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Abstract: Rank order or so–called “non–parametric” methods are in fact based on population parameters, which
are zero under the null hypothesis. Two of these parameters are Kendall’s τa and Somers’ D, the parameter
tested by a Wilcoxon rank–sum test. Confidence limits for these parameters are more informative than P–values
alone, for three reasons. First, confidence intervals show that a high P–value does not prove a null hypothesis.
Second, for continuous data, Kendall’s τa can often be used to define robust confidence limits for Pearson’s
correlation by Greiner’s relation. Third, we can define confidence limits for differences between two Kendall’s
τas or Somers’ Ds, and these are informative, because a larger Kendall’s τa or Somers’ D cannot be secondary
to a smaller one. The program somersd calculates confidence intervals for Somers’ D or Kendall’s τa, using
jackknife variances. There is a choice of transformations, including Fisher’s z, Daniels’ arcsine, Greiner’s ρ,
the z–transform of Greiner’s ρ, and Harrell’s c. A cluster() option is available for clustered samples. The
funtype() option allows the user to estimate between–cluster, within–cluster or Von Mises versions of Somers’ D
or Kendall’s τa. The wstrata() option allows the user to estimate stratified versions of Somers’ D or Kendall’s
τa, which can be used to measure associations between a predictor and an outcome within strata specified by
the values of a confounder. The cenind() option allows the user to specify left or right censorship indicators
for the X and/or Y variables. The estimation results are saved as for a model fit, so that differences can be
estimated using lincom.
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1 Syntax

somersd
[
varlist

][
weight

][
if exp

][
in range

][
, taua tdist transf(transformation name)

cenind(cenind list) cluster(varname) cfweight(expression) funtype(functional type)
wstrata(varlist) bstrata(varlist | n) notree level(#) cimatrix(new matrix)

]

where transformation name is one of

iden | z | asin | rho | zrho | c

and functional type is one of

wcluster | bcluster | vonmises

and cenind list is a list of variable names and/or zeros.

fweights, iweights and pweights are allowed; see help for weight. They are treated as described in Interpretation
of weights and Methods and formulas below.

bootstrap, by, jackknife, statsby, and svy jackknife are allowed; see help for prefix.

1.1 Description

somersd calculates the rank order statistics Somers’ D (corresponding to rank–sum tests) and Kendall’s τa,
with confidence limits. Somers’ D or Kendall’s τa is calculated for the first variable of varlist as a predictor of each
of the other variables in varlist, with estimates and jackknife variances and confidence intervals output and saved in
e() as if for the parameters of a model fit. It is possible to use lincom to output confidence limits for differences
between the population Somers’ D or Kendall’s τa values.

1.2 Options

taua causes somersd to calculate Kendall’s τa. If taua is absent, then somersd calculates Somers’ D.

tdist specifies that the estimates are assumed to have a t–distribution with N − 1 degrees of freedom, where N is
the number of clusters if cluster() is specified, or the number of observations if cluster() is not specified.

transf(transformation name) specifies that the estimates are to be transformed, defining estimates for the trans-
formed population value. iden (identity or untransformed) is the default. z specifies Fisher’s z (the hyperbolic
arctangent), asin specifies Daniels’ arcsine, rho specifies Greiner’s ρ (Pearson correlation estimated using
Greiner’s relation), zrho specifies the z–transform of Greiner’s ρ, and c specifies Harrell’s c. If the first variable
of varlist is a binary indicator of a disease and the other variables are quantitative predictors for that disease,
then Harrell’s c is the area under the reciever operating characteristic (ROC) curve.

cenind(cenind list) specifies a list of left– or right–censorship indicators, corresponding to the variables mentioned in
the varlist. Each censorship indicator is either a variable name or a zero. If the censorship indicator corresponding
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to a variable is the name of a second variable, then this second variable is used to indicate the censorship status
of the first variable, which is assumed to be left–censored (at or below its stated value) in observations in which
the second variable is negative, right–censored (at or above its stated value) in observations in which the second
variable is positive, and uncensored (equal to its stated value) in observations in which the second variable
is zero. If the censorship indicator corresponding to a variable is a zero, then the variable is assumed to be
uncensored. If cenind() is unspecified, then all variables in the varlist are assumed to be uncensored. If the list
of censorship indicators specified by cenind() is shorter than the list of variables specified in the varlist, then
the list of censorship indicators is completed with the required number of zeros on the right.

cluster(varname) specifies the variable which defines sampling clusters. If cluster is defined, then the between–
cluster Somers’ D or τa is calculated, and the variances are calculated assuming that the data are sampled from
a population of clusters, rather than a population of observations.

cfweight(expression) specifies an expression giving the cluster frequency weights. These cluster frequency weights
must have the same value for all observations in a cluster. If cfweight() and cluster() are both specified, then
each cluster in the dataset is assumed to represent a number of identical clusters equal to the cluster frequency
weight for that cluster. If cfweight() is specified and cluster() is unspecified, then each observation in the
dataset is treated as a cluster, and assumed to represent a number of identical one–observation clusters equal to
the cluster frequency weight. For more details on the interpretation of weights, see Interpretation of weights
below.

funtype(functional type) specifies whether the Somers’ D or Kendall’s τa functionals estimated are ratios of
between–cluster, within–cluster or Von Mises functionals. These three functional types are specified by the
options funtype(bcluster), funtype(wcluster) or funtype(vonmises), respectively. If funtype() is not
specified, then funtype(bcluster) is assumed, and between–cluster functionals are estimated. The within–
cluster Somers’ D is a generalization of the confidence interval corresponding to the sign test (see [R] signrank).
The Gini coefficient is a special case of the clustered Von Mises Somers’ D. For further details, see Methods
and Formulas.

wstrata(varlist) specifies a list of variables whose value combinations are the W–strata. If wstrata() is specified,
then somersd estimates stratified Somers’ D or Kendall’s τa parameters, applying only to pairs of observations
within the same W–stratum. These parameters can be used to measure associations within strata, such as
associations between an outcome and an exposure within groups defined by values of a confounder, or by values
of a propensity score based on multiple confounders.

bstrata(varlist | n) specifies the B–strata. If bstrata() is specified, then somersd estimates Somers’ D or Kendall’s
τa parameters specific to pairs of observations from different B–strata. These B–strata are either combinations
of values of a list of variables (if varlist is specified) or the individual observations (if n is specified). B–strata
will not often be required. However, if we are estimating the within–cluster Kendall’s τa (using the options taua
funtype(wcluster)), then the additional option bstrata( n) will ensure that the within–cluster Kendall’s τa

can take the whole range of values from -1 (in the case of complete discordance within clusters) to +1 (in the
case of complete concordance within clusters).

notree specifies that somersd does not use the default search tree algorithm based on Newson (1987), but instead
uses a trivial algorithm, which compares every pair of observations and requires much more time with large
datasets. This option is rarely used except to compare performance.

level(#) specifies the confidence level, in percent, for confidence intervals of the estimates; see [R] level.

cimatrix(new matrix) specifies an output matrix to be created, containing estimates and confidence limits for the
untransformed Somers’ D, Kendall’s τa or Greiner’s ρ parameters. If transf() is specified, then the confidence
limits will be asymmetric and based on symmetric confidence limits for the transformed parameters. This option
(like level()) may be used in replay mode as well as in non–replay mode.

If a varlist is supplied, then all options are allowed. If not, then somersd replays the previous somersd estimation
(if available), and the only options allowed are level() and cimatrix().

1.3 Interpretation of weights

somersd inputs up to 2 weight expressions, which are the ordinary Stata weights given by the weight and the
cluster frequency weights given by the cfweight() option. Internally, somersd defines and uses 3 distinct sets of
weights, which are the cluster frequency weights, the observation frequency weights, and the importance weights.

The cluster frequency weights must be the same for different observations in a cluster, and imply that each
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cluster in the input dataset represents a number of identical clusters equal to the cluster frequency weight in that
cluster. If cluster() is not specified, then the individual observatios are clusters, and the cluster frequency weight
implies that each one–observation cluster represents a number of identical one–observation clusters equal to the
cluster frequency weight. The cluster frequency weights are given by cfweight() if that option is specified, are set
to one if cfweight() is unspecified and cluster() is specified, are equal to the ordinary Stata weights if neither
cluster() nor cfweights() is specified and the ordinary Stata weights are fweights, and are equal to one otherwise.

