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Abstract

Recently, new nonparametric multivariate extensions of the univariate sign methods
have been proposed. Randles (2000) introduced an affine invariant multivariate sign test
for the multivariate location problem. Later on, Hettmansperger and Randles (2002)
considered an affine equivariant multivariate median corresponding to this test. The new
methods have promising efficiency and robustness properties. In this paper, we review
these developments and compare them with the classical multivariate analysis of variance
model. A new SAS/IML tool for performing a spatial sign based multivariate analysis of
variance is introduced.
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1. Introduction

Classical statistical techniques for multivariate location problems such as Hotelling’s T 2 tests,
multivariate analysis of variance (MANOVA) and multivariate multiple regression analysis
rely on the assumption that the data were from a multivariate normal distribution. The in-
ference methods are then based on the assumption of multivariate normality, the sample mean
vector and the sample covariance matrix. However, these methods are extremely sensitive to
outlying observations and they are inefficient for heavy tailed noise distributions.

Möttönen and Oja (1995) reviewed multivariate sign and rank tests and the corresponding
estimates based on the L1-type objective function. The tests and estimates were rotation
invariant and equivariant, but not affine invariant/equivariant. Recently, new nonparamet-
ric multivariate extensions of the univariate sign methods have been proposed. Randles
(2000) developed an affine invariant one-sample multivariate sign test. Hettmansperger and
Randles (2002) considered an affine equivariant multivariate median corresponding to this
test. Their approach combines the simultaneous use of the spatial median (Brown 1983),
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Tyler’s M -estimate of scatter (Tyler 1987) and the transformation-retransformation tech-
nique (Chakraborty, Chaudhuri, and Oja 1998). Chakraborty et al. (1998) used a similar
idea as Hettmansperger and Randles (2002), but not Tyler’s scatter matrix. Like Randles’
test, the Hettmansperger and Randles (2002) estimate is fairly easy to compute.

In this paper, we will first recall the classical MANOVA model. In Section 3 we review the
multivariate spatial sign tests and estimators analoguous to their classical alternatives. In
addition, we outline some ideas how to approximate the precision of the estimates. Section 4
introduces new SAS macros written in Interactive Matrix Language (IML) for performing
the analysis. As far as the authors are aware, these procedures are not currently available in
standard software packages. Finally, the use of the SAS/IML tools is illustrated by an example.
The complete SAS/IML code is available at http://www.jstatsoft.org/v16/i05/.

In the following sections we will assume that there are c independent random samples of
p-dimensional observations. Let

X = (x11 · · ·x1n1 x21 · · ·x2n2 · · · xc1 · · ·xcnc)

denote the p×N data matrix, where xij = (xij1 xij2 · · ·xijp)> represents the jth observation
of the ith sample. Further write N = n1 + · · · + nc for the total number of observations. In
practice, the data matrix is often given as a transpose of X. We are interested in drawing
conclusions on the parameter set µ1,µ2, . . . ,µc,Σ, where µi denotes the center of symmetry
of the ith sample, and Σ the covariance (or scatter) matrix (assumed to be common for all
the samples). Alternatively, one may wish to parametrize the model by µ1,∆12, . . . ,∆1c,Σ,
where ∆1i = µi − µ1 represents the difference between sample i and the first sample used
as a reference (e.g. placebo). In general, we wish to estimate both sets of parameters, and
construct the associated location tests.

Let B denote a nonsingular p × p matrix and b a p × 1 vector. A location estimate µ̂i(X)
and a scatter matrix estimate Σ̂(X) are affine equivariant if

µ̂i

(
BX + b1>N

)
= Bµ̂i(X) + b and

Σ̂
(
BX + b1>N

)
= BΣ̂(X)B>.

A test statistic T(X) is affine invariant if

T
(
BX + b1>N

)
= T(X).

These definitions simply mean that a rescaling, a rotation or a shift of the data should results
into corresponding transformation in the estimates, but the value of the test statistic should
remain unchanged.

