercept) 3.05796 0.18573 16.46441 4.268e-13

Estimate of residual variance: 0.2700107

Box-Cox transformation was not performed.

The t-statistics and corresponding p-values are for testing the null hypotheses that the pa-
rameters are equal to 0 (not necessarily relevant hypotheses to consider). The estimate of the
common variance parameter σ2 is 0.27. The last line in the summary output tells us that no
Box-Cox transformation was performed, that is the default setting. A short version of the
output only containing the parameter estimates is obtained typing coef(modelex1) (using
the function coef).

In cases where the assumption of variance homogeneity is violated, a Box-Cox transform-both-
sides approach may help. The optimal Box-Cox transformation is calculated and applied if
the argument boxcox=TRUE (short: boxcox=T) is specified. For the above example the call to
multdrc would become

> modelex1.boxcox <- multdrc(FA, boxcox = T)

> summary(modelex1.boxcox)

A ’logistic’ model was fit.

Parameter estimates:

Estimate Std. Error t-value p-value
b:(Intercept) 2.499631 0.373305 6.695956 1.621e-06
c:(Intercept) 0.366582 0.094803 3.866787 0.001
d:(Intercept) 7.900259 0.338956 23.307625 6.184e-16
e:(Intercept) 2.989496 0.229546 13.023543 3.159e-11

Estimate of residual variance: 0.07634711

Estimated lambda parameter in Box-Cox transformation: 0.4
P-value for test of null hypothesis that lambda=1: 0.00294

Except for the slope, b:(Intercept), none of the parameters changed dramatically, and the
test for lack of fit is still not significant as seen from the output from anova below.

> anova(modelex1.boxcox)
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ANOVA table

ModelDf RSS Df F value p value
One-way ANOVA 17 1.1778
DRC model 20 1.5269 3 1.6801 0.2089

Apparently, the optimal parameter λ for the Box-Cox transformation, which is 0.4, is signifi-
cantly different from 1.00, that is no transformation. This means that the variance of the re-
sponses is not homogeneous and that the Box-Cox transformation is required. A residual plot
(not shown) using the call plot(fitted(modelex1.boxcox), residuals(modelex1.boxcox))
showed that the variance inhomogeneity had been removed by the transformation. The fit of
the model to the data can be seen in Figure 1.

> plot(modelex1.boxcox, xlab = "Dose (mM)", ylab = "Root length(mm)")
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Figure 1: Four-parameter logistic fit using Box-Cox transformation.
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5. Simultaneous fitting: Summarising the results

The data set PestSci consists of 5 curves each with 7 doses and in 3 replications. The
variables are CURVE, DOSE and SLOPE, containing the curve number, the dose values and
the response values, respectively. The response is rate of change of Oxygen consumption of
chloroplast membranes versus the dose of a herbicide. Relevant references are Streibig, Dayan,
Rimando, and Duke (1999); Nielsen, Ritz, and Streibig. To load the data set PestSci type
data(PestSci).
To get an overview an initial plot of the data set is useful. The function plotdrc plots the dose
values against the response values with different plot symbols for the different dose response
curves (Figure 2). The plot may help getting a first impression of the data, in particular with
respect to the ranges of dose values and the range of response values.

> plotdrc(PestSci, ylab = "Rate of Oxygen Evolutions", colour = TRUE)
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Figure 2: Plot of the data in the data set PestSci.

We consider simultaneous fitting of the 5 dose response curves in PestSci, assuming each
curve follows a four-parameter logistic curve. Furthermore, we assume the parameters differ
among curves (in total 4·5=20 parameters). This model is fitted using the multdrc function
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> modelex2 <- multdrc(SLOPE ~ DOSE, CURVE, data = PestSci)

The formula SLOPE~DOSE in the first position relates response to dose. The variable CURVE in
the second position is the grouping variable, uniquely assigning each observation to a curve.
The argument data=PestSci specifies the data frame where the variables CURVE, DOSE and
SLOPE are found.