The observation frequency weights are summed over all observations in the input dataset to produce the number
of observations reported by somersd and returned in the estimation result e(N), and are not used in any other way.
They are set by cfweights() if that option is specified and the ordinary Stata weights are not fweights, are equal
to the ordinary Stata weights if cfweight() is unspecified and the ordinary Stata weights are fweights, are equal
to the product of the cfweights() eexpression and the ordinary Stata weights if cfweights() is specified and the
ordinary Stata weights are fweights, and are equal to one otherwise.

The importance weights are used as described in Methods and Formulas below. They are equal to the ordinary
Stata weights if these are specified and either cluster() or cfweight() is specified, are equal to the ordinary Stata
weights if neither of these two options is specified and the ordinary Stata weights are specified as pweights or
iweights, and are equal to one otherwise.

1.4 Saved results

somersd saves in e():
Scalars

e(N) number of observations e(df r) residual degrees of freedom

e(N clust) number of clusters

Macros

e(cmd) somersd e(param) parameter (somersd or taua)

e(parmlab) parameter label in output e(tdist) tdist if specified

e(depvar) name of X–variable e(clustvar) name of cluster variable

e(vcetype) title used to label standard error e(wtype) weight type

e(wexp) weight expression e(cfweight) cfweight() expression

e(funtype) funtype() option e(wstrata) wstrata() option

e(bstrata) bstrata() option e(predict) program called by predict (somers p)

e(transf) transformation specified by transf() e(tranlab) transformation label in output

e(properties) "b V"

Matrices

e(b) coefficient vector e(vV) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

Note that (confusingly) e(depvar) is the X–variable, or predictor variable, in the conventional terminology for
defining Somers’ D. somersd is also different from most estimation commands in that its results are not designed to
be used by predict. If the user tries to do so, then the program somers p is called, and tells the user that predict
should not be used after somersd.

2. Methods and formulas

The population value of Kendall’s τa (Kendall and Gibbons, 1990) is traditionally defined as

τXY = E [sign(X1 −X2) sign(Y1 − Y2)] , (1)

where (X1, Y1) and (X2, Y2) are bivariate random variables sampled independently from the same population, and E[·]
denotes expectation. This definition can be generalized to possibly left– or right–censored and/or stratified and/or
clustered and/or weighted data as follows. Suppose that 4–variate observations (Xi, Ri, Yi, Si) are sampled from an
arbitrary population, using an arbitrary sampling scheme. The Ri are censorship indicators for the corresponding
Xi, and the Si are censorship indicators for the corresponding Yi. These censorship indicators are negative in the
case of left–censorship (where the “true” value of the indicated variable is known to be equal to or less than its
recorded value), positive in the case of right–censorship (in which the “true” value of the indicated variable is known
to be equal to or greater than its recorded value), and zero in the case of non–censorship (in which the “true” value
is known to be equal to the recorded value). We define a “censored sign difference” for two values u and v, with
respective censorship indicators p and q, as

csign(u, p, v, q) =

{ 1, u > v and p ≥ 0 ≥ q
−1, u < v and p ≤ 0 ≤ q
0, otherwise.

(2)
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Given two observations (Xi, Ri, Yi, Si) and (Xj , Rj , Yj , Sj), we will denote the product of csign(Xi, Ri, Xj , Rj)
and csign(Yi, Si, Yj , Sj) as the concordance–discordance difference for the two observations, and say that the two
observations are concordant if this product is 1, discordant if the product is −1, and neither concordant nor discordant
if the product is zero. We can now redefine Kendall’s τa as

τXY = E [csign(Xi, Ri, Xj , Rj) csign(Yi, Si, Yj , Sj)] , (3)

or (in words) as the mean concordance–discordance difference. This expectation can be defined using weights specific
to the observations and/or restrictions to subsets of pairs of observations, defined in terms of the sampling scheme.

The population value of Somers’ D (Somers, 1962) is defined as

DY X =
τXY

τXX
. (4)

Therefore, τXY is the difference between two probabilities, namely the probability that the larger of the two X–values
is associated with the larger of the two Y –values and the probability that the larger X–value is associated with the
smaller Y –value. DY X is the difference between the two corresponding conditional probabilities, given that the two X–
values are known to be unequal. Somers’ D is related to Harrell’s c index by the formula D = 2c−1 (see Harrell et al.,
1982 and Harrell et al., 1996). Kendall’s τa is the covariance between csign(Xi, Ri, Xj , Yj) and csign(Yi, Si, Yj , Sj),
whereas Somers’ D is the regression coefficient of csign(Yi, Si, Yj , Sj) with respect to csign(Xi, Ri, Xj , Rj). The
correlation coefficient between csign(Xi, Ri, Xj , Rj) and csign(Yi, Si, Yj , Sj) is known as Kendall’s τb, and is equal
to the geometric mean of the absolute values of DY X and DXY multiplied by their common sign.

Given a sample of observations (Xi, Ri, Yi, Si), we may estimate and test the population values of Kendall’s τa and
Somers’ D by the corresponding sample statistics τ̂XY and D̂Y X . These are commonly known as “non–parametric”
statistics, even though τXY and DY X are parameters. The two Wilcoxon rank–sum tests (see [R] ranksum and
[R] signrank) both test hypotheses predicting DY X = 0. The two–sample rank–sum test represents the case where
X is a binary variable indicating membership of one of two sub–populations. If the binary X–variable indicates that
a patient has a disease, and the Y –variable is a continuous diagnostic test indicator with high values indicating a
high probability that the patient has the disease, then the area A under the receiver operating characteristic (ROC)
curve, or sensitivity–specificity curve, is linked to Somers’ D by the relation DY X = 2A− 1. (See [R] roc or Hanley
and McNeil, 1982.) The matched–pairs rank–sum test represents the case where there are paired data (Wi1,Wi2),
such that Xi = sign(Wi1 −Wi2), and Yi = |Wi1 −Wi2|. Kendall’s τa is usually tested on “continuous” data, using
ktau (see [R] spearman).

2.1 Motivation for confidence intervals

There are several reasons for preferring confidence intervals to P–values alone:

1. Non–statisticians often quote a “non–significant” result for a “non–parametric” test and argue as if they have
“proved” a null hypothesis, when a confidence interval would show a wide range of other hypotheses which also
fit the data.

2. In the case of continuous bivariate data, there is a correspondence between Kendall’s τa and the better–known
Pearson’s correlation coefficient ρ, known as Greiner’s relation (Kendall and Gibbons, 1990). This states that

ρ = sin
(π

2
τa

)
, (5)

and holds if the joint distribution of X and Y is bivariate normal. Under this relation, Kendall’s τa–values
of 0, ± 1

3 , ± 1
2 and ±1 correspond to Pearson’s correlations of 0, ± 1

2 , ± 1√
2

and ±1, respectively. A similar
correspondence is likely to hold in a wider range of continuous bivariate distributions (Kendall, 1949; Newson,
1987; Newson, 2002).

3. Kendall’s τa has the desirable property that a larger τa cannot be secondary to a smaller τa. That is to say, if
a positive τXY is caused entirely by a monotonic positive relationship of both variables with a third variable
W , then τWX and τWY must both be greater than τXY . If we can show that τXY − τWY > 0 (or, equivalently,
that DXY −DWY > 0), then this implies that the correlation between X and Y is not caused entirely by the
influence of W .

