
JSS Journal of Statistical Software
September 2005, Volume 14, Issue 9. http://www.jstatsoft.org/

The R Commander: A Basic-Statistics Graphical

User Interface to R

John Fox
McMaster University

Abstract

Unlike S-PLUS, R does not incorporate a statistical graphical user interface (GUI),
but it does include tools for building GUIs. Based on the tcltk package (which furnishes
an interface to the Tcl/Tk GUI toolkit), the Rcmdr package provides a basic-statistics
graphical user interface to R called the “R Commander.” The design objectives of the
R Commander were as follows: to support, through an easy-to-use, extensible, cross-
platform GUI, the statistical functionality required for a basic-statistics course (though
its current functionality has grown to include support for linear and generalized-linear
models, and other more advanced features); to make it relatively difficult to do unrea-
sonable things; and to render visible the relationship between choices made in the GUI
and the R commands that they generate. The R Commander uses a simple and familiar
menu/dialog-box interface. Top-level menus include File, Edit, Data, Statistics, Graphs,
Models, Distributions, Tools, and Help, with the complete menu tree given in the paper.
Each dialog box includes a Help button, which leads to a relevant help page. Menu and
dialog-box selections generate R commands, which are recorded in a script window and
are echoed, along with output, to an output window. The script window also provides
the ability to edit, enter, and re-execute commands. Error messages, warnings, and some
other information appear in a separate messages window. Data sets in the R Commander
are simply R data frames, and can be read from attached packages or imported from files.
Although several data frames may reside in memory, only one is“active”at any given time.
There may also be an active statistical model (e.g., an R lm or glm object). The purpose
of this paper is to introduce and describe the use of the R Commander GUI; to describe
the design and development of the R Commander; and to explain how the R Commander
GUI can be extended. The second part of the paper (following a brief introduction) can
serve as an introductory guide for students who will use the R Commander

Keywords: statistical GUI, statistical software, statistical education, R language.

http://www.jstatsoft.org/

2 The R Commander: A Basic-Statistics GUI to R

1. Background and motivation

R (Ihaka and Gentleman 1996; R Core Development Team 2004) is a free, open-source im-
plementation of the S statistical computing language and programming environment. R
is a command-driven system: One normally specifies a statistical analysis in R by typing
commands—that is, statements in the S language that are executed by the R interpreter.
S-PLUS (a commercial implementation of the S language), also incorporates a graphical user
interface (GUI) to much of its statistical functionality.

In my opinion, a GUI for statistical software is a mixed blessing: On the one hand, a GUI does
not require that the user remember the names and arguments of commands, and decreases the
chances of syntax and typing errors. These characteristics make GUIs particularly attractive
for introductory, casual, or infrequent use of software.

On the other hand, having to drill one’s way through successive layers of menus and dialog
boxes can be tedious and can make it difficult to reproduce a statistical analysis, perhaps with
variations. Moreover, providing a GUI for a statistical system that includes hundreds (or even
thousands) of commands, many incorporating extensive options, can produce a labyrinth. The
R Commander GUI described in this paper is not immune to these problems, but I have tried
to keep things relatively simple, and to render visible, in a reusable form, the R commands
that the GUI generates.

Unlike S-PLUS, R does not include a statistical GUI, but it does furnish tools for build-
ing GUIs.1 The Rcmdr package provides a basic-statistics GUI for R, which I call the “R
Commander.” The design objectives of the R Commander were as follows:

• Most importantly, to provide, through an easy-to-use, cross-platform, extensible GUI,
the statistical functionality required for a basic-statistics course.2 The original target
text was David Moore’s The Basic Practice of Statistics, Second Edition (Moore 2000).
With the help of a research assistant (Tony Christensen), I have since examined several
other texts, including the third edition of Moore (2004), collected suggestions from a
number of individuals, and slightly expanded the horizons of the R Commander—for
example, to include linear and generalized-linear models.

• To make it relatively difficult to do unreasonable things (such as calculating the mean
of a categorical variable).

• To render visible the relationship between choices made in the GUI and the R commands
that they generate. Commands are both pasted into a script window in the R Com-
mander and echoed to an output window (see below). The script window is editable,
commands in the window can be executed or re-executed, and new commands can be
entered by typing directly in the window. Scripts can also be saved to, and loaded from,
files.

1The R Commander, described in this paper, is based on the tcltk package (Dalgaard 2001, 2002), which
provides an interface to Tcl/Tk (Welch 2000).

2The examples in this document use the Windows version of R, and parts of the document are specific to
the Windows version. R, however, is available on other computing platforms as well (Macintosh computers
and Unix/Linux systems), and the use of R and the R Commander on these other systems is very similar to
their use under Windows. I focus here on the Windows version of the software because I believe that the large
majority of students in basic-statistics classes are Windows users.

Journal of Statistical Software 3

One purpose of this paper is to introduce and describe the basic use of the R Commander
GUI. In particular, Section 2 of the paper can serve as an introductory guide for students
who will use the R Commander. Section 3 describes the design and development of the R
Commander; informally assesses the extent to which it has met its goals; and suggests future
directions for the project. Section 4 explains how the R Commander can be extended. The
final section provides some information for instructors. In addition, the help files for the
current version of the Rcmdr package are available on the Comprehensive R Archive Network
(CRAN) website at http://CRAN.R-project.org/doc/packages/Rcmdr.pdf.

2. Using the R Commander

2.1. Starting the R Commander

Once R is running, simply loading the Rcmdr package by typing the command
library("Rcmdr") into the R Console starts the R Commander GUI. To function prop-
erly under Windows, the R Commander requires the single-document interface (SDI) to R.3

After loading the package, the R Commander window should appear more or less as in Figure
1. This and other screen images in this document were created under Windows XP; if you use
another version of Windows (or, of course, another computing platform), then the appearance
of the screen may differ.4

The R Commander and R Console windows float freely on the desktop. You will normally
use the menus and dialog boxes of the R Commander to read, manipulate, and analyze data.

• R commands generated by the R Commander GUI appear in the upper text window
(labelled Script Window) within the main R Commander window. You can also type
R commands directly into the script window or at the > (greater-than) prompt in the
R Console; the main purpose of the R Commander, however, is to avoid having to type
commands.

3The Windows version of R is normally run from a multiple-document interface (MDI), which contains the R
Console window, Graphical Device windows created during the session, and any other windows related to the R
process. In contrast, under the single-document interface (SDI), the R Console and Graphical Device windows
are not contained within a master window. There are several ways to run R in SDI mode—for example, by
editing the Rconsole file in R’s etc subdirectory, or by adding --sdi to the Target field in the Shortcut tab of
the R desktop icon’s Properties. This limitation of the Rcmdr package is inherited from the tcltk package, on
which Rcmdr depends.

4The Rcmdr requires some packages in addition to several of the “recommended”packages that are normally
distributed with R, and loads these packages at startup. Rcmdr, the required packages, and many other
contributed packages are available for download from CRAN at http://CRAN.R-project.org/.

If these packages are not installed, the Rcmdr will offer to install them from the Internet or from local files
(e.g., on a CD/ROM). If you install the Rcmdr package via the Windows “R GUI,” the packages on which the
Rcmdr depends should be installed automatically. More generally, you can install the Rcmdr package and all
of the packages on which it depends via the install.packages function, setting the argument dependencies

= TRUE.
Thanks to Dirk Eddelbuettel, Debian Linux users need only issue the command $ apt-get install r-cran-

rcmdr to install the Rcmdr package along with all of the packages that it requires. In any event, building and
installing the Rcmdr package on Linux systems is typically straightforward. The task can be more formidible
under OS/X on Macintosh systems, since the tcltk package on which the Rcmdr depends requires that Tcl/Tk be
installed and that R is running under X-Windows. Detailed installation instructions for Macintosh (and other)
users are available at http://socserv.socsci.mcmaster.ca/jfox/Misc/Rcmdr/installation-notes.html.

http://CRAN.R-project.org/doc/packages/Rcmdr.pdf
http://CRAN.R-project.org/
http://socserv.socsci.mcmaster.ca/jfox/Misc/Rcmdr/installation-notes.html

4 The R Commander: A Basic-Statistics GUI to R

Script Window

Output Window

Messages Window

Figure 1: The R Commander window at start-up, showing the Script, Output, and Messages
sub-windows.

Journal of Statistical Software 5

• Printed output appears by default in the second text window (labelled Output Window).

• The lower, gray window (labelled Messages Window) displays error messages, warnings,
and some other information (“notes”), such as the start-up message in Figure 1.

• When you create graphs, these will appear in a separate Graphics Device window,
outside of the main R Commander window.

There are several menus along the top of the R Commander window:

File Menu items for loading and saving script files; for saving output and the R workspace;
and for exiting.

Edit Menu items (Cut, Copy, Paste, etc.) for editing the contents of the script and output
windows. Right clicking in the script or output window also brings up an edit “context”
menu.

Data Submenus containing menu items for reading and manipulating data.

Statistics Submenus containing menu items for a variety of basic statistical analyses.