The lack-of-fit test comparing the simultaneous four-parameter logistic model to the alterna-
tive two-way ANOVA model is obtained applying the function anova to the object modelex2

> anova(modelex2)

ANOVA table

ModelDf RSS Df F value p value
Two-way ANOVA 70 0.38635
DRC model 85 0.45955 15 0.8841 0.5842

The test is not significant, meaning that the non-linear regression model provides an accept-
able description of the data. Subsequently, we proceed to look at the parameter estimates.
The estimates and their standard errors are obtained using the function summary

> summary(modelex2)

A ’logistic’ model was fit.

Parameter estimates:

Estimate Std. Error t-value p-value
b:1 0.5195260 0.0763599 6.8036530 1.346e-09
b:2 0.8009531 0.2257107 3.5485829 0.0006
b:3 0.6818983 0.1285630 5.3040019 8.851e-07
b:4 1.8447607 0.1663488 11.0897146 1.698e-18
b:5 1.6507990 0.1758393 9.3881105 8.863e-15
c:1 -0.0165855 0.1078225 -0.1538223 0.8781
c:2 0.1326173 0.0471817 2.8107768 0.0061
c:3 0.1463932 0.0604363 2.4222722 0.0175
c:4 0.0795360 0.0394604 2.0155892 0.0470
c:5 -0.0090699 0.0443533 -0.2044913 0.8385
d:1 1.8795509 0.0423711 44.3592666 7.412e-61
d:2 0.9459940 0.0422671 22.3813367 1.084e-37
d:3 1.0903222 0.0405608 26.8811926 1.268e-43
d:4 2.1535763 0.0281853 76.4078098 2.017e-80
d:5 1.8062724 0.0292458 61.7617568 1.052e-72
e:1 1.7949368 0.4782218 3.7533561 0.0003
e:2 0.9455148 0.2494531 3.7903514 0.0003
e:3 1.3731181 0.4527616 3.0327617 0.0032
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e:4 0.1973281 0.0101893 19.3661821 3.231e-33
e:5 0.2107954 0.0138242 15.2482485 2.379e-26

Estimate of residual variance: 0.005406425

Box-Cox transformation was not performed.

From the summary it is seen that the lower limit of dose response curve no. 1 and no. 5
are negative which, strictly speaking, is not meaningful, but these two lower limits are not
significantly different from zero (right-most column). Comparison of parameters between
curves can be accomplished using the compParm function.

A plot of the original observations and the fitted dose response curves is obtained using the
plot function. The resulting plot is displayed in Figure 3, showing reasonable agreement
between observations and fitted curves.

> plot(modelex2, xlab = "Dose", ylab = "Rate of Oxygen Evolution",

+ conName = "Control", colour = TRUE)
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Figure 3: Observed data and fitted dose response curves for the data set PestSci.
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The call plot(modelex2, obs="none") produces a similar plot, but without the observations.
Also the argument conName specifies the name of the tick mark for the dose level that can be
considered as dose 0. The usual graphical parameters in R can also be supplied in the function
call; for instance xlab and ylab to change the default labels of the axes (which are the names
of the variables in the data frame). For more details on the plot function see ?plot.drc.

As already mentioned in Section 2, the package drc provides functions ED and SI to compute
EDx values and selectivity indices SI(x,y), respectively, for the built-in models like the four-
parameter logistic model. As an example we calculate estimates of the parameters ED10,
ED50 and ED90 and their standard errors for all curves in PestSci. The call to ED is

> ED(modelex2, c(10, 50, 90))

Estimate Std. Error
1:10 0.02613925 1.266207e-02
1:50 1.79493682 4.782218e-01
1:90 123.25517064 1.016492e+02
2:10 0.06085337 4.795887e-02
2:50 0.94551481 2.494531e-01
2:90 14.69102314 1.240795e+01
3:10 0.05474148 2.946568e-02
3:50 1.37311812 4.527616e-01
3:90 34.44286207 2.810508e+01
4:10 0.05996769 6.824301e-03
4:50 0.19732814 1.018932e-02
4:90 0.64932290 8.071697e-02
5:10 0.05569450 8.054704e-03
5:50 0.21079544 1.382424e-02
5:90 0.79782946 1.332322e-01

Notice that the estimates for the parameter ED50 already were displayed above in the summary
output as the standard parameterization of the four-parameter logistic model involves ED50.
The selectivity indices between two curves for ED10 and ED90, SI(90,10), are obtained using
the call