To understand the third point, assume that data points (Wi, Xi, Yi, Si) are sampled independently from a
common population, with discrete probability mass function fW,X,Y,S(·, ·, ·, ·) and marginal probability mass function
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fW,X(·, ·). We assume that the Si are censorship indicators for the corresponding outcome variables Yi, and that the
Xi and Wi are alternative uncensored predictors. Define the conditional expectation

Z(w1, x1, w2, x2) = E [ csign(Y2, S2, Y1, S1) |W1 = w1, X1 = x1,W2 = w2, X2 = x2 ] (6)

for any w1 and w2 in the range of W–values and any x1 and x2 in the range of X–values. If we state that the positive
relationship between Xi and Yi is caused entirely by a monotonic positive relationship between both variables and
Wi, then that is equivalent to stating that

Z(w1, x1, w2, x2) ≥ 0 (7)

whenever w1 ≤ w2 and x2 ≤ x1. However, the difference between the two τa coefficients is

τWY − τXY =2
∑
w

∑
x2<x1

fW,X(w, x1) fW,X(w, x2) Z(w, x1, w, x2)

+ 2
∑

x

∑
w1<w2

fW,X(w1, x) fW,X(w2, x) Z(w1, x, w2, x)

+ 4
∑

w1<w2

∑
x2<x1

fW,X(w1, x1) fW,X(w2, x2) Z(w1, x1, w2, x2). (8)

This difference must be non–negative whenever the inequality (7) applies. In particular, if the distribution of the Wi

and Xi is nearly continuous, then the difference (8) will be dominated by the third term, representing discordant
(Wi, Xi)–pairs.

2.2 Estimation formulas for Somers’ D and Kendall’s τa

Somers’ D and Kendall’s τa, in their various forms, can be expressed as ratios of sample means, Hoeffding
U–statistics or Von Mises V –statistics, depending on the functional type specified by the funtype() option. somersd
works by jackknifing the original means, U–statistics and V –statistics (Arvesen, 1969), and by using Taylor polynomials
to derive variances for the ratios. Normalizing and/or variance–stabilizing transformations may then be applied.

We assume the general case where the observations are clustered, which becomes the familiar unclustered case
when there is one observation per cluster, and that there are N clusters in the sample, sampled from a common
population. We assume that there are one or more indexed W–strata (defaulting to one all–inclusive W–stratum if
wstrata() is not specified). Two slightly different versions of the notation will be used, depending on whether or
not the user has specified B–strata using the bstrata() option.

If there are no B–strata, then we define wfgi, Xfgi, Yfgi, Rfgi and Sfgi to be the importance weight, X–value,
Y –value, X–censorship indicator and Y –censorship indicator, respectively, for the ith observation belonging to the
gth W–stratum in the fth cluster. Not every possible index combination fgi will correspond to an observation, so
all summation over index combinations will be over index combinations corresponding to an observation. For index
combinations fgi and jkm corresponding to observations, we can define

vfgi,jkm =wfgiwjkm,

t
(XY )
fgi,jkm = vfgi,jkm csign(Xfgi, Rfgi, Xjkm, Rjkm) csign(Yfgi, Sfgi, Yjkm, Sjkm). (9)

We will use the usual dot–substitution notation to define (for instance)

vfgi,jk. =
∑
m

vfgi,jkm, t
(XY )
fgi,jk. =

∑
m

t
(XY )
fgi,jkm, vfgi,j.. =

∑

k

vfgi,jk., t
(XY )
fgi,j.. =

∑

k

t
(XY )
fgi,jk., (10)

and any other sums over any other indices. For clusters f and j, we define

φ
(V )
fj =

∑
g

vfg.,jg., φ
(XY )
fj =

∑
g

t
(XY )
fg.,jg.. (11)

In other words, φ
(V )
fj is the sum of pairwise importance weights, and φ

(XY )
fj is the sum of pairwise importance–weighted

concordance–discordance differences, belonging to pairs of observations, in the same W–stratum, of which the first
observation is in cluster f and the second observation is in cluster j. The quantities φ

(V )
fj and φ

(XY )
fj are known as

kernels in the terminology of Chapter 5 of Serfling (1980), and are defined for any pair of clusters.
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If the user has defined B–strata, then we define the kernels φ
(V )
fj and φ

(XY )
fj by a slightly different formula.

We define wfghi, Xfghi, Yfghi, Rfghi and Sfghi to be the importance weight, X–value, Y –value, X–censorship
indicator and Y –censorship indicator, respectively, for the ith observation belonging to cluster f , W–stratum g and
B–stratum h. For index combinations fghi and jklm corresponding to observations, we define

vfghi,jklm =wfghiwjklm,

t
(XY )
fghi,jklm = vfghi,jklm csign(Xfghi, Rfghi, Xjklm, Rjklm) csign(Yfghi, Sfghi, Yjklm, Sjklm), (12)

and for clusters f and j we define

φ
(V )
fj =

∑
g

vfg..,jg.. −
∑

g

∑

h

vfgh.,jgh., φ
(XY )
fj =

∑
g

t
(XY )
fg..,jg.. −

∑
g

∑

h

t
(XY )
fgh.,jgh.. (13)

This time, φ
(V )
fj is the sum of products of importance weights, and φ

(XY )
fj is the sum of importance–weighted

concordance–discordance differences, belonging to pairs of observations, in the same W–stratum and different B–
strata, of which the first observation is in cluster f and the second observation is in cluster j. Note that, if the user
has specified bstrata( n), then every observation is in its own B–stratum, and the second terms in the φ

(V )
fj and

φ
(XY )
fj of (13) will then contain only pairs in which an observation is paired with itself.

The kernels φ
(V )
fj and φ

(XY )
fj of (11) or (13) can be “averaged” over their indices to produce parameters denoted

as V and TXY , respectively. Kendall’s τa and Somers’ D are defined as ratios of these “averages” by

τXY = TXY /V, DY X = TXY /TXX = τXY /τXX . (14)

The way in which the kernels are averaged depends on the funtype() option. If the user specifies funtype(wcluster),
then V and TXY are “within–cluster averages”. If the user specifies funtype(bcluster) (the default), then V and
TXY are “between–cluster averages”. If the user specifies funtype(vonmises), then V and TXY are “overall averages”.
In all cases, we estimate the population parameters V and TXY using sample statistics V̂ and T̂XY as point estimates,
and estimate the sampling variances of these point estimates using a jackknife method, with pseudovalues denoted
ψ

(V )
j and ψ

(XY )
j for the jth cluster.

If the user specifies funtype(wcluster), then somersd estimates the parameters

V = E
[
φ

(V )
jj

]
, TXY = E

[
φ

(XY )
jj

]
. (15)

These functionals are population means of within–cluster kernels, and their point estimates are the corresponding
sample means

V̂ = N−1
N∑

j=1

φ
(V )
jj , T̂XY = N−1

N∑

j=1

φ
(XY )
jj , (16)

and the jackknife pseudovalues for the jth cluster are given by

ψ
(V )
j = φ

(V )
jj , ψ

(XY )
j = φ

(XY )
jj . (17)

If the user has specified funtype(bcluster) (the default) or funtype(vonmises), then somersd estimates the
parameters

V = E
[
φ

(V )
fj

]
, TXY = E

[
φ

(XY )
fj

]
, (18)

for f 6= j. These parameter are known as Hoeffding functionals if clusters f and j are assumed to be sampled without
replacement, and as Von Mises functionals if clusters f and j are assumed to be sampled with replacement. (If the
population from which the clusters are sampled is infinite, then the population Hoeffding functional is equal to the
corresponding population Von Mises functional.)

If the user specifies funtype(bcluster), or does not specify a funtype() option, then the point estimates
of the population Hoeffding functionals are the corresponding sample Hoeffding functionals, or U–statistics in the
terminology of Hoeffding (1948), defined as V̂ = T̂XY = 0 if N = 1, and otherwise as

V̂ =
φ(V )

.. −∑N
j=1 φ

(V )
jj

N(N − 1)
, T̂XY =

φ(XY )
.. −∑N

j=1 φ
(XY )
jj

N(N − 1)
. (19)
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The jackknife pseudovalues for the jth cluster are given by ψ
(V )
j = ψ

(XY )
j = 0 if N = 1, by

ψ
(V )
j = φ

(V )
j. − φ

(V )
jj , ψ

(XY )
j = φ

(XY )
j. − φ

(XY )
jj (20)

if N = 2, and otherwise as

ψ
(V )
j = (N − 1)−1

(
φ(V )

.. −
N∑

k=1

φ
(V )
kk

)
− (N − 2)−1

[
φ(V )

.. −
N∑

k=1

φ
(V )
kk − 2

(
φ

(V )
j. − φ

(V )
jj

)]
,

ψ
(XY )
j = (N − 1)−1

(
φ(XY )

.. −
N∑

k=1

φ
(XY )
kk

)
− (N − 2)−1

[
φ(XY )

.. −
N∑

k=1

φ
(XY )
kk − 2

(
φ

(XY )
j. − φ

(XY )
jj

)]
.