Graphs Menu items for creating simple statistical graphs.

Models Menu items and submenus for obtaining numerical summaries, confidence intervals,
hypothesis tests, diagnostics, and graphs for a statistical model, and for adding diag-
nostic quantities, such as residuals, to the data set.

Distributions Probabilities, quantiles, and graphs of standard statistical distributions (to
be used, for example, as a substitute for statistical tables).

Tools Menu items for loading R packages unrelated to the Rcmdr package (e.g., to access
data saved in another package), and for setting some options.

Help Menu items to obtain information about the R Commander (including an introductory
manual derived from this paper). As well, each R Commander dialog box has a Help
button (see below).

The complete menu “tree” for the R Commander (version 1.0-0) is shown below. Most menu
items lead to dialog boxes, as illustrated later in this paper. Menu items are inactive (“grayed
out”) if they are inapplicable to the current context.

6 The R Commander: A Basic-Statistics GUI to R

File

Open script file

Save script

Save script as

Save output

Save output as

Save R workspace

Save R workspace as

Exit

from Commander

from Commander and R

Edit

Clear Window

Cut

Copy

Paste

Delete

Find

Select all

Data

New data set

Import data

from text file

from SPSS data set

from Minitab data set

from STATA data set

Data in packages

List data sets in packages

Read data set from attached package

Active data set

Select active data set

Help on active data set

(if available)

Variables in active data set

Set case names

Subset active data set

Remove cases with missing data

Export active data set

Manage variables in active data set

Recode variable

Compute new variable

Standardize variables

Convert numeric variable to factor

Bin numeric variable

Reorder factor levels

Define contrasts for a factor

Rename variables

Delete variables from data set

Journal of Statistical Software 7

Statistics

Summaries

Active data set

Numerical summaries

Frequency distribution

Table of statistics

Correlation matrix

Contingency Tables

Two-way table

Multi-way table

Enter and analyze two-way table

Means

Single sample t-test

Independent-samples t-test

Paired t-test

One-way ANOVA

Multi-way ANOVA

Proportions

Single-sample proportion test

Two-sample proportions test

Variances

Two-variances F-test

Bartlett’s test

Levene’s test

Nonparametric tests

Two-sample Wilcoxon test

Paired-samples Wilcoxon test

Kruskal-Wallis test

Dimensional analysis

Scale reliability

Principal-components analysis

Factor analysis

Cluster analysis

k-means cluster analysis

Hierarchical cluster analysis

Summarize hierarchical clustering

Add hierarchical clustering to

data set

Fit models

Linear regression

Linear model

Generalized linear model

Multinomial logit model

Proportional-odds logit model

8 The R Commander: A Basic-Statistics GUI to R

Graphs

Index plot

Histogram

Stem-and-leaf display

Boxplot

Quantile-comparison plot

Scatterplot

Scatterplot matrix

3D scatterplot

Line graph

Plot of means

Bar graph

Pie chart

Save graph to file

as bitmap

as PDF/Postscript/EPS

3D RGL graph

Models

Select active model

Summarize model

Add observation statistics to data

Confidence intervals

Hypothesis tests

ANOVA table

Compare two models

Linear hypothesis

Numerical diagnostics

Variance-inflation factors

Breusch-Pagan test for

heteroscedasticity

Durbin-Watson test for autocorrelation

RESET test for nonlinearity

Bonferroni outlier test

Graphs

Basic diagnostic plots

Residual quantile-comparison plot

Component+residual plots

Added-variable plots

Influence plot

Effect plots

Journal of Statistical Software 9

Distributions

Normal distribution

Normal quantiles

Normal probabilities

Plot normal distribution

t distribution

t quantiles

t probabilities

Plot t distribution

Chi-squared distribution

Chi-squared quantiles

Chi-squared probabilities

Plot chi-squared distribution

F distribution

F quantiles

F probabilities

Plot F distribution

Binomial distribution

Binomial quantiles

Binomial tail probabilities

Binomial probabilities

Plot binomial distribution

Poisson distribution

Poisson probabilities

Plot Poisson distribution

Tools

Load package(s)

Options

Help

Commander help

About Rcmdr

Introduction to the R Commander

Help on active data set (if available)

10 The R Commander: A Basic-Statistics GUI to R

The R Commander interface includes a few elements in addition to the menus and dialogs:

• Below the menus is a “toolbar” with a row of buttons.

– The left-most (flat) button shows the name of the active data set. Initially there
is no active data set. If you press this button, you will be able to choose among
data sets currently in memory (if there is more than one). Most of the menus and
dialogs in the R Commander reference the active data set. (The File, Edit, and
Distributions menus are exceptions.)

– Two buttons allow you to open the R data editor to modify the active data set or a
viewer to examine it. The data-set viewer can remain open while other operations
are performed.5

– A flat button indicates the name of the active statistical model—a linear model
(such as a linear-regression model), a generalized linear model, a multinomial logit
model, or a proportional-odds model.6 Initially there is no active model. If there
is more than one model in memory, you can choose among them by pressing the
button.

• Immediately below the toolbar is the script window (so labelled), a large scrollable
text window. As mentioned, commands generated by the GUI are automatically copied
into this window. You can edit the text in the script window or even type your own R
commands into the window. Pressing the Submit button, which is at the right below the
script window (or, alternatively, the key combination Ctrl-r, for “run”), causes the line
containing the cursor to be submitted (or resubmitted) for execution. If several lines are
selected (e.g., by left-clicking and dragging the mouse over them), then pressing Submit
will cause all of them to be executed. Commands entered into the script window can
extend over more than one line, but if they do, lines after the first must be indented
with one or more spaces or tabs.

• Below the script window is a large scrollable and editable text window for output.
Commands echoed to this window appear in red, output in dark blue (as in the R
Console).

• At the bottom is a small gray text window for messages. Error messages are displayed in
red text, warnings in green, and other messages in dark blue. Errors and warnings also
provide an audible cue by ringing a bell. Messages are cleared at the next operation,
but a ‘note’ does not clear an error message or a warning.

Once you have loaded the Rcmdr package, you can minimize the R Console. The R Com-
mander window can also be resized or maximized in the normal manner. If you resize the

5The data viewer, provided by the showData function from David Firth’s relimp package, can be slow for
data sets with large numbers of variables. When the number of variables exceeds a threshold (initially set to
100), the R data editor is used instead to display the data set. To use the data editor regardless of the number
of variables, set the threshold to 0. See the R Commander help file for details. A disadvantage of using the
data editor to display the current data set is that the editor window cannot continue to be displayed while
other operations are performed.

6Users can provide additional classes of statistical models by adding the necessary dialog boxes and menu
items, and editing the model-classes.txt file in R’s etc directory.

Journal of Statistical Software 11

R Commander, the width of subsequent R output is automatically adjusted to fit the output
window.

The R Commander is highly configurable: I have described the default configuration here.
Changes to the configuration can be made via the Tools −→ Options. . . menu, or—much
more extensively—by setting options in R. [A menu item that terminates in ellipses (i.e.,
three dots, ...) leads to a dialog box, which is a standard GUI convention. In this document,
−→ represents selecting a menu item or submenu from a menu.] See the Rcmdr help files for
details.

2.2. Data input

Most of the procedures in the R Commander assume that there is an active data set.7 If there
are several data sets in memory, you can choose among them, but only one is active. When
the R Commander starts up, there is no active data set.

The R Commander provides several ways to get data into R:

• You can enter data directly via Data −→ New data set.... This is a reasonable choice
for a very small data set.

• You can import data from a plain-text (ASCII) file or from another statistical package
(Minitab, SPSS, or Stata).

• You can read a data set that is included in an R package, either typing the name of the
data set (if you know it), or selecting the data set in a dialog box.

Reading data from a text file

For example, consider the data file Nations.txt.8 The first few lines of the file are as follows:

TFR contraception infant.mortality GDP region
Afghanistan 6.90 NA 154 2848 Asia
Albania 2.60 NA 32 863 Europe
Algeria 3.81 52 44 1531 Africa
American-Samoa NA NA 11 NA Oceania
Andorra NA NA NA NA Europe
Angola 6.69 NA 124 355 Africa
Antigua NA 53 24 6966 Americas
Argentina 2.62 NA 22 8055 Americas
Armenia 1.70 22 25 354 Europe
Australia 1.89 76 6 20046 Oceania
. . .

7Procedures selected under via the Distributions menu are exceptions, as is Enter and analyze two-way
table... under the Statistics −→ Contingency tables menu.

8This file resides in the etc subdirectory of the Rcmdr package.

12 The R Commander: A Basic-Statistics GUI to R

• The first line of the file contains variable names: TFR (the total fertility rate, expressed
as number of children per woman), contraception (the rate of contraceptive use among
married women, in percent), infant.mortality (the infant-mortality rate per 1000 live
births), GDP (gross domestic product per capita, in U.S. dollars), and region.