> SI(modelex2, c(90, 10))

Estimate Std. Error t-value p-value
1/2:90/10 2025.44532 2310.472561 0.8762040 3.829193e-01
1/3:90/10 2251.58622 2217.410800 1.0149613 3.124573e-01
1/4:90/10 2055.35957 1711.128319 1.2005877 2.326127e-01
1/5:90/10 2213.05804 1852.972354 1.1937890 2.352507e-01
2/3:90/10 268.37093 268.783022 0.9947464 3.221465e-01
2/4:90/10 244.98230 208.780349 1.1686076 2.452081e-01
2/5:90/10 263.77869 226.028483 1.1625910 2.476310e-01
3/4:90/10 574.35697 473.206155 1.2116431 2.283687e-01
3/5:90/10 618.42479 512.493908 1.2047456 2.310099e-01
4/5:90/10 11.65865 2.223371 4.7939161 5.413344e-06
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The output provides standard errors of the estimates and p-values for testing the null hypoth-
esis that the indices are equal to 1.

The use of SI is best illustrated by using the methods chemical companies use to quantify
selectivity in their research and development of new herbicides. Since herbicides have an
effect on any plant, be it crops or weeds, we sometimes have to accept a small decrease in the
crop yield, for example a 10% decrease might be tolerated (ED10), while a 90% control of the
weed (ED90) is considered a reasonable control level. The larger the SI the more selective is
one herbicide as compared to another herbicide. Obviously, the above SI(90,10) values are all
much larger than 1.00, but only for curve no 4 and 5 the value is significantly larger than 1.00.

The function SI can also be used to compare potencies among absolute response levels. The
EDx for a dose response curve is a relative response level depending upon the upper and lower
limits of the curve. For example in PestSci the response for the dose ED50 for the 2nd curve
is 0.54 ((0.94+0.13)/2) whilst for the 4th curve the response level is 1.38 ((2.15+0.08)/2). In
fact 1.38 exceeds the maximum response level of the 2nd curve. Consequently, we sometimes
want to compare two curves at a certain absolute response level and it can easily be done with
SI. Let us assume that for various reasons we want to compare curves 2 and 4 at an absolute
response level of 0.5. For the 2nd curve it means at the dose ED46 ( 0.46 = (0.5-0.13)/(0.94-
0.13) ) and for 4th curve at the dose ED21. To obtain only the comparison between the 2nd
curve and the 4th curve we use SI with an extra vector argument giving the curves to be
compared

> SI(modelex2, c(46, 21), c(2, 4))

Estimate Std. Error t-value p-value
2/4:46/21 8.043639 2.21059 3.186316 0.001898055

6. Simultaneous fitting: Model reduction

In this section we illustrate how to reduce a model using significance tests.

The data set TM comprises of 7 response curves, measured at a number of positive dose
values, and an additional group of measurements at dose zero. A separate control group
frequently occurring case in bioassay analysis. There are three variables: dose is the dose,
pct the curve number and rgr the response. The responses are growth rates of duckweed
and the treatments are mixtures of two herbicides with different modes of action (Cedergreen
2004). There are 180 observations.

We define a simultaneous model, assuming that each dose response curve follows a four-
parameter Gompertz model (3) and with different parameters for different assays. This model
is specified as follows

> modelex3.1 <- multdrc(rgr ~ dose, pct, data = TM, fct = g4())

As pct take 8 different values (7 curves + control group), we are specifying a model with 8
curves, where the curve corresponding to the control group only is defined as dose equal to
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0 and thus not constitutes an entire dose response curve. The asymmetric four-parameter
Gompertz model is specified with the argument fct=g4(). The lack-of-fit test against the
two-way ANOVA using anova (not displayed) confirms that the Gompertz model fits the data.

A summary of the fit modelex3.1 is

> summary(modelex3.1)

A ’gompertz’ model was fit.