(21)

If the user specifies funtype(vonmises), then the point estimates of the population Von Mises functionals are
the corresponding sample Von Mises functionals, or V –statistics in the terminology of Chapter 5 of Serfling (1980).
These are defined as

V̂ = N−2φ(V )
.. , T̂XY = N−2φ(XY )

.. , (22)

and the jackknife pseudovalues for the jth cluster are given by

ψ
(V )
j = φ

(V )
jj , ψ

(XY )
j = φ

(XY )
jj (23)

if N = 1, and otherwise by

ψ
(V )
j = N−1φ(V )

.. − (N − 1)−1
(
φ(V )

.. − 2φ
(V )
j. + φ

(V )
jj

)
,

ψ
(XY )
j = N−1φ(XY )

.. − (N − 1)−1
(
φ(XY )

.. − 2φ
(XY )
j. + φ

(XY )
jj

)
. (24)

Note that the estimates and jackknife pseudovalues of formulas (15) to (24) can all be expressed in terms of the
φ

(V )
jj , φ

(V )
j. , φ

(XY )
jj and φ

(XY )
j. . Newson (1987) derived an algorithm to calculate these quantities, using binary search

trees, which requires an amount of computation time of order Nobs × log Nobs, where Nobs is the total number of
observations. A version of this algorithm is used by somersd, unless the user specifies the notree option, in which
case somersd uses a trivial algorithm, which compares all pairs of observations and requires an amount of time
quadratic in Nobs. The difference in performance can be spectacular in large datasets (Nobs > 1000).

The parameters we really want to estimate are Kendall’s τa and/or Somers’ D, defined by (14). These formulas
are equal to the familiar formulas (3) and (4) if each cluster contains one observation with an importance weight of
one. To estimate them, we use the jackknife method on V and TXY , and use appropriate Taylor polynomials. somersd
calculates correlation measures for a single variable X with a set of Y –variates (Y (1), . . . , Y (p)). (The X–variate may
have a censorship indicator R, and the Y –variates may have censorship indicators (S(1), . . . , S(p)).) It calculates, in
the first instance, the covariance matrix for V̂ , T̂XX , and T̂XY (i) for 1 ≤ i ≤ p. This is done using the jackknife
influence matrix Υ, which has N rows labelled by the cluster subscripts, and p+2 columns labelled (in Stata fashion)
by the names V , X, and Y (i) for 1 ≤ i ≤ p. It is defined by

Υ [j, V ] = ψ
(V )
j − ψ̄(V ), Υ [j,X] = ψ

(XX)
j − ψ̄(XX), Υ

[
j, Y (i)

]
= ψ

(XY (i))
j − ψ̄(XY (i)), (25)

where the quantities

ψ̄(V ) = N−1
N∑

k=1

ψ
(V )
k , ψ̄(XX) = N−1

N∑

k=1

ψ
(XX)
k , ψ̄(XY (i)) = N−1

N∑

k=1

ψ
(XY (i))
k (26)

are the mean pseudovalues. (These mean pseudovalues are equal to the corresponding point estimates unless
funtype(vonmises) is specified, in which case the mean pseudovalue is equal to the corresponding Hoeffding
U–statistic.) The jackknife covariance matrix is equal to

Ĉ = [N(N − 1)]−1 Υ′Υ. (27)
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The estimates for Kendall’s τa and Somers’ D, for variables Y and X, are defined by

τ̂XY = T̂XY /V̂ , D̂Y X = T̂XY /T̂XX , (28)

unless the denominators of these expressions are zero, in which case the numerators must also be zero, and somersd
therefore sets the estimates and their covariances to zero. If the denominator is nonzero, then the covariance matrix
is defined using Taylor polynomials. In the case of Somers’ D, we define the p×(p+2) matrix of estimated derivatives
Γ̂(D), whose rows are labelled by the names Y (1), . . . , Y (p), and whose columns are labelled by V, X, Y (1), . . . , Y (p).
This matrix is defined by

Γ̂(D)
[
Y (i), X

]
=

∂D̂Y (i)X

∂T̂XX

= − T̂XY (i)

T̂ 2
XX

,

Γ̂(D)
[
Y (i), Y (i)

]
=

∂D̂Y (i)X

∂T̂XY (i)

=
1

T̂XX

, (29)

all other entries being zero. In the case of Kendall’s τa, we define a (p + 1)× (p + 2) matrix of estimated derivatives
Γ̂(τ), whose rows are labelled by X,Y (1), . . . , Y (p), and whose columns are labelled by V, X, Y (1), . . . , Y (p). This
matrix is defined by

Γ̂(τ) [X, V ] =
∂τ̂XX

∂V̂
= − T̂XX

V̂ 2
,

Γ̂(τ) [X, X] =
∂τ̂XX

∂T̂XX

=
1
V̂

,

Γ̂(τ)
[
Y (i), V

]
=

∂τ̂XY (i)

∂V̂
= − T̂XY (i)

V̂ 2
,

Γ̂(τ)
[
Y (i), Y (i)

]
=

∂τ̂XY (i)

∂T̂XY (i)

=
1
V̂

, (30)

all other entries again being zero. The estimated dispersion matrices of the Somers’ D and τa estimates are therefore
Ĉ(D) and Ĉ(τ), respectively, defined by

Ĉ(D) = Γ̂(D) Ĉ Γ̂(D) ′, Ĉ(τ) = Γ̂(τ) Ĉ Γ̂(τ) ′. (31)

2.3 Transformations

The transf() option offers a choice of transformations. Since these are available both for Somers’ D and for
Kendall’s τa, we will denote the original estimate as θ (which can stand for D or τ) and the transformed estimate
as ζ. They are summarized below, together with their derivatives dζ/dθ and their inverses θ(ζ).
transf() Transform name ζ(θ) dζ/dθ θ(ζ)

iden Untransformed θ 1 ζ

z Fisher’s z arctanh(θ) =
(
1− θ2

)−1 tanh(ζ) =
1
2 log[(1 + θ)/(1− θ)] [exp(2ζ)− 1]/[exp(2ζ) + 1]

asin Daniels’ arcsine arcsin(θ)
(
1− θ2

)−1/2 sin(ζ)
rho Greiner’s ρ sin(π

2 θ) π
2 cos(π

2 θ) (2/π) arcsin(ζ)
zrho Greiner’s ρ arctanh[sin(π

2 θ)] π
2 cos(π

2 θ)[1− sin(π
2 θ)2]−1 (2/π) arcsin[tanh(ζ)]

(z-transformed)
c Harrell’s c (θ + 1)/2 1/2 2ζ − 1

(Note that all of these expressions are defined for θ = 0, but some are undefined for θ = 1 or θ = −1, and, in
those cases, somersd enters a substitute θ–argument very close to 1 or −1.) If transf() is specified, then somersd
displays and saves the transformed estimates and their estimated covariance, instead of the untransformed versions.
If Ĉ(θ) is the covariance matrix for the untransformed estimates given by (31), and Γ̂(ζ) is the diagonal matrix whose
diagonal entries are the dζ/dθ estimates specified in the table, then the transformed parameter and its covariance
matrix are

ζ̂ = ζ(θ̂), Ĉ(ζ) = Γ̂(ζ) Ĉ(θ) Γ̂(ζ) ′. (32)
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Fisher’s z–transform was originally recommended for the Pearson correlation coefficient by Fisher (1921) (see
also Gayen (1951)), but Edwardes (1995) recommended it specifically for Somers’ D on the basis of simulation
studies. Daniels’ arcsine was suggested as a normalizing transform in Daniels and Kendall (1947). If transf(z)
or transf(asin) is specified, then somersd prints asymmetric confidence intervals for the untransformed D or
τa parameters, calculated from symmetric confidence intervals for the transformed parameters using the inverse
function θ(ζ). (This feature corresponds to the eform option of other estimation commands.) Greiner’s ρ (Kendall
and Gibbons, 1990) is based on the relation (5), and is designed to estimate the Pearson correlation coefficient
corresponding to the measured τa. If transf(zrho) is specified, then somersd prints asymmetric confidence intervals
for the untransformed Greiner’s ρ, using the inverse z–transform on symmetric confidence intervals for the z–
transformed Greiner’s ρ. Harrell’s c is usually a reparameterization of Somers’ D, and is recommended in Harrell et
al. (1982) and Harrell et al. (1996) as a general measure of the predictive power of a prognostic score arising from a
medical test.