• Subsequent lines contain the data values themselves, one line per country. The data
values are separated by “white space”—one or more blanks or tabs. Although it is
helpful to make the data values line up vertically, it is not necessary to do so. Notice
that the data lines begin with the country names. Because we want these to be the “row
names” for the data set, there is no corresponding variable name: That is, there are five
variable names but six data values on each line. When this happens, R will interpret
the first value on each line as the row name.

Figure 2: Reading data from a text file.

Journal of Statistical Software 13

• Some of the data values are missing. In R, it is most convenient to use NA (representing
“not available”) to encode missing data, as I have done here.

• The variables TFR, contraception, infant.mortality, and GDP are numeric (quanti-
tative) variables; in contrast, region contains region names. When the data are read, R
will treat region as a “factor”—that is, as a categorical variable. In most contexts, the
R Commander distinguishes between numerical variables and factors. The categories of
a factor are termed its “levels.”

To read the data file into R, select Data −→ Import data −→ from text file... from the R
Commander menus. This operation brings up a Read Data >From Text File dialog, as shown
in Figure 2. The default name of the data set is Dataset. I have changed the name to
Nations.

Valid R names begin with an upper- or lower-case letter (or a period, .) and consist entirely
of letters, periods, underscores (_), and numerals (i.e., 0–9); in particular, do not include
any embedded blanks in a data-set name. You should also know that R is case-sensitive,
and so, for example, nations, Nations, and NATIONS are distinguished, and could be used to
represent different data sets.

Clicking the OK button in the Read Data From Text File dialog brings up an Open file dialog,
shown in Figure 3. Here I navigated to the file Nations.txt. Clicking the Open button in the
dialog will cause the data file to be read. Once the data file is read, it becomes the active data

Figure 3: Open-file dialog for reading a text data file.

14 The R Commander: A Basic-Statistics GUI to R

set in the R Commander. As a consequence, in Figure 4, the name of the data set appears in
the data set button near the top left of the R Commander window.

I clicked the View data set button to bring up the data viewer window, also shown in Figure
4. Notice that the commands to read and view the Nations data set (the R read.table and
showData commands) appear, partially obscured by the display of the data set, in the script
and output windows. When the data set is read and becomes the active data set, a note
appears in the messages window (and this is erased when the subsequent showData command
is executed).

The read.table command creates an R “data frame,” which is an object containing a rect-
angular cases-by-variables data set: The rows of the data set represent cases or observations
and the columns represent variables. Data sets in the R Commander are R data frames.

Figure 4: Displaying the active data set.

Journal of Statistical Software 15

Entering data directly

To enter data directly into the R spreadsheet-like data editor you can proceed as follows. As
an example, I use a very small data set from Problem 2.44 in Moore (2000):

• Select Data −→ New data set... from the R Commander menus. Optionally enter a
name for the data set (such as Problem2.44) in the resulting dialog box, as shown in
Figure 5, and click the OK button. (Remember that R names cannot include intervening
blanks.) This will bring up a Data Editor window with an empty data set.

Figure 5: Defining a new data set.

• Enter the data from the problem into the first two columns of the data editor. You can
move from one cell to another by using the arrow keys on your keyboard, by tabbing,
by pressing the Enter key, or by pointing with the mouse and left-clicking. When you
are finished entering the data, the window should look like Figure 6.

Figure 6: Data editor after the data are entered.

16 The R Commander: A Basic-Statistics GUI to R

• Next, click on the name var1 above the first column. This will bring up a Variable
editor dialog box, as in Figure 7.

Figure 7: Dialog box for changing the name of a variable in the data editor.

• Type the variable name age in the box, just as I have, and click the X button at the
upper-right corner of the Variable editor window, or press the Enter key, to close the
window. Repeat this procedure to name the second column height. The Data Editor
should now look like Figure 8.

Figure 8: The Data Editor window after both variable names have been changed.

• Select File −→ Close from the Data Editor menus or click the X at the upper-right of
the Data Editor window.9 The data set that you entered is now the active data set in
the R Commander.

9Saving the data by selecting File → Close or by simply closing the editor window is not a standard GUI
convention, but this is how the R data editor behaves.

Journal of Statistical Software 17

Reading data from a package

Many R packages include data. Data sets in packages can be listed in a pop-up window
via Data −→ Data in packages −→ List data sets in packages, and can be read into the R
Commander via Data −→ Data in packages −→ Read data set from an attached package... .10

The resulting dialog box is shown in Figure 9, where I have selected the data set Prestige in
the car package. If you know the name of a data set in a package then you can enter its name
directly; otherwise double-clicking on the name of a package displays its data sets in the right
list box; and double-clicking on a data set name copies the name to the data-set entry field
in the dialog.11 You can attach additional R packages by Tools −→ Load packages.

Figure 9: Reading data from an attached package.

2.3. Creating numerical summaries and graphs

Once there is an active data set, you can use the R Commander menus to produce a variety of
numerical summaries and graphs. I will describe just a few basic examples here. A good GUI
should be largely self-explanatory: I hope that once you see how the R Commander works,
you will have little trouble using it, assisted perhaps by the on-line help files.

In the examples below, I assume that the active data set is the Nations data set, read from
a text file in the previous section. If you typed in the five-observation data set from Moore
(2000), or read in the Prestige data set from the car package, following the procedures
described in the previous section, then one of these is the active data set. Recall that you can
change the active data set by clicking on the flat button with the active data set’s name near
the top left of the R Commander window, selecting from among a list of data sets currently
resident in memory.

Selecting Statistics −→ Summaries −→ Active data set produces the results shown in Figure
10. For each numerical variable in the data set (TFR, contraception, infant.mortality,
and GDP), R reports the minimum and maximum values, the first and third quartiles, the
median, and the mean, along with the number of missing values. For the categorical variable

10Not all data in packages are data frames, but only data frames are suitable for use in the R Commander.
If you try to read data that are not a data frame, an error message will appear in the messages window.

11In general in the R Commander, when it is necessary to copy an item from a list box to another location
in a dialog, a double-click is required.

18 The R Commander: A Basic-Statistics GUI to R

region, we get the number of observations at each level of the factor. Had the data set
included more than ten variables, the R Commander would have asked us whether we really
want to proceed—potentially protecting us from producing unwanted voluminous output.

Similarly, selecting Statistics −→ Summaries −→ Numerical summaries... brings up the
dialog box shown in Figure 11. Only numerical variables are shown in the variable list in
this dialog; the factor region is missing, because it is not sensible to compute numerical
summaries for a factor. Clicking on infant.mortality, and then clicking OK, produces the

Figure 10: Getting variable summaries for the active data set.

Journal of Statistical Software 19

following output (in the output window):12

> mean(Nations$infant.mortality, na.rm=TRUE)
[1] 43.47761

> sd(Nations$infant.mortality, na.rm=TRUE)
[1] 38.75604

> quantile(Nations$infant.mortality, c(0,.25,.5,.75,1), na.rm=TRUE)
0% 25% 50% 75% 100%
2 12 30 66 169

By default, the R commands that are executed print out the mean and standard deviation
of the variable, along with quantiles (percentiles) corresponding to the minimum, the first
quartile, the median, the third quartile, and the maximum.

As is typical of R Commander dialogs, the Numerical Summaries dialog box in Figure 11
includes OK, Cancel, and Help buttons. The Help button leads to a help page either for the
dialog itself or (as here) for an R function that the dialog invokes.

Figure 11: The Numerical Summaries dialog box.

The Numerical Summaries dialog box also makes provision for computing summaries within
groups defined by the levels of a factor. Clicking on the Summarize by groups... button
brings up the Groups dialog, as shown in Figure 12. Because there is only one factor in the
Nations data set, only the variable region appears in the variable list; selecting this variable
and clicking OK changes the Summarize by groups... button to Summarize by region (see
Figure 13); clicking OK produces the following results (with most of the output suppressed
for brevity):

12To select a single variable in a variable-list box, simply left-click on its name. In some contexts, you will
have to select more than one variable. In these cases, the usual Windows conventions apply: Left-clicking on
a variable selects it and de-selects any variables that have previously been selected; Shift-left-click extends the
selection; and Ctrl-left-click toggles the selection for an individual variable.

20 The R Commander: A Basic-Statistics GUI to R

Figure 12: Selecting a grouping variable in the Groups dialog box.

Figure 13: The Numerical Summaries dialog box after a grouping variable has been selected.

Journal of Statistical Software 21

> by(Nations$infant.mortality, Nations$region, mean, na.rm=TRUE)
INDICES: Africa
[1] 85.27273
--
INDICES: Americas
[1] 25.6
--
INDICES: Asia
[1] 45.65854
--
INDICES: Europe
[1] 11.85366
--
INDICES: Oceania
[1] 27.79167

. . .

Several other R Commander dialogs allow you to select a grouping variable in this manner.
Making graphs with the R Commander is also straightforward. For example, selecting Graphs
−→ Histogram... from the R Commander menus brings up the Histogram dialog box in Figure
14; and clicking on infant.mortality followed by OK, opens a Graphics Device window with
the histogram shown in Figure 15.

Figure 14: The Histogram dialog.