2. Classical MANOVA

When more than one attribute is measured per observational unit and the observational units
arise from independent populations, the design is typically analyzed by multivariate analysis
of variance techniques. Classical MANOVA assumption is that the outcome vectors xij (p×1)
are generated from the model

xij = µi + εij ,
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where µi = (µi1 µi2 · · · µip)> is the location center for the ith sample (population), and
εij = (εij1 εij2 · · · εijp)> are independent and identically distributed random errors from a
multivariate normal distribution Np(0,Σ). In a one-sample case, the classical test for the
location problem is Hotelling’s T 2 test.

Lemma 1 Hotelling’s T 2 statistic for testing H0 : µ = 0 is

T 2 = N x̄>S−1x̄,

where x̄ is the sample mean vector and S is the sample covariance matrix. Furthermore,

N − p

(N − 1)p
T 2 has an Fp,N−p distribution.

In a multisample case, the interest is to test the null hypothesis of no difference in location
between the samples

H0 : µ1 = · · · = µc

assuming a common covariance matrix Σ. Under the null hypothesis, the maximum likelihood
estimator of a joint µ is the sample mean vector over the combined sample, and the maximum
likelihood estimator of Σ is the pooled sample covariance matrix. For hypothesis testing, we
may use the two-sample Hotelling’s T 2 statistic, or in a more general c-sample case, the
Hotelling’s trace statistic:

Lemma 2 Hotelling’s trace statistic for testing H0 : µ1 = · · · = µc is

T 2 = (N − c) Tr
(
BW−1

)
,

where B is the between-samples sums of squares matrix and W the within-samples sums of
squares matrix. Under the null hypothesis, the test statistic is asymptotically χ2

p(c−1) dis-
tributed.

Write

zij =
(

1
N − c

W
)−1/2

(xij − x̄)

for standardized observations with the sample mean vector zero and the sample covariance
matrix Ip, and

z̄i =
(

1
N − c

W
)−1/2

(x̄i − x̄)

for their sample means. We can write

(N − c) Tr
(
BW−1

)
= (N − c)

c∑
i=1

niTr
(
(x̄i − x̄)(x̄i − x̄)>W−1

)
= (N − c)

c∑
i=1

niTr
(
W−1/2(x̄i − x̄)(x̄i − x̄)>W−1/2

)
=

c∑
i=1

niTr
(
z̄iz̄>i

)
=

c∑
i=1

ni‖z̄i‖2. (1)
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Note that the limiting distribution is still χ2
p(c−1) if the covariance matrix estimate (N−c)−1W

is replaced by the regular pooled sample covariance matrix S. We will observe similarities
between the trace statistic and a multivariate spatial sign test statistic later on.

3. Spatial sign MANOVA

In this section we present sign based competitors to the Hotelling’s T 2 statistic and to the
sample mean vector. Estimation and test constructions are based on the spatial signs of
suitably standardized outcome vectors.

Multivariate extension of the sign concept, the spatial sign vector, is defined as

S(x) =
{
‖x‖−1x if x 6= 0
0 if x = 0

where ‖x‖ = (x>x)1/2 is the Euclidean length of vector x. Spatial signs are clearly rotation
equivariant but not affine equivariant.

Let V denote the scatter matrix defined by Tyler (1987), which is the solution to

E

(
V1/2(x− µ)(x− µ)>V1/2

(x− µ)>V−1(x− µ)

)
=

1
p
Ip.