3 Examples

We present 4 examples, using datasets provided by Stata Press at http://www.stata-press.com/data/.

3.1 Somers’ D in the auto data

In the auto data, we compare US cars with foreign cars regarding weight and fuel efficiency. First, we use
ranksum to give significance tests without confidence intervals:

. ranksum mpg,by(foreign)
Two-sample Wilcoxon rank-sum (Mann-Whitney) test

foreign | obs rank sum expected
-------------+---------------------------------

Domestic | 52 1688.5 1950
Foreign | 22 1086.5 825

-------------+---------------------------------
combined | 74 2775 2775

unadjusted variance 7150.00
adjustment for ties -36.95

----------
adjusted variance 7113.05
Ho: mpg(foreign==Domestic) = mpg(foreign==Foreign)

z = -3.101
Prob > |z| = 0.0019

. ranksum weight,by(foreign)
Two-sample Wilcoxon rank-sum (Mann-Whitney) test

foreign | obs rank sum expected
-------------+---------------------------------

Domestic | 52 2379.5 1950
Foreign | 22 395.5 825

-------------+---------------------------------
combined | 74 2775 2775

unadjusted variance 7150.00
adjustment for ties -1.06

----------
adjusted variance 7148.94
Ho: weight(foreign==Domestic) = weight(foreign==Foreign)

z = 5.080
Prob > |z| = 0.0000

We note that US cars are typically heavier and travel fewer miles per gallon than foreign cars. For confidence
intervals, we use somersd:

. somersd foreign mpg weight
Somers’ D with variable: foreign
Transformation: Untransformed
Valid observations: 74
Symmetric 95% CI
------------------------------------------------------------------------------

| Jackknife
foreign | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
mpg | .4571678 .135146 3.38 0.001 .1922866 .7220491

weight | -.7508741 .0832485 -9.02 0.000 -.9140383 -.58771
------------------------------------------------------------------------------
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We see that, given a randomly–chosen foreign car and a randomly–chosen US car, the foreign car is 46% more
likely to travel more miles per gallon than the US car than vice versa, with confidence limits from 19% to 72% more
likely. However, being foreign seems to be more reliable as a negative predictor of weight than as a positive predictor
of “fuel efficiency”. We can use lincom to define confidence limits for the difference:

. lincom -weight-mpg
( 1) - mpg - weight = 0

------------------------------------------------------------------------------
foreign | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | .2937063 .0884397 3.32 0.001 .1203677 .4670449

------------------------------------------------------------------------------

The difference between Somers’ D–values is positive. This indicates that, if there are two cars, one heavier and
consuming fewer gallons per mile, the other lighter and consuming more gallons per mile, then the second is more
likely to be foreign. So maybe 1970s US cars were not as wasteful as some people think, and were, if anything, more
fuel–efficient for their weight than non–US cars at the time. Figure 1 illustrates this graphically. Data points are
domestic cars (“D”) and foreign cars (“F”). A regression analysis could show the same thing, but Somers’ D shows
it in stronger terms, without contentious assumptions such as linearity. (On the other hand, a regression model is
more informative if its assumptions are true, so the two methods are mutually complementary.)
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Figure 1. Mileage and weight in US cars (D) and non–US cars (F)

The confidence intervals for such high values of Somers’ D would probably be more reliable if we used the
z–transform, recommended by Edwardes (1995). The results of this are as follows:

. somersd foreign mpg weight,tran(z)
Somers’ D with variable: foreign
Transformation: Fisher’s z
Valid observations: 74
Symmetric 95% CI for transformed Somers’ D
------------------------------------------------------------------------------

| Jackknife
foreign | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
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mpg | .4937249 .1708551 2.89 0.004 .1588551 .8285947
weight | -.9749561 .1908547 -5.11 0.000 -1.349024 -.6008878

------------------------------------------------------------------------------
Asymmetric 95% CI for untransformed Somers’ D

Somers_D Minimum Maximum
mpg .45716783 .15753219 .67972072

weight -.75087413 -.87382282 -.53768098
. lincom -weight-mpg
( 1) - mpg - weight = 0

------------------------------------------------------------------------------
foreign | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | .4812312 .1235452 3.90 0.000 .2390871 .7233753

------------------------------------------------------------------------------

Note that somersd gives not only symmetric confidence limits for the z–transformed Somers’ D estimates, but
also the more informative asymmetric confidence limits for the untransformed Somers’ D estimates (corresponding
to the eform option). The asymmetric confidence limits for the untransformed estimates are closer to zero than
the symmetric confidence limits for the untransformed estimates in the previous output, and are probably more
realistic. The output to lincom gives confidence limits for the difference between z–transformed Somers’ D values.
This difference is expressed in z–units, but must, of course, be in the same direction as the difference between
untransformed Somers’ D values. The conclusions are similar.

3.2 Kendall’s τa in the auto data

In this example, we demonstrate Kendall’s τa by comparing weight (pounds) and displacement (cubic inches)
as predictors of fuel efficiency (miles per gallon). We first use ktau to carry out significance tests with no confidence
limits:

. ktau mpg mpg
Number of obs = 74

Kendall’s tau-a = 0.9471
Kendall’s tau-b = 1.0000
Kendall’s score = 2558

SE of score = 212.989 (corrected for ties)
Test of Ho: mpg and mpg are independent

Prob > |z| = 0.0000 (continuity corrected)
. ktau mpg weight

Number of obs = 74
Kendall’s tau-a = -0.6857
Kendall’s tau-b = -0.7059
Kendall’s score = -1852

SE of score = 213.605 (corrected for ties)
Test of Ho: mpg and weight are independent

Prob > |z| = 0.0000 (continuity corrected)
. ktau mpg displacement

Number of obs = 74
Kendall’s tau-a = -0.5942
Kendall’s tau-b = -0.6257
Kendall’s score = -1605

SE of score = 212.850 (corrected for ties)
Test of Ho: mpg and displacement are independent

Prob > |z| = 0.0000 (continuity corrected)

We then use somersd (with the taua option and the z–transform) to compute the same statistics with confidence
limits. Note that somersd also outputs the τa of mpg with mpg, which is simply the probability that two independently
sampled mpg–values are not equal.