If you make several graphs in a session, then only the most recent normally appears in the
Graphics Device window. You can recall previous graphs using the Page Up and Page Down
keys on your keyboard.13

13At start-up, the R Commander turns on the graph history mechanism; this feature is available only in
Windows systems. Dynamic three-dimensional scatterplots created by Graphs −→ 3D scatterplot... appear in
a special RGL device window; likewise, effect displays created for statistical models (Fox 2003) via Models −→
Graphs −→ Effect plots appear in individual graphics-device windows.

22 The R Commander: A Basic-Statistics GUI to R

Nations$infant.mortality

Fr
eq

ue
nc

y

0 50 100 150

0
20

40
60

80

Figure 15: A graphics window containing the histogram for infant mortality.

2.4. Statistical models

Several kinds of statistical models can be fit in the R Commander using menu items un-
der Statistics −→ Fit models: linear models (by both Linear regression and Linear model),
generalized linear models, multinomial logit models, and proportional-odds models, the lat-
ter two from Venables and Ripley’s nnet and MASS packages, respectively (Venables and
Ripley 2002). Although the resulting dialog boxes differ in certain details (for example, the
generalized linear model dialog makes provision for selecting a distributional family and cor-
responding link function), they share a common general structure, as illustrated in the Linear
Model dialog in Figure 16.14

In R (and in S generally), linear and linear-like statistical models are specified using a version
of Wilkinson and Rogers’s model-formula notation (Wilkinson and Rogers 1973). It is beyond
the scope of this paper to describe model formulas in detail, but the following basic information
may prove useful:15 The left and right-hand sides of the model are separated by a tilde (~).
The left hand side may be the name of the response variable (e.g., prestige) or an expression
that evaluates to the response variable [e.g., log(prestige)]. On the right-hand side of the
model, operators such as + and * have special meaning. For example, + adds a term to the
model, while * can be used to include an interaction in the model along with all terms (such as
main effects) that are marginal to the interaction. Parentheses may be used to group terms.

14An exception is the Linear Regression dialog in which the response variable and explanatory variables are
simply selected by name from list boxes containing the numeric variables in the current data set. Although
linear regression models may also be specified in the Linear Model dialog, the Linear Regression dialog avoids
the explicit specification of a model formula and thus is more suited to a basic-statistics course.

15For more information on specifying models, see the Introduction to R manual that comes with R, which
may be accessed from the Help menu in the R Console, or a general treatment of statistical modeling in S,
such as Chambers and Hastie (1992), Fox (2002), or Venables and Ripley (2002).

Journal of Statistical Software 23

Figure 16: The Linear Model dialog box.

Thus, (education + income)*type specifies terms for education, income, type, and the
interactions between education and type and between income and type. Contrasts (such
as dummy regressors) are automatically created when a factor (such as type in Figure 16) is
included on the right-hand side of a model formula.

• Double-clicking on a variable in the variable-list box copies it to the model formula—to
the left-hand side of the formula, if it is empty, otherwise to the right-hand side (with
a preceding + sign if the context requires it). Note that factors (categorical variables)
are parenthetically labelled as such in the variable list.

• The row of buttons above the formula can be used to enter operators and parentheses
into the right-hand size of the formula.

• You can also type directly into the formula fields, and indeed have to do so, for example,
to put a term such as log(income) into the formula.

• The name of the model, here LinearModel.1, is automatically generated, but you can
substitute any valid R name.

• You can type an R expression into the box labelled Subset expression; if supplied, this is
passed to the subset argument of the lm function, and is used to fit the model to a subset
of the observations in the data set. One form of subset expression is a logical expression
that evaluates to TRUE or FALSE for each observation, such as type != "prof" (which
would select all non-professional occupations from the Prestige data set).

Clicking the OK button produces the following output (in the output window), and makes
LinearModel.1 the active model, with its name displayed in the Model button:

24 The R Commander: A Basic-Statistics GUI to R

> LinearModel.1 <- lm(prestige ~ (education + income)*type , data=Prestige)

> summary(LinearModel.1)

Call:
lm(formula = prestige ~ (education + income) * type, data = Prestige)

Residuals:
Min 1Q Median 3Q Max

-13.462 -4.225 1.346 3.826 19.631

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.276e+00 7.057e+00 0.323 0.7478
education 1.713e+00 9.572e-01 1.790 0.0769 .
income 3.522e-03 5.563e-04 6.332 9.62e-09 ***
type[T.prof] 1.535e+01 1.372e+01 1.119 0.2660
type[T.wc] -3.354e+01 1.765e+01 -1.900 0.0607 .
education:type[T.prof] 1.388e+00 1.289e+00 1.077 0.2844
education:type[T.wc] 4.291e+00 1.757e+00 2.442 0.0166 *
income:type[T.prof] -2.903e-03 5.989e-04 -4.847 5.28e-06 ***
income:type[T.wc] -2.072e-03 8.940e-04 -2.318 0.0228 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.318 on 89 degrees of freedom
Multiple R-Squared: 0.8747, Adjusted R-squared: 0.8634
F-statistic: 77.64 on 8 and 89 DF, p-value: < 2.2e-16

Operations on the active model may be selected from the Models menu. For example, Models
−→ Hypothesis tests −→ Anova table produces the following output:

> Anova(LinearModel.1)
Anova Table (Type II tests)

Response: prestige
Sum Sq Df F value Pr(>F)

education 1068.0 1 26.7532 1.413e-06 ***
income 1131.9 1 28.3544 7.511e-07 ***
type 591.2 2 7.4044 0.001060 **
education:type 238.4 2 2.9859 0.055574 .
income:type 951.8 2 11.9210 2.588e-05 ***
Residuals 3552.9 89

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Journal of Statistical Software 25

2.5. Odds and ends

Saving and printing output

You can save text output directly from the File menu in the R Commander ; likewise you can
save or print a graph from the File menu in an R Graphics Device window.16 It is generally
more convenient, however, to collect the text output and graphs that you want to keep in
a word-processor document. In this manner, you can intersperse R output with your typed
notes and explanations.

Open a word processor such as Word, or even Windows WordPad. To copy text from the
output window, block the text with the mouse, select Copy from the Edit menu (or press the
key combination Ctrl-c, or right-click in the window and select Copy from the context menu),
and then paste the text into the word-processor window via Edit −→ Paste (or Ctrl-v), as
you would for any Windows application. One point worth mentioning is that you should use
a mono-spaced (“typewriter”) font, such as Courier New, for text output from R; otherwise
the output will not line up neatly.

Likewise, to copy a graph, select File −→ Copy to the clipboard −→ as a Metafile from the R
Graphics Device menus; then paste the graph into the word-processor document via Edit −→
Paste (or Ctrl-v). Alternatively, you can use Ctrl-w to copy the graph from the R Graphics
Device, or right-click on the graph to bring up a context menu, from which you can select
Copy as metafile.17 At the end of your R session, you can save or print the document that
you have created, providing an annotated record of your work.

Alternative routes to saving text and graphical output may be found respectively under the
R Commander File and Graphs −→ Save graph to file menus.

Terminating the R Session

There are several ways to terminate your session. For example, you can select File −→ Exit
−→ From Commander and R from the R Commander menus. You will be asked to confirm,
and then asked whether you want to save the contents of the script and output windows.
Likewise, you can select File −→ Exit from the R Console; in this case, you will be asked
whether you want to save the R workspace (i.e., the data that R keeps in memory); you would
normally answer No: In my experience beginning students can be confused by objects carried
over from one session to another in a saved workspace. The ability to save the workspace,
and to maintain different saved workspaces for different projects, can, however, be helpful to
more advanced users.

Entering commands in the script window

The script window provides a simple facility for editing, entering, and executing commands.
Commands generated by the R Commander automatically appear in the script window, and
you can type and edit commands in the window more or less as in any editor. The R Com-

16Most of the information in this subsection on saving and printing output is specific to the Windows
operating system.

17As you will see when you examine these menus, you can save graphs in a variety of formats, and to files
as well as to the clipboard. The procedure suggested here is straightforward, however, and generally results in
high-quality graphs. Once again, this description applies to Windows systems.

26 The R Commander: A Basic-Statistics GUI to R

mander does not provide a true “console” for R, however, and the script window has some
limitations:

• Commands that extend over more than one line should have the second and subsequent
lines indented by one or more spaces or tabs; all lines of a multiline command must be
submitted simultaneously for execution.

• Commands that include an assignment arrow (<-) will not generate printed output,
even if such output would normally appear had the command been entered in the R
Console [the command print(x <- 10), for example]. On the other hand, assignments
made with the equals sign (=) produce printed output even when they normally would
not (e.g., x = 10).

• Commands that produce normally invisible output will occasionally cause output to be
printed in the output window. This behavior can be modified by editing the entries of
the log-exceptions.txt file in the R Commander’s etc directory.

• Blocks of commands enclosed by braces, i.e., {}, are not handled properly unless each
command is terminated with a semicolon (;). This is poor R style, and implies that the
script window is of limited use as a programming editor. For serious R programming,
it would be preferable to use the script editor provided by the Windows version of R
itself, or—even better—a programming editor.