Parameter estimates:

Estimate Std. Error t-value p-value
b:100 1.0655191 0.2170291 4.9095672 2.344e-06
b:83 0.9288037 0.2498459 3.7175067 0.0003
b:67 0.7840124 0.1500974 5.2233574 5.737e-07
b:50 1.7389206 0.2908936 5.9778581 1.566e-08
b:33 0.8050234 0.1412846 5.6978859 6.163e-08
b:17 0.9136431 0.1806474 5.0576035 1.215e-06
b:0 1.1056319 0.2084593 5.3038276 3.963e-07
c:100 0.0109434 0.0099491 1.0999415 0.2731
c:83 0.0179145 0.0167275 1.0709619 0.2859
c:67 -0.0089369 0.0141037 -0.6336573 0.5273
c:50 -0.0040568 0.0094046 -0.4313600 0.6668
c:33 -0.0189114 0.0122196 -1.5476233 0.1238
c:17 -0.0039410 0.0118115 -0.3336561 0.7391
c:0 -0.0099106 0.0095277 -1.0401952 0.2999
d:999 0.2814899 0.0068124 41.3199574 1.670e-84
d:100 0.3497876 0.0245492 14.2484165 4.906e-30
d:83 0.3166707 0.0237328 13.3431502 1.265e-27
d:67 0.3668345 0.0310219 11.8250075 1.495e-23
d:50 0.2798449 0.0103144 27.1314743 3.096e-60
d:33 0.3749350 0.0316003 11.8649171 1.168e-23
d:17 0.3301507 0.0254194 12.9881540 1.129e-26
d:0 0.3059784 0.0211905 14.4394434 1.530e-30
e:100 4.8721705 0.1126764 43.2403908 2.980e-87
e:83 7.8423011 0.1611212 48.6733107 1.697e-94
e:67 8.2910662 0.1547290 53.5844382 1.858e-100
e:50 8.9175008 0.0811260 109.9216722 2.602e-146
e:33 8.8503914 0.1470690 60.1785064 9.934e-108
e:17 9.0866222 0.1369517 66.3491119 6.726e-114
e:0 9.2302599 0.1146251 80.5256594 3.003e-126

Estimate of residual variance: 0.0005569125

Box-Cox transformation was not performed.
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By default only the d parameter (the upper limit at dose zero) is estimated for the control
group, represented in the summary by the term d:999.

Figure 4 clearly shows that allowing individual upper limits for the individual curves does not
produce a fit that agrees with the control group.

> plot(modelex3.1, ylim = c(-0.05, 0.4), conLevel = 1)
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Figure 4: Observed data and fitted dose response curves for the data set TM.

A more reasonable initial model would only have a single d parameter common to all curves,
as the control group determines the common upper limit for all 7 curves. This can be specified
in multdrc using the collapse argument specifying which parameters should be collapsed
across assays. This argument may be specified using a data frame or a list as argument. If
no collapse argument is given there are different parameters for different curves (used in
sections 4 and 5). The two types of argument are overlapping in their functionality, but not
entirely identical, both have strong points. The data frame specification is better for collapsing
parameters for arbitrary curves, without requiring the corresponding grouping variable to be
defined. The list specification allows more general structures involving more than one variable
per parameter (see section 8). Specification of the collapse argument by means of a list of
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formulas, follows the same syntax as is used for lm and glm.

The data frame should contain as many columns as there are parameters in the model, eg
four columns in case of the four-parameter Gompertz model, and the columns correspond to
parameters by order, eg the first column corresponds to b, . . ., the fourth column to e. For
built-in function the order of parameters is always alphabetical. Observations sharing the
same value in a column will share the corresponding parameter in the model. We specify the
model with common upper as follows

modelex3.2<-multdrc(TM[,c(3,1)], TM[,2],
collapse=data.frame(TM[,2], TM[,2], colFct(TM[,2],1:8), TM[,2]), fct=g4())

The column TM[,2] contains the values enumerating the different curves (180 values)

[1] 999 999 999 999 999 999 999 999 999 999 999 999 100 100 100 100 100
[18] 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
[35] 100 100 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83
[52] 83 83 83 83 83 83 83 83 83 67 67 67 67 67 67 67 67
[69] 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 50
[86] 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
[103] 50 50 50 50 50 50 33 33 33 33 33 33 33 33 33 33 33
[120] 33 33 33 33 33 33 33 33 33 33 33 33 33 17 17 17 17
[137] 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17
[154] 17 17 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[171] 0 0 0 0 0 0 0 0 0 0

Thus in modelex3.2 the parameters b, c and e will vary from curve to curve. The function
colFct is used for collapsing a column into a column with fewer distinct values. The call
colFct(TM[,3], 1:8) collapses all 8 different values in TM[,2] into a single value. The
content of colFct(TM[,2], 1:8) is (again 180 values)

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[71] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[106] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[141] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[176] 1 1 1 1 1

Therefore this column results in a single common d parameter for all assays.