. somersd mpg weight displacement,taua tr(z)
Kendall’s tau-a with variable: mpg
Transformation: Fisher’s z
Valid observations: 74
Symmetric 95% CI for transformed Kendall’s tau-a
------------------------------------------------------------------------------

| Jackknife
mpg | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
mpg | 1.802426 .0748368 24.08 0.000 1.655748 1.949103

weight | -.8397412 .084022 -9.99 0.000 -1.004421 -.6750612
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displacement | -.6841711 .093055 -7.35 0.000 -.8665556 -.5017866
------------------------------------------------------------------------------
Asymmetric 95% CI for untransformed Kendall’s tau-a

Tau_a Minimum Maximum
mpg .94705665 .92964223 .96024957

weight -.68567197 -.76344472 -.58829928
displacement -.59422436 -.69961991 -.46352103

We can use lincom to compare the two predictors and test whether smaller and heavier cars travel fewer miles
per gallon than larger and lighter cars. This seems to be the case, as weight is a more negative predictor of mpg
than displacement:

. lincom weight-displacement
( 1) weight - displacement = 0

------------------------------------------------------------------------------
mpg | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | -.1555701 .0742717 -2.09 0.036 -.3011399 -.0100003

------------------------------------------------------------------------------

We demonstrate the cluster option using the variable manuf, equal to the first word of make, to denote
manufacturer. This analysis assumes that we are sampling from the population of car manufacturers, rather than
from the population of car models. The results are as follows:

. somersd mpg weight displacement,taua tr(z) cluster(manuf)
Kendall’s tau-a with variable: mpg
Transformation: Fisher’s z
Valid observations: 74
Number of clusters: 23
Symmetric 95% CI for transformed Kendall’s tau-a

(Std. Err. adjusted for 23 clusters in manuf)
------------------------------------------------------------------------------

| Jackknife
mpg | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
mpg | 1.83398 .0821029 22.34 0.000 1.673061 1.994898

weight | -.8391083 .0917593 -9.14 0.000 -1.018953 -.6592633
displacement | -.694607 .0976751 -7.11 0.000 -.8860467 -.5031674
------------------------------------------------------------------------------
Asymmetric 95% CI for untransformed Kendall’s tau-a

Tau_a Minimum Maximum
mpg .95021392 .93195521 .96366535

weight -.68533644 -.76943983 -.57787293
displacement -.60093349 -.70943563 -.46460448
. lincom weight-displacement
( 1) weight - displacement = 0

------------------------------------------------------------------------------
mpg | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | -.1445012 .0801437 -1.80 0.071 -.30158 .0125775

------------------------------------------------------------------------------

Note that, in contrast to the case of most estimation commands, the cluster option affects the estimates as well
as their confidence limits. This is because, in default, the clustered estimates are calculated only from between–cluster
comparisons, in this case pairs of car models from different manufacturers. However, we can alter this by specifying
funtype(vonmises) bstrata( n), in which case the estimates will be as before, but the confidence limits will be
different:

. somersd mpg weight displacement,taua tr(z) cluster(manuf) ///
> funtype(vonmises) bstrata(_n)
Von Mises Kendall’s tau-a with variable: mpg
Transformation: Fisher’s z
Between strata defined by: _n
Valid observations: 74
Number of clusters: 23
Symmetric 95% CI for transformed Kendall’s tau-a

(Std. Err. adjusted for 23 clusters in manuf)
------------------------------------------------------------------------------

| Jackknife
mpg | Coef. Std. Err. z P>|z| [95% Conf. Interval]
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-------------+----------------------------------------------------------------
mpg | 1.802426 .0813496 22.16 0.000 1.642983 1.961868

weight | -.8397412 .0905411 -9.27 0.000 -1.017199 -.6622839
displacement | -.6841711 .0940933 -7.27 0.000 -.8685905 -.4997517
------------------------------------------------------------------------------
Asymmetric 95% CI for untransformed Kendall’s tau-a

Tau_a Minimum Maximum
mpg .94705665 .92788848 .96123213

weight -.68567197 -.76872301 -.57988136
displacement -.59422436 -.70065729 -.46192188
. lincom weight-displacement
( 1) weight - displacement = 0

------------------------------------------------------------------------------
mpg | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | -.1555701 .0817275 -1.90 0.057 -.315753 .0046128

------------------------------------------------------------------------------

Alternatively, we might want to compare the power of weight and displacement to predict mileage when comparing
cars made by the same manufacturer. To do this, we use the options funtype(wcluster) bstrata( n):

. somersd mpg weight displacement,taua tr(z) cluster(manuf) ///
> funtype(wcluster) bstrata(_n)
Within-cluster Kendall’s tau-a with variable: mpg
Transformation: Fisher’s z
Between strata defined by: _n
Valid observations: 74
Number of clusters: 23
Symmetric 95% CI for transformed Kendall’s tau-a

(Std. Err. adjusted for 23 clusters in manuf)
------------------------------------------------------------------------------

| Jackknife
mpg | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
mpg | 1.396604 .1289473 10.83 0.000 1.143872 1.649336

weight | -.852374 .1701861 -5.01 0.000 -1.185933 -.5188155
displacement | -.4992644 .070216 -7.11 0.000 -.6368852 -.3616436
------------------------------------------------------------------------------
Asymmetric 95% CI for untransformed Kendall’s tau-a

Tau_a Minimum Maximum
mpg .88461538 .81571376 .92876647

weight -.69230769 -.82931315 -.47678526
displacement -.46153846 -.56277501 -.34666094
. lincom weight-displacement
( 1) weight - displacement = 0

------------------------------------------------------------------------------
mpg | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | -.3531096 .1551786 -2.28 0.023 -.6572541 -.0489652

------------------------------------------------------------------------------

We see that, once again, both weight and displacement are negative predictors of mileage, and that weight is a
more negative predictor than displacement.

Suppose that we are writing for an audience more familiar with Pearson’s correlation than with Kendall’s τa.
To estimate the Pearson correlations corresponding to our τa coefficients, we use the zrho transform. The results
are as follows:

. somersd mpg weight displacement,taua tr(zrho)
Kendall’s tau-a with variable: mpg
Transformation: z-transform of Greiner’s rho
Valid observations: 74
Symmetric 95% CI for transformed Greiner’s rho
------------------------------------------------------------------------------

| Jackknife
mpg | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
mpg | 3.179521 .1458796 21.80 0.000 2.893602 3.465439

weight | -1.378273 .1475561 -9.34 0.000 -1.667478 -1.089069
displacement | -1.108838 .158893 -6.98 0.000 -1.420262 -.7974132
------------------------------------------------------------------------------
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Asymmetric 95% CI for untransformed Greiner’s rho
Rho Minimum Maximum

mpg .99654393 .99388566 .99804762
weight -.88056403 -.93121746 -.79653796

displacement -.80365118 -.88965364 -.66258811

The τa of -0.59 between displacement and fuel efficiency (from the unclustered output) is seen to correspond to
a more impressive Pearson correlation of -0.80. The estimated Greiner’s ρ is probably less likely to be oversensitive
to outliers than the usual Pearson coefficient.

3.3 Harrell’s c and Somers’ D in the drugtr data

In this example, we demonstrate the cenind() option with a simple set of survival data distributed by Stata
Press, with 1 observation per subject in a drug trial and data on treatment, age and survival time. We first load
the data, then tabulate the treatment variable drug, then define the new variables youth (representing number of
years to the subject’s 100th birthday) and censind (a censorship indicator equal to zero for subjects who died and
to one for subjects whose survival time is right–censored):

. use http://www.stata-press.com/data/r9/drugtr, clear
(Patient Survival in Drug Trial)
. tab drug, m

Drug type |
(0=placebo) | Freq. Percent Cum.
------------+-----------------------------------

0 | 20 41.67 41.67
1 | 28 58.33 100.00

------------+-----------------------------------
Total | 48 100.00

. gene youth=100-age

. gene byte censind=1-died

. tab died censind, m
1 if |

patient | censind
died | 0 1 | Total

-----------+----------------------+----------
0 | 0 17 | 17
1 | 31 0 | 31

-----------+----------------------+----------
Total | 31 17 | 48

We then use somersd to estimate the Harrell’s c parameters of active treatment and youth with respect to
survival time:

. somersd studytime drug youth, tr(c) cenind(censind)
Somers’ D with variable: studytime
Transformation: Harrell’s c
Valid observations: 48
Symmetric 95% CI for Harrell’s c
------------------------------------------------------------------------------

| Jackknife
studytime | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
drug | .7275986 .0367931 19.78 0.000 .6554855 .7997117

youth | .6415771 .0528314 12.14 0.000 .5380295 .7451246
------------------------------------------------------------------------------
. lincom drug-youth
( 1) drug - youth = 0

------------------------------------------------------------------------------
studytime | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | .0860215 .0618354 1.39 0.164 -.0351736 .2072166