3. Design and development of the R Commander

Prior to developing the R Commander, I had for several years wanted to use R in teaching basic
statistics to social-science undergraduates, but from past experience I felt that the command-
line interface to R would present an obstacle to many students. The software that I used in
this course over the previous decade or so—first Minitab and then SPSS—was not software
that I used in my own work. Moreover I did not feel that I could ask my students to purchase
software for the class, which already requires them to buy a relatively expensive textbook
and some other materials. Consequently statistical computing in the course was relegated
to university computer labs. I expect that this is not an uncommon scenario, at least at
universities that do not offer attractive site-licensing of statistical software to students.

I expected someone else with more experience in GUI development to produce a suitable GUI
for R, but when nothing that I could use in my course materialized by the Spring of 2003,
I decided to explore creating one myself. I looked initially at the facilities provided by the
Windows version of R—for example, the winMenu* and winDialog functions—but quickly
determined that these were inadequate for developing a broadly useful statistical GUI.18

I experimented next with Visual Basic, and although this route to a statistical GUI for R

18The standard “RGui” console to R for Windows furnishes many useful “housekeeping” operations and
amenities (such as installing and loading packages), but does not provide access to the statistical capabilities
of R. The same can be said of the R consoles developed for other computing platforms. The windlgs package—
a source package distributed with the Windows version of R—demonstrates the use of C-code for constructing
statistical menus and dialogs under Windows. This route to a statistical GUI for R, which employs the
GraphApp toolkit on which the RGui console is based, would be feasible—and, in principle, capable of building
a cross-platform GUI—but it would also be relatively difficult.

Journal of Statistical Software 27

appeared to be feasible, I decided against it for several reasons, the most important of which
were the propriety nature of Visual Basic and my desire to produce a cross-platform solution.

I quickly gravitated towards Peter Dalgaard’s tcltk package: The package is available for
all of the major R platforms; it provides a serviceable, if not rich, set of widgets; and most
importantly, the standard Windows version of R installs a basic Tcl/Tk system. The last
point was key, in my view, because the principal target audience for a basic-statistics GUI
consists in large majority of Windows users, many of whom have difficulty installing and
configuring software. By using Tcl/Tk through the tcltk package, I was also able to provide
a GUI as a standard R package, which developed into the Rcmdr. Installing the Rcmdr (and
its dependencies) is simple, especially on Windows systems, and loading the package starts
up the GUI.

Other, arguably more capable, GUI toolkits—such as GTK via the RGtk package (see http:
//www.omegahat.org/RGtk/)—appeared to create obstacles for Windows users. I believe that
use of the tcltk package still provides the most convenient route to a GUI for Windows users,
though I am also aware of several other R GUI projects in addition to the R Commander.19

I look forward to these producing a better statistical GUI than the R Commander that is
usable by relatively naive Windows users.

Using Tcl/Tk entailed several compromises, however: The standard widget set is limited; in
particular, I was unable to employ drop-down lists, tabbed dialogs, and table widgets, which
I would have preferred to use in certain contexts. For example, the data set viewer in the
Rcmdr package—the showData function from the relimp package—would have been more
naturally programmed using a table widget, as would the Rcmdr Enter Two-Way Table and
Test Linear Hypothesis dialogs. Similarly, providing options on an Options tab would produce
cleaner and more uniform dialog boxes. There are extended widget sets available for Tcl/Tk,
but because these are not part of the standard installation of R for Windows, I reluctantly
ruled out their use.20

Another limitation of Tcl/Tk is that while it is available on all of the major platforms that
run R, its look and feel is non-standard on all of these platforms. Nevertheless, I have been
able to tune the behavior of the R Commander GUI to be very similar to that of a standard
Windows application.

Some problems remain: On the Macintosh (as mentioned), applications such as the R Com-
mander that use the tcltk package must run under X-Windows and require software that is
not installed on out-of-the-box OS/X systems; the appearance of the R Commander GUI is
not as attractive on Linux systems as it is on Windows systems, although the cosmetics can
be improved by carefully selecting fonts and font sizes (as supported by R Commander op-
tions); and there are some (if now greatly reduced) stability problems on Windows systems,
stemming from the integration of the Tcl/Tk and R event loops.

The initial version of the Rcmdr package (numbered 0.5-0)21, with perhaps half the content

19To elaborate slightly, at the time of writing, the web page for the RGtk package (downloaded on 31 August
2005, and dated 4 September 2003) states: “There is currently no version [of] this package for Windows
available. I have compiled one and it works. However, I need to enhance the event loop integration.” I
understand from a reviewer of this paper that RGtk does work with Windows, but as far as I have been able to
ascertain, Windows binaries are not available, and building the package for Windows is relatively complicated.

20This situation may change, however: Philippe Grosjean is working on an extension to the tcltk package
that provides additional widgets (see http://www.sciviews.org/SciViews-R/).

21Early development of the project was done prior to creating a package.

http://www.omegahat.org/RGtk/
http://www.omegahat.org/RGtk/
http://www.sciviews.org/SciViews-R/

28 The R Commander: A Basic-Statistics GUI to R

of the current version, was completed in about a month, and somewhat later, in the Summer
of 2003, was contributed to CRAN. The range of features supported by the R Commander
grew gradually over the following two years, but a number of conventions established in this
early version of the package persist:

• The interface uses standard menus, most of which lead to simple dialog boxes. As
mentioned, the limited range of R-Commander dialog-box elements is the product of
the restricted standard Tk widget set, but the simplicity and familiarity of the in-
terface is deliberate. The object was to produce an interface that students would
be able to learn and negotiate with little trouble. Though it is less extensive and
less polished, the R Commander GUI is similar in many respects to other GUIs to
command-oriented statistical software, such as SPSS (http://www.spss.com/) and
Minitab (http://www.minitab.com/): The basic model of work-flow is procedural.
This contrasts with statistical packages [such as JMP (http://www.jmp.com/) or Vista
(http://www.visualstats.org/)] that are meant to be pedagogically innovative.

• The set of top-level menus in Version 0.5-0 was the same as the current one, except
that a Tools menu was introduced much later. The R Commander menus were initially
“hard-wired” in the package code, but were later made configurable via a text file. In
other instances as well, features in the package were made more flexible and configurable.
For example, the Rcmdr originally supported only linear and generalized linear models;
now, the range of supported models has expanded and can be augmented by the user.22

• Typical R Commander dialog boxes have one or more scrollable variable-list boxes at the
top; check boxes and radio buttons for selecting options below that; and OK, Cancel,
and Help buttons at the bottom. Some dialog boxes have buttons that produce sub-
dialogs displayed over the main dialog. I have tried to use this arrangement sparingly,
and could have avoided it altogether were tabbed dialogs available in the Tk widget set
supported under Windows by the tcltk package.

• Menus and dialog boxes generate R commands (whence the name, “R Commander”) that
are saved in a script window (originally called a “log”). These commands call basic R
functions, functions in the “recommended”packages that are part of the standard R dis-
tribution, and—as necessary—functions in contributed packages available from CRAN.
Although I tried to avoid it, in a few instances, I introduced additional statistical func-
tionality to the Rcmdr package: for example, functions to compute alpha-reliability for
composite scales and to compute partial-correlation matrices. These functions, summa-
rized in Table 5 in the next section of the paper, are usable independently of the Rcmdr
GUI. Generating commands to be executed was not the only route to go: Statistical
computations could have been, at least partly, subsumed in the code for the Rcmdr
package, and the details of the computations hidden from the user. To do so, however,
would have wasted some of the effort put into developing the statistical capabilities of
R, and would also have contradicted one of the goals of the R Commander project—to
draw a visible connection between choices made in the GUI and R commands.

22See the next section for the composition of the menu-definition file and information on how to extend the
Rcmdr package.

http://www.spss.com/
http://www.minitab.com/
http://www.jmp.com/
http://www.visualstats.org/

Journal of Statistical Software 29

• Statistical analyses are performed on an active data set, which is a standard R data
frame. An alternative would be to allow the user to select a data set in each dialog,
with the selection defaulting to the previous one. This seems to me to offer no advantage
over the current scheme. Another possibility would be to permit multiple data frames
to be attached to the search path. This approach provides more flexibility in handling
data, but I find that even more advanced students than those in introductory statistics
classes have difficulty dealing with issues, such as objects masking each other, that
arise from managing the search path.23 For similar reasons, all variable creation (for
example, by the Recode and Compute dialogs, and the computation of residuals or other
“case statistics” for statistical models) takes place in the active data set; an alternative
would have been to allow variables to be created in the global environment, but such
an approach risks doing damage, creating conflicts, and generating potentially cryptic
errors.

• Similarly, operations on statistical models via the Models menu are performed primarily
on an active statistical model, which is kept synchronized with the active data set—
when the active data set is changed, there is initially no active model, and when an
active model is selected from among recognized model objects in memory, the active
data set is changed to the data frame on which that model was fit. This procedure is
a bit constraining for advanced users (who will, I believe, in any event prefer to specify
commands directly), but it helps novices to keep things straight.