The above model can also be specified using the names of the variables in TM and using
the constant factor. Thus the alternative specification looks like

modelex3.2 <- multdrc(rgr~dose, pct, collapse=data.frame(pct, pct, 1, pct)
data=TM, fct=g4())

or, using a list
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modelex3.2 <- multdrc(rgr~dose, pct,
collapse=list(~factor(pct), ~factor(pct), ~1, ~factor(pct))
data=TM, fct=g4())

In order to compare modelex3.2 to modelex3.1 the anova function can be used. The anova
function with the two model objects as arguments produces an approximate F-test (or a
likelihood ratio test) for test of reduction of the larger model to the smaller model. For the
models modelex3.1 and modelex3.2 anova gives an F-test for reduction from the model with
different upper limits to the model with a common upper limit.

> anova(modelex3.1, modelex3.2)

Model 1
fct: g4()
collapse: pct (for all parameters)
Model 2
fct: g4()
collapse: TM[, 2], TM[, 2], colFct(TM[, 2], 1:8), TM[, 2]

ANOVA table

Df Sum Sq Mean Sq F value p value
Model 2 158 0.107814 0.003389
Model 1 151 0.084094 0.000557 6.0847 2.869e-06

The test is highly significant and the model with common upper limit is rejected. Notice that
the order of the two arguments in anova does not matter. The main problem with the data
set TM is the presence of hormesis (described in section 5), thus a more appropriate approach
would be to use Brain-Cousens’ model (fct=bcl4).

Another aspect of modelex3.1 is that it seems that all lower limits are equal. The model
with a common lower limit is

> modelex3.3 <- multdrc(rgr ~ dose, pct, data.frame(pct, 1,

+ pct, pct), data = TM, fct = g4())

The test for model reduction is not significant

> anova(modelex3.3, modelex3.1)

Model 1
fct: g4()
collapse: pct, 1, pct, pct
Model 2
fct: g4()
collapse: pct (for all parameters)
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ANOVA table

Df Sum Sq Mean Sq F value p value
Model 1 157 0.087083 0.000498
Model 2 151 0.084094 0.000557 0.8945 0.5006

Thus modelex3.3 provides as good a fit to the data as does modelex3.1. Next we fit a model
with the common lower limit equal to 0. This can be done using the built-in function g3()
which is a three-parameter Gompertz model (lower limit set to 0).

> modelex3.4 <- multdrc(rgr ~ dose, pct, data.frame(pct, pct,

+ pct), data = TM, fct = g3())

The F-test for reduction from modelex3.3 to modelex3.4 is

> anova(modelex3.4, modelex3.3)

Model 1
fct: g3()
collapse: pct, pct, pct
Model 2
fct: g4()
collapse: pct, 1, pct, pct

ANOVA table

Df Sum Sq Mean Sq F value p value
Model 1 158 0.087804 0.000721
Model 2 157 0.087083 0.000555 1.2998 0.2560

Thus we can reduce the initial model to a model with common lower limit equal to 0.

7. A user-defined function

Consider the data set Puromycin available in R issuing the command

> data(Puromycin)

In the help page ?Puromycin, a Michaelis-Menten model is suggested. This model has the
form

y = f(x, (V m,K)) =
V mx

K + x
(6)

with two parameters, Vm and K. Define this non-linear function in R as follows
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> MMfct <- function(x, parm) {

+ parm[, 1] * x/(parm[, 2] + x)

+ }

where parm is matrix consisting of two columns: parm[,1] and parm[,2] corresponding to
Vm and K, respectively. A self starter function could be defined taking the maximum of
the response values as initial estimate of Vm and, using this initial estimate of Vm, the
equation (6) is then solved in K for an arbitrary pair (x, y) (we take the first pair in the data
set). Thus the self starter function looks like