Tyler’s scatter matrix is affine equivariant, but unique only up to a multiplication by a con-
stant; we will choose the symmetric version with Tr(V) = p. For a sign based analysis, it
suffices to standardize by zij = V̂−1/2(xij − µ̂i). A location estimate is needed as well, and
its selection will be discussed in the subsequent sections. The standardization is an analogue
to the Mahalanobis transformation in the classical multivariate analysis, but instead of stan-
dardizing the sample variance-covariance matrix of the original data, this standardization
produces a standardized variance-covariance matrix for the spatial sign vectors. For stan-
dardized data, the sign vectors then tend to lie uniformly on the unit sphere (see Figures 1,
2 and 3). Denote the direction vectors by uij = S(zij) and the radius by rij = ‖zij‖.
Again assume that the outcome vectors are generated from

xij = µi + εij ,

where the residuals can be decomposed as εij = Σ1/2rijuij . Moving roughly from strong to
minimal conditions, different model assumptions of the underlying distribution in terms of
the direction vector Uij and the radius Rij ≥ 0 can be listed as follows (Randles 2000):

1. Multivariate normal

• Uij is uniformly distributed on a p-dimensional unit sphere,

• R2
ij ∼ χ2

p, and

• Uij and Rij are independent.

2. Elliptical symmetry

• Uij is uniformly distributed on a p-dimensional unit sphere and
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Figure 1: Observations xj from a bivariate normal distribution

-4

-2

0

2

4

-4 -2 0 2 4

Figure 2: Standardized observations zj
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• Uij and Rij are independent.

3. Elliptical directions

• Uij is uniformly distributed on a p-dimensional unit sphere.

4. Symmetry

• RijUij has the same distribution as −RijUij .

5. Directional symmetry

• Uij has the same distribution as −Uij .

The families are not subsets of each other: for a hierarchy between these symmetry assump-
tions see Randles (2000). Multivariate spatial sign methods are typically distribution-free
in the family of elliptical directions. If the underlying distribution is skewed, the location
parameter µ is the population median vector rather than the mean vector (symmetry center
in models 1, 2 and 4). Similarly, Σ is the covariance matrix in the multivariate normal model,
and proportional to the covariance matrix (if it exists) in the elliptical symmetry model.

3.1. One-sample case

Consider testing the null hypothesis H0 : µ = 0 against the alternative hypothesis H1 : µ 6= 0
(without loss of generality). For standardized signs uj = S

(
V̂−1/2(xj − 0)

)
, seek an estimate

of Tyler’s scatter matrix as the solution to the implicit equation

ave
{
uju>j

}
=

1
p
Ip.

Obviously, the estimate is not influenced by rj . Hence, a distribution-free test in the family
of elliptical directions is given by

Lemma 3 Under the null hypothesis H0 : µ = 0, the limiting distribution of the multivariate
spatial sign test statistic

Q2 = Np‖ave{uj}‖2

is χ2 with p degrees of freedom.

The development was given by Randles (2000). The test statistic Q2 is affine invariant.

For small samples, Randles (2000) proposes the use of a sign change test. For the family of
directionally symmetric distributions, it leads into a conditionally distribution-free test. Let
U denote a p × N matrix with uj as the jth column. Furthermore, let S1, . . . ,SM , denote
independent random N × N diagonal sign change matrices with 2N equiprobable values of
diag(±1, . . . ,±1). Since V̂ is sign change invariant, the p-value can be estimated by

p̂ =
#{Q2(USm) ≥ Q2(U)}

M
,

that is, by the proportion of cases where Q2(USm) ≥ Q2(U), m = 1, ...,M .
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Figure 3: Direction vectors uj

Möttönen, Oja, and Tienari (1997) studied the limiting efficiency of multivariate sign tests for
multivariate t-distributions. They show that the efficiency relative to Hotelling’s test is 0.785
even in a bivariate normal case (∞ degrees of freedom). In four dimensions, they obtained
relative efficiencies of 0.884, 1.051 and 2.250 for∞, 10 and 4 degrees of freedom, respectively.
In dimension 10, the same figures were 0.951, 1.131 and 2.422. See also Randles (1989) for
the family of elliptically symmetric power family distributions.
Hettmansperger and Randles (2002) introduced the simultaneous estimation of location and
scatter in the one-sample case. They computed a multivariate location estimate and a scatter
matrix estimate to satisfy

ave{uj} = 0 and ave{uju>j } =
1
p
Ip (2)

for standardized signs uj = S
(
V̂−1/2(xj − µ̂)