• Menus and dialog boxes produce R commands as text strings. The R Commander causes
these commands to be parsed and evaluated in the global R environment. Having the
commands available as text is convenient for entry into the script and output windows,
but I am not entirely satisfied with this approach: In particular, building text commands
can be awkward, and the code to do so hard to read. My early efforts to proceed
with tools such as eval, substitute, and expression were not successful, however.
Likewise, although it has successively been improved, the script window is much less
than a true R console, something that I have been unable to provide in a platform-
independent manner.

• The original R Commander had a toolbar below the menu bar with information fields
displaying the names of the active data set and active statistical model; buttons for edit-
ing and viewing the active data set; and a check box for determining whether commands
were echoed to the script window. Somewhat later, the data-set and statistical-model
information fields morphed into buttons that could be used to select the active data set
and model, the log window became the current script window, and the check box was
removed. A button was provided to submit lines in the script window for re-execution.

• Initially, output was directed to the R console. Although this arrangement is retained as
an option, an output window was introduced, which receives printed output by default.

• Error messages and warnings were initially printed in the R console. Later, such mes-
sages were intercepted and presented to the user in pop-up message windows. Currently,

23Until recently, the active data set in the R Commander was, by default, attached to the search path, but
that procedure was unnecessary, and led to awkwardly repetitive attaches and detaches of data frames.

30 The R Commander: A Basic-Statistics GUI to R

error messages and warnings (along with other messages) are directed to a messages win-
dow. The main R Commander window therefore has evolved from one, to two, and then
to three text sub-windows. The script and output windows are editable.

Along the way, many changes were made “beneath the hood” to improve the performance and
maintainability of the Rcmdr package. At one point, for example, the size of the Rcmdr code
was reduced by nearly 40 percent by modularizing repetitive elements, primarily in dialog-
box generating functions. Some of this modularization employs macro-like functions (Lumley
2001).24 At present, functions that create Rcmdr dialog boxes consist mostly of calls to utility
functions to initialize and close a dialog, and to construct common elements such as variable
lists, sets of radio buttons and check boxes, and the OK, Cancel, and Help buttons at the
bottom of the dialog box. This process is illustrated in the next section.

Similarly, the original Rcmdr saved a great deal of state information in global variables,
such as the name of the active data set, the names of variables within the active data set,
and various options. Currently, all of this state information is saved instead in a special
environment—a much neater and less problematic solution (see the functions getRcmdr and
putRcmdr in Table 1 below).

3.1. How well has the R Commander met its goals?

Ease of use Over the years, I have used a variety of statistical software in introductory-
statistics courses—more, indeed, than I would care to enumerate. Although I do not
have formal evidence about the relative usability of the R Commander in this context,
I can report that in the two years that I have been using it, students appear to have
virtually no trouble in completing course assignments requiring the software. I have
also had positive feedback from other individuals who have used the Rcmdr package
for statistical instruction. This experience compares favorably with the other statistical
software that I have used in teaching.

Coverage The R Commander now is much more extensive than required for the basic statis-
tics texts that I have examined, and can reasonably support most of a low-level course
in applied regression analysis.

Cross-platform functionality My own experience with the Rcmdr package is primarily
under Windows, where the software works quite well. As mentioned, I and others also
have used it successfully under Linux. Installation and use under Macintosh OS/X
is possible but more challenging at present. I have occasionally received reports of
particular aspects of the software proving problematic on non-Windows systems, but
these have been isolated—for example, to the 3D scatterplots dialog, which depends
upon the rgl package.25

Extensiblity As described in the next section, extension of the Rcmdr package requires
some programming and editing of configuration files, though not necessarily rebuilding

24My initial attempts to provide common Tk dialog-box elements—such as sets of OK, Cancel, and Help
buttons, check-boxes, radio-buttons, etc.—via standard R functions failed because of scoping problems. Macro-
like functions, which execute in the environment of the calling function, provided a solution.

25I understand that a new version of the rgl package should resolve stability issues on non-Windows platforms.

Journal of Statistical Software 31

the package itself. This process is facilitated by utility functions for the construction
of dialog boxes that the package exports, and by the ability to add to and modify the
Rcmdr menu-definition file, but it does presuppose some familiarity with R, the tcltk
package, and Tcl/Tk itself.

Protecting the novice from errors Where possible, I have tried to limit users’ choices to
those that are reasonable within the current context. For example, the dialog-box for
an independent-samples t-test presents only two-level factors in the variable-list box
for defining groups and only numeric variables in the list-box for the response variable.
Likewise, if there are no two-level factors or no numeric variables in the active data
set (or, indeed, if there is no active data set), then the menu item for an independent-
samples t-test is grayed-out. Errors and warnings are intercepted, and where it has
been possible to anticipate certain kinds of errors, an effort has been made to report
understandable error messages.

To expose users to R commands The script window displays the R commands that the
R Commander GUI generates, but it is my impression that most students ignore these
commands. This response probably partly reflects my emphasis on generating and
interpreting the output of statistical procedures, but at least the commands are there
for examination and experimentation. As well, as explained, the R Commander script
window has some deficiencies as a simulated R console.

3.2. What is the future of the R Commander?

If the past is prologue, then I have only limited ability to foresee where the R Commander is
headed. Nevertheless, several potential directions for future development seem clear:

Additional statistical functionality It is safe to predict modest extension of the statistical
capabilities of the R Commander in response to users’ requests and contributions. More
ambitiously, I would like to add high-interaction statistical graphics, such as scatterplots
that support dynamic variable transformations and possibly linkage between different
plots [in the manner of Cook and Weisberg’s Lisp-Stat based Arc software (Cook and
Weisberg 1999)].

Improvements to the code and to usability As I have explained, I have worked over
the code for the Rcmdr package more than once, but there is certainly still room for
improvement—in particular, further elimination of redundancy in the code. At present,
R Commander dialogs are used in Philippe Grosjean’s SciViews GUI for R (http://www.
sciviews.org/SciViews-R/), and it should not be difficult to make these dialogs more
generally available outside of the R Commander GUI itself. Moreover, with the exception
of the statistical-modelling dialogs, R Commander dialog boxes do not “remember” user
selections from one invocation of a dialog to the next; it would not be difficult—though
it might be tedious—to provide this feature. Similarly, if an extended set of Tk widgets
becomes conveniently available to R users of Windows, I could rework the basic layout
of R Commander dialog boxes by incorporating elements such as tabs and drop-down
lists.

http://www.sciviews.org/SciViews-R/
http://www.sciviews.org/SciViews-R/

32 The R Commander: A Basic-Statistics GUI to R

Internationalization Using the localization and internationalization facilities introduced in
version 2.1.0 of R (Ripley 2005), I have prepared a new version of the Rcmdr package
that supports translation into other languages. The current development version of the
package includes translation files for Catalan, French, Japanese, and Slovenian (kindly
provided, consecutively, by Manel Salamero, Philippe Grosjean, Takaharu Araki, and
Jaro Lajovic), and translations into several other languages are underway.

4. Extending the R Commander

As is the case for any R package, a user can modify the source code for the Rcmdr package and
rebuild the package. Two features make it possible to modify or add to the Rcmdr package
without rebuilding it, however:

1. The R Commander menus are defined in the plain-text (ASCII) file Rcmdr-menus.txt,
which resides in the package’s etc directory. Modifying this file changes the menus.
The format of the file is described below.

2. Files with extension (file type) .R in the etc directory are “sourced” (read into memory)
when the R Commander starts up. Consequently, functions and variables defined in .R
files are available in the global environment.

The following example assumes some familiarity with Tcl/Tk (Welch 2000) and the tcltk
package (Dalgaard 2001, 2002): Suppose that we want to provide a menu-item and dialog
box for multivariate Box-Cox transformations to normality. The car package (Fox 2002),
which is one of the packages that Rcmdr loads at startup, contains a function to perform
the necessary computations, box.cox.powers. Because none of the existing R Commander
menus seems appropriate, I will add a Transform menu under Statistics, with the single item
Multivariate Box-Cox transformations. . . . This item will lead to a dialog box to select the
variables to be transformed. Finally, I will write a function, named BoxCox, to construct the
dialog box and invoke box.cox.powers.

The modified Rcmdr-menus.txt is as follows, eliding most of the lines in the file (the elisions
are marked by widely spaced ellipses, . . .). I have also “wrapped” each line in the file to
fit on the page, and inserted a blank line between each menu definition.26

R Commander Menu Definitions

last modified 26 March 2005 by J. Fox

type menu/item operation/parent label
command/menu activation

menu fileMenu topMenu ""
"" ""

26The reader may wish to print the Rcmdr-menus.txt file in landscape mode.