------------------------------------------------------------------------------

We see that active drug treatment and youth are both positive survival indicators, as they both have values of
Harrell’s c greater than 0.5. (See Harrell et al., 1982 and Harrell et al., 1996 for more information on Harrell’s c.)
However, when we use lincom to estimate the difference between the two Harrell’s c parameters (equal to half the
difference between the corresponding Somers’ D parameters), we find that the confidence interval for the difference
includes zero. Based on this difference alone, we cannot state that the active treatment is a more or less positive
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predictor than being young. However, we can split the sample into 3 age tertiles, and estimate pooled, stratified
Harrell’s c values for youth and treatment (based only on comparisons within age tertiles), and their difference:

. xtile agegp=age, n(3)

. tab agegp, m
3 quantiles |

of age | Freq. Percent Cum.
------------+-----------------------------------

1 | 18 37.50 37.50
2 | 16 33.33 70.83
3 | 14 29.17 100.00

------------+-----------------------------------
Total | 48 100.00

. somersd studytime drug youth, tr(c) cenind(censind) wstrata(agegp)
Somers’ D with variable: studytime
Transformation: Harrell’s c
Within strata defined by: agegp
Valid observations: 48
Symmetric 95% CI for Harrell’s c
------------------------------------------------------------------------------

| Jackknife
studytime | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
drug | .7630597 .0398266 19.16 0.000 .685001 .8411184

youth | .5559701 .0607348 9.15 0.000 .4369321 .6750082
------------------------------------------------------------------------------
. lincom drug-youth
( 1) drug - youth = 0

------------------------------------------------------------------------------
studytime | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | .2070896 .0660029 3.14 0.002 .0777262 .3364529

------------------------------------------------------------------------------

This time, we see that youth is a less impressive predictor of survival within age tertiles (as the confidence
interval for Harrell’s c contains 0.5), and is a less good predictor than treatment when predicting survival between
subjects in the same age tertile. We can therefore conclude (in very strong terms) that treatment has an effect that
is not entirely caused by confounding by age.

In this analysis, there is only one confounder. There are often many confounders in observational studies in real
life, and this makes stratified analyses less easy. However, a possible solution might be to define a propensity score,
measuring proneness to allocation to a treatment and dependent on all the confounders, and to use xtile on the
propensity score to define a propensity group variable, which can be used as the wstrata() option by somersd. The
seminal paper on propensity scores is Rosenbaum and Rubin (1983), but a good place to start a literature search
today might be Imai and van Dyk (2004).

Harrell’s c is usually used to compare the predictive power of multivariate predictive scores such as log hazard
ratios from Cox regression models, rather than the univariate predictors assessed here. The estat utility, used after
Cox regression, can calculate Harrell’s c and the corresponding Somers’ D for the log hazard ratio with respect to
survival. It is demonstrated, using the dataset used here, in [ST] stcox postestimation. estat sometimes calculates
values for Harrell’s c and Somers’ D different from those calculated by somersd. This is because estat assumes that,
if two subjects have equal lifetimes and one ends in death and the other ends in censorship, then the second has
survived the first, whereas somersd assumes that neither has survived the other, based on the csign(., ., ., .) function
of (2). If the survival times are expressed in integral numbers of units (such as days), then such ties can be broken
by adding a fraction of a unit to the censored lifetimes and not to the uncensored lifetimes. This will cause somersd
to give the same values as estat.

It must be stressed that confidence limits for the Harrell’s c of a Cox regression score with respect to survival
should be treated with great caution if they are calculated from the same dataset in which the Cox model parameters
were fitted. Harrell et al. (1982) and Harrell et al. (1996) stress this, and propose some solutions, using a sub–sampling
method similar to the bootstrap. When these methods are used on large datasets, the search tree algorithm of Newson
(1987), used in default by somersd, will require appreciably less time than the trivial quadratic–time algorithms
used by many other programs (and by somersd if the user specifies notree).

The Wilcoxon–Breslow–Gehan test was introduced by Breslow (1970) and Gehan (1965), and is demonstrated
using Stata in [ST] sts test. It tests the hypothesis of a zero value of the Somers’ D of survival (as the Y –variable)
with respect to membership of a particular group (as the X–variable). Using somersd, we can improve on this by
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defining a confidence interval for this Somers’ D parameter:

. sts test drug, wilcoxon
failure _d: died

analysis time _t: studytime
Wilcoxon (Breslow) test for equality of survivor functions

| Events Events Sum of
drug | observed expected ranks
------+--------------------------------------
0 | 19 7.25 385
1 | 12 23.75 -385
------+--------------------------------------
Total | 31 31.00 0

chi2(1) = 22.61
Pr>chi2 = 0.0000

. somersd drug studytime, tr(z) cenind(0 censind)
Somers’ D with variable: drug
Transformation: Fisher’s z
Valid observations: 48
Symmetric 95% CI for transformed Somers’ D
------------------------------------------------------------------------------

| Jackknife
drug | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
studytime | .8297787 .1935732 4.29 0.000 .4503821 1.209175

------------------------------------------------------------------------------
Asymmetric 95% CI for untransformed Somers’ D

Somers_D Minimum Maximum
studytime .68035714 .42221306 .83643191

We see (from the Wilcoxon test) that the treated group has fewer deaths, and the placebo group has more
deaths, than we would expoct by chance, assuming population survival distributions to be the same in the two
groups. We also see (from the confidence interval for the untransformed Somers’ D) that, if we sample a subject at
random from each of the 2 subpopulations (treated and placebo), then the event that the treated subject survives the
placebo subject is 42% to 84% more probable than the event that the placebo subject survives the treated subject.
Again, we can stratify the analysis by age tertile:

. somersd drug studytime, tr(z) cenind(0 censind) wstrata(agegp)
Somers’ D with variable: drug
Transformation: Fisher’s z
Within strata defined by: agegp
Valid observations: 48
Symmetric 95% CI for transformed Somers’ D
------------------------------------------------------------------------------

| Jackknife
drug | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
studytime | .9729551 .2404965 4.05 0.000 .5015905 1.44432

------------------------------------------------------------------------------
Asymmetric 95% CI for untransformed Somers’ D

Somers_D Minimum Maximum
studytime .75 .46336709 .89456394

We see that, if we sample a subject at random from the same age tertile in each of the 2 treatment groups
(treated and placebo), then it is 46% to 89% more likely that the treated subject survives the untreated subject
than vice versa.

Note that Harrell’s c and the Wilcoxon–Breslow–Gehan test are based on Somers D parameters “in different
directions”, in that the survival variable is the first variable in the list when calculating Harrell’s c and the second
variable in the list when calculating the Wilcoxon–Breslow–Gehan Somers’ D. The two methods are complementary.
The Harrell method is more useful for the “purely scientific” inference of establishing that a predictor has some
predictive power that is not entirely caused by a confounder. The Wilcoxon–Breslow–Gehan method is more useful
for estimating the size of the “causal effect” on survivorship of choosing one treatment.instead of another.

3.4 Gini coefficients in the womenwage data

The Gini coefficient is a measure of the inequality of a distribution of incomes (or wealth) in a population, on
a scale from zero (when everybody has an equal share) to one (when one person has everything). It is traditionally
understood by reference to the Lorenz curve, which is the set of X, Y points such that the richest Y percent of the
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population have X percent of the income (or wealth). The Gini coefficient is equal to the difference between the
area above the Lorenz curve and the area below the Lorenz curve (divided by 100× 100 = 10, 000 to convert from a
percentage scale to a proportion scale).

The Gini coefficient is a special case of Somers’ D. To see this, imagine that two lotteries are organized in a
population, and that, in the first lottery, each member of the population has one ticket, whereas, in the second lottery,
each individual buys a number of tickets proportional to that individual’s income. The first lottery is equivalent
to sampling uniformly from the Y –axis of the Lorenz plot, whereas the second lottery is equivalent to sampling
uniformly from the X–axis of the Lorenz plot. The region above the Lorenz curve corresponds to the event that the
second lottery winner is a higher earner than the first, whereas the region below the Lorenz curve corresponds to the
event that the first lottery winner is a higher earner than the second. Therefore, the Gini coefficient is a clustered
Somers’ D, where the clusters are individuals in the population, the observations are combinations of individual and
lottery (first or second), the Y –variate is income, the X–variate is lottery sequence (1 or 2), and the importance
weights are equal for all individuals in the first lottery and proportional to income for all individuals in the second
lottery. The Lorenz curve is similar to the ROC curve (see [R] roc, Hanley and McNeil (1982), or Newson (2002)),
except that the ROC curve demonstrates the outcome of sampling equiprobably from two sub–populations, whereas
the Lorenz curve demonstrates the outcome of sampling twice from the same population, with different probability
weights.