)
. The solutions to the equations are the

transformation-retransformation spatial median and Tyler’s scatter matrix, respectively. Stan-
dardization by the resulting location and scatter estimates distributes direction vectors uni-
formly into a unit sphere centered at 0 (Figure 3). Another important property of the esti-
mates is that they are affine equivariant. The property is reached by the above utilization of
the transformation-retransformation procedure (Chakraborty et al. 1998).

3.2. Several samples case

Next consider c independent random samples with cumulative distribution functions F (x −
µ1), F (x−µ2), . . . , F (x−µc), i.e. it is assumed that the underlying distributions have a joint
scatter matrix and differ only in location. Our interest is to test the null hypothesis of no
treatment difference

H0 : µ1 = · · · = µc
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or, equivalently,
H0 : ∆12 = · · · = ∆1c = 0.

Furthermore, we wish to estimate the centers of symmetry µ1, . . . ,µc for each sample, and
the treatment differences ∆12, . . . ,∆1c with respect to a reference location µ1.

Start by constructing the standardized sign vectors uij = S
(
V̂−1/2(xij − µ̂)

)
, where µ̂ and

V̂ are the null case estimates (obtained as in the one-sample estimation case). Then, if V̂ is
a
√

N -consistent estimate and µ̂ the corresponding transformation-retransformation spatial
median, we have for elliptical F that

Lemma 4 Under the null hypothesis H0 : µ1 = · · · = µc, the multisample multivariate spatial
sign test statistic

Q2 = p

c∑
i=1

ni‖avej{uij}‖2 (3)

has a limiting χ2 distribution with p (c− 1) degrees of freedom.

(”avej”means the average taken over j.) A conditionally distribution-free test can be obtained
by permuting (Oja and Randles 2004): Let P1, . . . ,PM denote random N ×N permutation
matrices with N ! equiprobable values obtained by permuting the rows of an identity matrix
(N ×N). As µ̂ and V̂ are permutation invariant, p-value can be estimated as

p̂ =
#{Q2(UPm) ≥ Q2(U)}

M

where U is the data set consisting of standardized signs.

The test statistic resembles the Hotelling’s trace test statistic (1) in a classical MANOVA
setting. But (3) is based on the directions only. For limiting efficiencies, see Randles (1989)
and Möttönen et al. (1997).

Figure 4 displays an illustration of a bivariate non-null case. The direction vectors of the two
samples are concentrated on different parts of the unit circle.

Estimation is extended to a c-sample case as follows. Choose µ̂1, . . . , µ̂c and V̂ so that they
satisfy

ave{u1j} = · · · = ave{ucj} = 0 and ave
{
uiju>ij

}
=

1
p
Ip

for standardized signs uij = S
(
V̂−1/2(xij − µ̂i)

)
. The resulting estimates are the sample

transformation-retransformation spatial medians utilizing a joint Tyler’s scatter matrix. Due
to the affine equivariance property, the differences ∆12, . . . ,∆1c can be constructed as the
differences of the transformation-retransformation spatial medians.

3.3. Estimation of accuracy

The following asymptotic result gives a way to approximate the precision of the estimates.

Lemma 5 In the elliptically symmetric case

√
N (µ̂− µ) −→D Np

(
0,

p

(p− 1)2
[
E
[
r−1
]]−2 V

)
.
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Figure 4: Direction vectors uij from two bivariate normal distributions

Therefore, an estimate of the covariance matrix is achieved by

ĈOV(µ̂) =
p

N(p− 1)2
[
ave{r−1

j }
]−2

V̂.