Journal of Statistical Software 33

item fileMenu command "Open script file..."
loadLog ""

item fileMenu command "Save script..."
saveLog ""

item fileMenu command "Save script as..."
saveLogAs ""

. . .

menu statisticsMenu topMenu ""
"" ""

menu summariesMenu statisticsMenu ""
"" ""

item summariesMenu command "Active data set"
summarizeDataSet "activeDataSetP()"

. . .

item modelsMenu command "Multinomial logit model..."
multinomialLogitModel "factorsP() && packageLoaded(’nnet’)"

item modelsMenu command "Proportional-odds logit model..."
proportionalOddsModel "factorsP() && packageLoaded(’MASS’)"

menu transformMenu statisticsMenu ""
"" ""

item transformMenu command "Multivariate Box-Cox transformations..."
BoxCox "numericP() && packageLoaded(’car’)"

item topMenu cascade "Statistics"
statisticsMenu ""

item statisticsMenu cascade "Summaries"
summariesMenu ""

. . .

item statisticsMenu cascade "Fit models"
modelsMenu ""

34 The R Commander: A Basic-Statistics GUI to R

item statisticsMenu cascade "Transform"
transformMenu ""

menu graphsMenu topMenu ""
"" ""

. . .

• Each line in the file contains six entries (fields) and defines either a menu or a menu
item.

• Each menu has a “parent” menu; top-level menus, such as File and Statistics, have
topMenu as their parent. Menu definition requires two lines: One to create the menu
and another to place it under its parent.

• The “operation/parent” field in each line contains the parent menu (for menu creation),
cascade (for placing a menu under its parent), or command (for a menu item that invokes
a command).

• The “label” field contains the text that labels a menu or menu item. By convention,
menu items leading to dialog boxes have labels ending in ellipses,

• The “command/menu” field contains the name of a function to be invoked by a menu
item, or the name of a menu to be installed.

• The “activation” field contains a quoted R expression that, when evaluated, indicates
whether a menu item is to be active, if the expression is TRUE, or inactive (“grayed out”),
if it is FALSE. The Rcmdr package exports a number of functions (see the discussion be-
low and Table 2) to test the current state of the R Commander—for example, numericP
(a “predicate” to test for the presence, and possibly sufficient number, of numeric vari-
ables in the active data set), factorsP (to test for the presence and number of factors),
and packageLoaded (to test whether a specific R package has been loaded). The status
of menus is assessed at R Commander start-up; it is reassessed when the active data
set or active statistical model changes, and whenever the function activateMenus is
invoked. If the activation condition is empty (i.e., if the field contains ""), then the
corresponding menu item is always active.

• The last three fields are empty ("") for menu (as opposed to item) lines.

Note the line in the modified Rcmdr-menus.txt file creating transformMenu as a child of
statisticsMenu; the line creating the Box-Cox item under transformMenu; and the line
cascading transformMenu under statisticsMenu. (These lines are indented two additional
spaces in the file listing.)

The remaining task is to write the BoxCox function. The Rcmdr package exports a number of
functions to assist in writing dialogs and performing computations; these are shown in Tables
1 through 5.27

27Some of the functions are provided for convenience: For example Factors simply calls listFactors with
no argument, which defaults to the active data set.

Journal of Statistical Software 35

Function Purpose
activeDataSet Returns or sets the name of the active data set.
ActiveDataSet Returns the name of the active data set.
activeModel Returns or sets the name of the active model.
ActiveModel Returns the name of the active model.
Factors Names of factors in the active data set.
getRcmdr Retrieve an object from the Rcmdr environment.
GrabFocus Returns (or sets) the grab-focus status.
listDataSets Lists names of data frames, by default in the global environment.
listFactors Lists names of factors in a data set.
listGeneralizedLinearModels Lists names of glm objects, by default in the global environment.
listLinearModels Lists names of lm objects, by default in the global environment.
listNumeric Lists names of numeric variables in a data set.
listTwoLevelFactors Lists names of two-level factors in a data set.
listVariables Lists names of variables in a data set.
Numeric Returns names of numeric variables in the active data set.
putRcmdr Store an object in the Rcmdr environment.
twoLevelFactors Names of two-level factors in the active data set.
UpdateModelNumber increment (or otherwise change) the model number.
Variables Names of variables in the active data set.

Table 1: Functions exported by the Rcmdr package for setting and retrieving information .

Function Purpose
activeDataSetP TRUE if there is an active data set; FALSE otherwise.
activeModelP TRUE if there is an active model.
dataSetsP TRUE if there are data sets in memory.
factorsP TRUE if there are (sufficient) factors in the active data set.
glmP TRUE if the active model is a glm object.
hclustSolutionsP TRUE if there are hclust objects in memory.
lmP TRUE if the active model is an lm object.
modelsP TRUE if there are statistical models in memory.
NumericP TRUE if there are (sufficient) numeric variables in the active data set.
packageLoaded Check whether a specific package is loaded.
twoLevelFactorsP TRUE if there are (sufficient) two-levels factors in the active data set.

Table 2: “Predicate” functions exported by the Rcmdr package. These functions are used to
determine menu-item activation.

36 The R Commander: A Basic-Statistics GUI to R

Function Purpose
checkBoxes * Constructs a set of check boxes.
closeDialog * Close a dialog box.
dialogSuffix * Housekeeping to complete dialog definition.
errorCondition * Reports an error and (optionally) restarts the dialog.
getFrame Returns the frame of a listbox object.
getSelection Returns the currently selected elements of a listbox object.
groupsBox * Constructs a button and sub-dialog box for selecting a grouping factor.
groupsLabel * Constructs a text field that shows the currently selected groups.
initializeDialog * Initial housekeeping for a Tk dialog box.
modelFormula * Constructs a dialog component for entering a model formula.
OKCancelHelp * Constructs OK, Cancel, and Help buttons.
radioButtons * Constructs a set of related radio buttons.
subOKCancelHelp * Constructs OK, Cancel, and Help buttons for a sub-dialog.
subsetBox * Constructs a text box for entering a subsetting expression.
variableListBox Constructs an object containing a scrollable list box.

Table 3: Functions exported by the Rcmdr package that build elements of dialog boxes.
* Functions marked with an asterisk are “macro-like” in their behavior, in that they execute in
the environment of the calling function. These functions were created with a slightly modified
version of Thomas Lumley’s defmacro function (Lumley 2001).

Function Purpose
activateMenus Enable or disable menu items.
checkReplace Allows user to verify replacement of an object.
CommanderWindow Returns the Tk R Commander window.
doItAndPrint Executes a command, given as a character string, prints command and output.
is.valid.name Checks that a character string is a valid R name.
justDoIt Executes a character string without echoing it to the script window.
logger Echoes a character string to output window without executing it.
logWindow Returns the Tk Script window.
Message Writes a message into the messages window.
MessagesWindow Returns the Tk Messages window.
OutputWindow Returns the Tk Output window.

Table 4: Miscelaneous functions exported by the Rcmdr package.

Journal of Statistical Software 37

Function Purpose
assignCluster Create a cluster-membership variable.
bin.var Bin a numeric variable.
colPercent Column percentage table.
Confint Confidence intervals.
KMeans K-means clustering.
partial.cor Matrix of partial correlations.
plotMeans Plot profiles of means by one or two factors.
reliability Reliability of composite scales.
scatter3d Dynamic 3D scatterplot with regression surfaces.
stem.leaf Stem-and-leaf displays.

Table 5: Statistical functions exported by the Rcmdr package. stem.leaf, for high-quality
stem-and-leaf displays, was generously made available to me by Peter Wolf. I am grateful to
Dan Putler for contributing assignCluster, bin.var, and KMeans.

The dialog box to be created is very simple: It should have a variable list from which one or
more numeric variables are to be selected, along with OK, Cancel, and Help buttons. A rela-
tively painless procedure is to find an Rcmdr dialog that is similar and modify it, rather than
creating code from scratch. In this case, I started with the code for the scatterPlotMatrix
dialog, removing a number of unnecessary elements and making small changes. The resulting
code is as follows:

BoxCox <- function(){
initializeDialog(title="Box-Cox Transformations")
variablesBox <- variableListBox(top, Numeric(), selectmode="multiple",

title="Select variables (one or more)")
onOK <- function(){

variables <- getSelection(variablesBox)
if (length(variables) < 1) {

errorCondition(recall=BoxCox,
message="You must select one or more variables.")

return()
}

closeDialog()
command <- paste("box.cox.powers(na.omit(cbind(",

paste(paste(variables, "=", ActiveDataSet(), "$", variables, sep=""),
collapse=", "), ")))", sep="")

doItAndPrint(command)
tkfocus(CommanderWindow())

A few exported functions are retained for backwards compatibility with older versions of the Rcmdr package:
checkActiveDataSet, checkActiveModel, checkFactors, checkNumeric, checkTwoLevelFactors, and check-

Variables.
In addition, a few exported functions are not really for users: commanderPosition, is.SciViews, RcmdrT-

clSet, and RcmdrPager.
Finally, some S3 methods are exported: glm and default methods for Confint; reliability and stem.leaf

methods for print; and listbox methods for getFrame and getSelection.