We can illustrate this principle using the womenwage dataset, distributed by Stata Press and used in [R] intreg.
We first calculate the Gini index (and a few other inequality indices), using the program ineqdeco (Jenkins, 1999).
We then preserve the data, and use the expgen package (an extended version of expand downloadable from SSC) to
replace each observation in the original dataset (containing one observation per woman) with 2 observations (one
per woman per lottery). The new dataset is indexed by the variables womanid (denoting sequence number of the
woman) and lotseq (denoting sequence number of the lottery). We create an importance variable pwt, containing
probability weights equal for all women in the first lottery and equal to a woman’s wage (to the nearest kilodollar)
in the second lottery. We then use somersd twice, first without any tranformation, and second with the normalizing
and/or variance–stabilizing z–transformation, before restoring the old dataset:

. use http://www.stata-press.com/data/r9/womenwage, clear
(Wages of women)
. ineqdeco wage
Percentile ratios for distribution of wage: all valid obs.
------------------------------------------------------------
p90/p10 p90/p50 p10/p50 p75/p25 p75/p50 p25/p50
------------------------------------------------------------

3.222 1.933 0.600 1.909 1.400 0.733
Generalized Entropy indices GE(a), where a = income difference
sensitivity parameter, and Gini coefficient

----------------------------------------------------------------------
All obs | GE(-1) GE(0) GE(1) GE(2) Gini

----------+-----------------------------------------------------------
| 0.14595 0.12947 0.13383 0.16022 0.27984

----------------------------------------------------------------------
Atkinson indices, A(e), where e > 0 is the inequality aversion parameter
----------------------------------------------

All obs | A(0.5) A(1) A(2)
----------+-----------------------------------

| 0.06358 0.12144 0.22594
----------------------------------------------
. preserve
. expgen =2, oldseq(womanid) copyseq(lotseq)
. lab var lotseq "Lottery sequence number"
. gene pwt = (lotseq==1) + wage*(lotseq==2)
. lab var pwt "Probability weight"
. somersd lotseq wage [pwei=pwt], cluster(womanid) funtype(vonmises)
Von Mises Somers’ D with variable: lotseq
Transformation: Untransformed
Valid observations: 976
Number of clusters: 488
Symmetric 95% CI

(Std. Err. adjusted for 488 clusters in womanid)
------------------------------------------------------------------------------

| Jackknife
lotseq | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
wage | .2798363 .0105714 26.47 0.000 .2591168 .3005558
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------------------------------------------------------------------------------
. somersd lotseq wage [pwei=pwt], cluster(womanid) funtype(vonmises) tr(z)
Von Mises Somers’ D with variable: lotseq
Transformation: Fisher’s z
Valid observations: 976
Number of clusters: 488
Symmetric 95% CI for transformed Somers’ D

(Std. Err. adjusted for 488 clusters in womanid)
------------------------------------------------------------------------------

| Jackknife
lotseq | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
wage | .2875044 .0114695 25.07 0.000 .2650246 .3099843

------------------------------------------------------------------------------
Asymmetric 95% CI for untransformed Somers’ D

Somers_D Minimum Maximum
wage .27983629 .25898919 .30042278
. restore

We see that, if the women in this dataset organized two lotteries amongst themselves, and each woman bought
one ticket in the first lottery and a number of tickets worth a constant fraction of her wages in the second lottery,
then the second lottery winner would be 27.98% more likely than the first lottery winner to be the higher earner of
the two. (The option funtype(vonmises) is necessary because of the small but nonzero probability that the same
woman wins both lotteries.) And, if the same lotteries were organized in the population from which these women were
sampled, then the difference would be from 25.91% to 30.06% (according to the untransformed confidence interval),
or 25.90% to 30.04% (according to the z–transformed confidence interval). In general, we expect normalizing and/or
variance–stabilizing transformations to be more important in populations where the population Gini coefficient is
higher, because then the sampling distribution of the sample Gini coefficient will be more skewed. This principle is
discussed in Daniels and Kendall (1947) and Edwardes (1995).

Income distribution indices are often calculated on datasets in which each observation represents an income
group, rather than an individual. We can create such a dataset using contract on the original womanwage data
to produce a new dataset, with 1 observation per wage group. If we do this, then we can repeat our analysis to
demonstrate the cfweight() option of somersd. We first use expgen to expand the dataset with 1 observation per
wage group to a dataset with 1 observation per wage group per lottery, and create the weight variable as before.
This new dataset contains a cluster of 2 variables per wage group, and each of these clusters represents a number
of duplicate clusters equal to the value of the variable freq created by contract. When calling somersd, we use
freq as a cfweight() variable, and produce the same results as before:

. preserve

. contract wage

. expgen =2, oldseq(wagegp) copyseq(lotseq)

. lab var wagegp "Wage group"

. lab var lotseq "Lottery sequence number"

. gene pwt = (lotseq==1) + wage*(lotseq==2)

. lab var pwt "Probability weight"

. describe
Contains data from http://www.stata-press.com/data/r9/womenwage.dta

obs: 102 Wages of women
vars: 5 3 Mar 2005 18:14
size: 1,530 (99.9% of memory free)

-------------------------------------------------------------------------------
storage display value

variable name type format label variable label
-------------------------------------------------------------------------------
wage float %9.0g wages in 1000s of dollars
_freq byte %12.0g Frequency
wagegp byte %8.0g Wage group
lotseq byte %8.0g Lottery sequence number
pwt float %9.0g Probability weight
-------------------------------------------------------------------------------
Sorted by: wagegp lotseq

Note: dataset has changed since last saved
. somersd lotseq wage [pwei=pwt], cluster(wagegp) cfweight(_freq) funtype(vonmises)
Von Mises Somers’ D with variable: lotseq
Transformation: Untransformed
Valid observations: 976
Number of clusters: 488
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Symmetric 95% CI
(Std. Err. adjusted for 488 clusters in wagegp)

------------------------------------------------------------------------------
| Jackknife

lotseq | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

wage | .2798363 .0105714 26.47 0.000 .2591168 .3005558
------------------------------------------------------------------------------
. somersd lotseq wage [pwei=pwt], cluster(wagegp) cfweight(_freq) funtype(vonmises) tr(z)
Von Mises Somers’ D with variable: lotseq
Transformation: Fisher’s z
Valid observations: 976
Number of clusters: 488
Symmetric 95% CI for transformed Somers’ D

(Std. Err. adjusted for 488 clusters in wagegp)
------------------------------------------------------------------------------

| Jackknife
lotseq | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
wage | .2875044 .0114695 25.07 0.000 .2650246 .3099843

------------------------------------------------------------------------------
Asymmetric 95% CI for untransformed Somers’ D

Somers_D Minimum Maximum
wage .27983629 .25898919 .30042278
. restore

4 Historical note

This document is a post–publication update of an article which appeared in the Stata Technical Bulletin
(STB) as Newson (2000a). The somersd package was later revised in Newson (2000b), Newson (2000c), Newson
(2000d), Newson (2001a) and Newson (2001b). An important upgrade (Newson, 2000d) was the addition to the
somersd package of the program cendif, which calculates robust confidence intervals for Hodges–Lehmann median
differences, other percentile differences, and percentile ratios. A post–publication update of that STB article is
distributed with this document as part of the documentation to the somersd package. After 2001, STB was replaced
by The Stata Journal (SJ), and all subsequent updates only appeared on SSC and on Roger Newson’s homepage at
http://www.kcl-phs.org.uk/rogernewson, which is accessible from within net–aware Stata. However, Newson (2002)
gives a comprehensive review of Somers’ D, Kendall’s τa, median differences, and their estimation in Stata using the
somersd package.
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