> MMssfct <- function(data) {

+ Vm <- max(data[, 2])

+ K <- Vm * data[1, 1]/(data[1, 2] - data[1, 1])

+ return(c(Vm, K))

+ }

where data is a data frame containing x values in the first column and y values in the second
column. Finally we set the names of the parameters (Vm and K )

> MMnames <- c("Vm", "K")

Now we are ready to use the function multdrc. Fitting a simultaneous Michaelis-Menten
model to the two states is accomplished using the call

> modelex4 <- multdrc(rate ~ conc, state, data = Puromycin,

+ fct = list(MMfct, MMssfct, MMnames))

A summary of the model fit containing parameter estimates and estimated standard errors
and a comparison of the two V m parameters is given below.

> summary(modelex4)

A ’drc’ model was fit.

Parameter estimates:

Estimate Std. Error t-value p-value
Vm:treated 2.1270e+02 6.8097e+00 3.1234e+01 4.268e-18
Vm:untreated 1.6030e+02 7.2397e+00 2.2141e+01 4.930e-15
K:treated 6.4139e-02 8.2831e-03 7.7433e+00 2.711e-07
K:untreated 4.7733e-02 8.9549e-03 5.3303e+00 3.822e-05

Estimate of residual variance: 108.1608

Box-Cox transformation was not performed.
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> compParm(modelex4, "Vm", "-")

Estimate Std. Error t-value p-value
Vm:treated-Vm:untreated 52.39933 9.939061 5.27206 2.38141e-05

8. An additive model

The data set PestSci2 consists of 4 dose response curves. Dose values and response values are
denoted DOSE and SLOPE, respectively. The grouping variable is CURVE and in addition there
are two two-level factors A (levels: a, b) and B (levels: 1, 2), measured for each observation.
We assume a four-parameter logistic model. A model with an additive model of the form
A+B for the parameter d and interaction structure (A:B) for the remaining parameters can be
specified using a list of formulas

modelex5.1 <- multdrc(SLOPE~DOSE, CURVE,
collapse=list(~A:B, ~A:B, ~A+B, ~A:B),
data=PestSci2)

A summary of the fit is

> summary(modelex5.1)

A ’logistic’ model was fit.

Parameter estimates:

Estimate Std. Error t-value p-value
b:(Intercept) 0.4046567 0.4155826 0.9737094 0.3336
b:Ab 1.4466370 0.8650661 1.6722850 0.0990
b:B2 0.4110364 0.7057720 0.5823926 0.5622
b:Ab:B2 -0.1367747 1.4389090 -0.0950544 0.9245
c:(Intercept) -0.0784325 0.7074487 -0.1108668 0.9120
c:Ab 0.3487946 0.7179824 0.4857983 0.6286
c:B2 0.2288862 0.7385790 0.3099008 0.7576
c:Ab:B2 -0.1969272 0.7566467 -0.2602631 0.7954
d:(Intercept) 1.4193874 0.1422696 9.9767418 5.121e-15
d:Ab 0.4623971 0.1507881 3.0665362 0.0031
d:B2 -0.0066858 0.1432294 -0.0466790 0.9629
e:(Intercept) 1.7574201 4.4084108 0.3986516 0.6914
e:Ab -1.5558570 4.4080232 -0.3529603 0.7252
e:B2 -0.4686343 4.4797946 -0.1046107 0.9170
e:Ab:B2 0.4350737 4.4781948 0.0971538 0.9229

Estimate of residual variance: 0.09081889

Box-Cox transformation was not performed.



Journal of Statistical Software 21

9. Conclusions

We have described the package drc for fitting multiple non-linear regression models, with spe-
cial focus on applications in bioassay analysis. Thus the package drc is an attempt to develop
a collection of functions specifically designed for bioassay analysis. Relevant interpretations
of a model fit is easy using the built-in models.

At the same time we would like to emphasize that drc provides functionality for simultaneous
fitting of arbitrary non-linear regression models under the assumption of independent and
normally distributed measurement errors, such functionality was not previously available in
R.
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