38 The R Commander: A Basic-Statistics GUI to R

}
OKCancelHelp(helpSubject="box.cox.powers")
tkgrid(getFrame(variablesBox), sticky="nw")
tkgrid(buttonsFrame, sticky="w")
dialogSuffix(rows=2, columns=1)
}

Notice that the dialog box is built and manipulated almost entirely by calls to functions
exported by the Rcmdr package—making it simple, for example, to produce the variable-list
box and the row of buttons at the bottom of the dialog. An illustrative dialog box created
by the BoxCox function appears in Figure 17.

Figure 17: An illustrative dialog box produced by the BoxCox function.

The only potentially difficult part of the code is assembling the text string for the
box.cox.powers command: The coding here is a bit complicated because box.cox.powers
wants a numeric matrix as its argument, with the names of the variables as the column names.
Notice the use of doItAndPrint to execute the command, send the command to the script
window, and send the command and output to the output window. This approach will work
in most cases.

The code for this example is in the file BoxCox.demo in the etc directory of the Rcmdr
package. Rename the file to BoxCox.R to activate it. Likewise, the Rcmdr-menus.txt file dis-
tributed with the package contains commented-out lines for the example; remove the comment
characters (#) from the beginnings of these lines to activate them.

5. Some suggestions for instructors

At the beginning of my introductory-statistics course, I distribute a manual for the R Com-
mander based on the second section of this paper. When the software is required during the
course, I begin by demonstrating its use for a particular kind of task, such as constructing
a contingency table or performing a regression analysis, that is similar to the work that the
students will do. Assignments that entail the use of the software are accompanied by direc-
tions that point the students towards the menus and dialogs that they will need. Students
are given the opportunity to do these assignments in a supervised computer lab, but after the
initial assignment, almost all work independently. With the exception of independence from

Journal of Statistical Software 39

the lab, this is essentially the same strategy that I previously employed with other statistical
software.

Some of the social-science students whom I encounter in introductory statistics classes have
difficulty installing and configuring software. I imagine that this situation varies with disci-
pline and locale, but I also expect that it is reasonably common. I assume here that students
will be using R and the R Commander under Windows, but it should not be hard to transpose
these suggestions to other operating systems.28

I distribute to students a CD/ROM with a live, installed version of R, including all necessary
packages, and configured to open R in SDI mode, to load the Rcmdr package at startup, and
to use compiled HTML help in R. Students can simply double-click on the file Run-R.bat in
the root directory of the CD to start R. This batch file contains a single line:29

start rw2001pat\bin\Rgui.exe

Starting with R version 2.0.1“patched,” it is possible to create a custom installer with packages
additional to the “recommended” R packages and modified configuration files. Details are in
the file
src\gnuwin32\installer\INSTALL of the R source distribution. A few tips:

• Although you have to download and unpack the R source distribution, you do not have
to compile your own R Windows binary.

• You do have to install some the tools for building R, however, including Perl and the
Inno Setup software for building Windows installers. Inno Setup should be installed at
c:\packages\inno4 (not in the default location under Program Files); alternatively,
you can edit the MkRules file in the R source distribution to reflect the location of Inno
Setup. See http://www.murdoch-sutherland.com/Rtools/ for further information.

• The binary installation that you use as the“target” for the installer should be a complete
installation of R—e.g., including all manuals, HTML help pages, etc.

I include a ReadMe.txt file in the root directory of the CD with the following contents:

Installing the R Software and Data Files From the CD/ROM

This CD/ROM is intended for Windows 9x, ME, NT, 2000, and XP systems.
The CD/ROM contains the following files and directories:

o The file rw2001pat.exe will install the R software on your computer
and configure it for use in the course. Double-click on the
file in the Windows Explorer to initiate the installation process.
You can take all of the defaults in the R installer.

28As mentioned, an unfortunate exception at present is the Macintosh under OS/X, where more configuration
is necessary to get the tcltk package to work. The rgl package, used in the Rcmdr for 3D scatterplots, also
requires additional configuration on Macintosh systems.

29This following information refers to R version 2.0.1 patched, version 4 of Inno Setup, etc. Of course, these
should be adjusted to current versions.

http://www.murdoch-sutherland.com/Rtools/

40 The R Commander: A Basic-Statistics GUI to R

o The file AdbeRdr60_enu_full.exe will install the Adobe Reader version
6.0 on your computer. This is a viewer for PDF files; you do not have
to install the Adobe Reader if you already have it or another PDF file
viewer installed on your computer. You need a PDF file viewer to
read the R Commander manual and the R manuals. Double-click on the file
to initiate installation.

o The directory rw2001pat\ contains a pre-installed copy of R that can
be run directly from the CD/ROM. Double-click on the file Run-R.bat
in the Windows Explorer to run R from the CD/ROM.

o The directory R-Packages\ contains zip files for all of the
packages on CRAN (the Comprehensive R Archive Network).

Note: Depending upon how your version of Windows is configured, you
may not see the file types ".bat" and ".exe" referred to here.

R is free software. Most of it is distributed under the GNU General Public
License; see the files rw2001pat\COPYING and rw2001pat\COPYRIGHTS for details.
Individual R packages have various licenses; license information is given
in the DESCRIPTION file of each package.

Prepared by John Fox <jfox@mcmaster.ca> 14 December 2004

Finally, the Rprofile file has the following contents:

options(chmhelp=TRUE)
library("Rcmdr")

while the Rconsole file contains the line

MDI = no

along with its other, unmodified, contents.

Acknowledgements

The work described in this paper was supported by a grant from the Social Science Research
Board of McMaster University. I am grateful to Michael Ash, Philippe Grosjean, Martin
Maechler, Dan Putler, and Peter Wolf, who have contributed code to the Rcmdr package
described in this paper. Many individuals—too numerous to name here—have assisted me
with suggestions and bug reports; they are acknowledged in the CHANGES file distributed with
the package. I am also grateful to Tony Christensen for research assistance; to Bob Andersen
for comments on a draft of this paper; and to two anonymous reviewers of earlier versions of
the paper for their incisive criticisms and constructive suggestions. Finally, I wish to thank
Peter Dalgaard for the tcltk package on which the Rcmdr package is based, and the other
members of the R core team and the several package authors on whose work the statistical

Journal of Statistical Software 41

functionality of the R Commander rests. This is a revised version of a paper presented at the
useR! Conference, Vienna, May 2004.

References

Chambers JM, Hastie TJ (eds.) (1992). Statistical Models in S. Wadsworth, Pacific Grove
CA.

Cook RD, Weisberg S (1999). Applied Regression Including Computing and Graphics. Wiley,
New York.

Dalgaard P (2001). “A Primer on the R-Tcl/Tk Package.” R News, 1(3), 27–31.

Dalgaard P (2002). “Changes to the R-Tcl/Tk Package.” R News, 2(3), 25–71.

Fox J (2002). An R and S-PLUS Companion to Applied Regression. Sage, Thousand Oaks
CA.

Fox J (2003). “Effect Displays in R for Generalised Linear Models.” Journal of Statistical
Software, 8(15), 1–27.

Ihaka R, Gentleman R (1996). “R: A Language for Data Analysis and Graphics.” Journal of
Computational and Graphical Statistics, 5, 299–314.

Lumley T (2001). “Programmer’s Niche: Macros in R.” R News, 1(3), 11–13.

Moore DS (2000). The Basic Practice of Statistics, Second Edition. Freeman, New York.

Moore DS (2004). The Basic Practice of Statistics, Third Edition. Freeman, New York.

R Core Development Team (2004). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna.

Ripley BD (2005). “Internationalization Features of R 2.1.0.” R News, 5(1), 2–7.

Venables WN, Ripley BD (2002). Modern Applied Statistics with S, Fourth Edition. Springer,
New York.

Welch BB (2000). Practical Programming in Tcl and Tk. Prentice Hall, Upper Saddle River
NJ.

Wilkinson GN, Rogers CE (1973). “Symbolic Description of Factorial Models for Analysis of
Variance.” Applied Statistics, 22, 392–399.

42 The R Commander: A Basic-Statistics GUI to R

Affiliation:

John Fox
Department of Sociology
McMaster University
Hamilton, Ontario
Canada L8S 4M4
E-mail: jfox@McMaster.ca
URL: http://socserv.mcmaster.ca/jfox/

Journal of Statistical Software Submitted: 2004-07-22
September 2005, Volume 14, Issue 9. Accepted: 2005-08-19
http://www.jstatsoft.org/

mailto:jfox@McMaster.ca
http://socserv.mcmaster.ca/jfox/
http://www.jstatsoft.org/

	Background and motivation
	Using the R Commander
	Starting the R Commander
	Data input
	Reading data from a text file
	Entering data directly
	Reading data from a package

	Creating numerical summaries and graphs
	Statistical models
	Odds and ends
	Saving and printing output
	Terminating the R Session
	Entering commands in the script window

	Design and development of the R Commander
	How well has the R Commander met its goals?
	What is the future of the R Commander?

	Extending the R Commander
	Some suggestions for instructors