See for example Ollila, Oja, and Croux (2003b), Ollila, Hettmansperger, and Oja (2003a), and
Hettmansperger and Randles (2002). In the case of several samples, an estimate ĈOV(µ̂i) is
obtained by replacing N by ni in Lemma 5. The covariance matrix estimate of ∆̂1j is easily
obtained as µ̂1, . . . , µ̂c are asymptotically independent.

Another possibility to estimate precision is to use distribution-free methods such as boot-
strapping and delete-1 jackknife. These methods are quite attractive since they require no
assumption of the underlying distribution or, assuming that some basic prerequisites are
fulfilled, a large sample size.

To get a bootstrap covariance matrix estimate, generate bootstrap samples X∗
1, . . . ,X

∗
B by

sampling (with replacement) from the observed sample X, keeping sample size fixed. Then
compute the desired estimate from each bootstrap sample.

Lemma 6 A bootstrap estimator of the covariance matrix of µ̂ is

ĈOV(µ̂) =
1

B − 1

B∑
b=1

(µ̂∗b − ave{µ̂∗}) (µ̂∗b − ave{µ̂∗})>

where µ̂∗b = µ̂(X∗
b) is the location estimate from the bth bootstrap sample.

In case of more than one sample, we wish to make use of the model assumption of a common
scatter matrix V. After standardization by the estimates µ̂i and V̂, zij vectors are approx-
imately ”independent and identically distributed”. The idea is to sample (with replacement)
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from the data set (as if it were one sample)

Z = {z11, . . . , z1n1 , · · · , zc1, . . . , zcnc}.

Then transform each z∗ij back to obtain x∗ij = V̂1/2z∗ij + µ̂i. These vectors then constitute the

bootstrap sample X∗ =
(
x∗ij
)
. Then we can proceed as usual.

Note that some healthy caution is needed with bootstrapping. As pointed out by Stromberg
(1997), there is in fact a ”high” probability of generating a single bootstrap sample with an
unusually large proportion of outlying observations. This proportion might even exceed the
breakdown point of the estimator. Thus, even for robust methods, bootstrap estimation may
sometimes fail in the presence of outliers. Yet another problem could arise when the sample
size is small compared to the dimension of the data.

To overcome possible limitations of bootstrapping, an alternative approach is a delete-1 jack-
knife estimator.

Lemma 7 The delete-1 jackknife estimator of covariance matrix of µ̂ in the one-sample case
is

ĈOV(µ̂) =
N − 1

N

N∑
i=1

(
µ̂(i) − µ̂

)(
µ̂(i) − µ̂

)>
where µ̂(i) is the location estimate from a sample without the ith observation.

We have not used jackknife methods in a case of several samples.

Delete-1 jackknife does not always work well, for example, in conjunction with a nonsmooth
estimator such as the vector of marginal medians (Shao and Wu 1989). However, delete-1
jackknife appears to perform nicely with the transformation-retransformation spatial median.

4. SAS/IML modules

The programs are organized as macros, which consist of frequently used modules and the
master code. This section outlines the functionality of the modules, so that an advanced user
can modify and make further use of them. The SAS/IML programs (sgnmanova_1.sas and
sgnmanova_c.sas) are available at http://www.jstatsoft.org/v16/i05/.

4.1. Modules for estimation of location and scatter

Modules estimate_1 (one-sample case) and estimate_c (c-sample case) perform the estima-
tion procedure. The estimation algorithm uses the steps

1. Compute the direction vectors uij by the current estimate values.

2. Update V̂.

3. Update µ̂1, . . . , µ̂c.

4. Return to 1 and continue until convergence.

http://www.jstatsoft.org/v16/i05/
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Vector of the componentwise medians and a p× p identity matrix are used as starting values.
Iteration steps are given by

V̂ ← p V̂1/2 aveij

{
uiju>ij

}
V̂1/2 and

µ̂i ← µ̂i +
[
avej

{
r−1
ij

}]−1
V̂1/2avej{uij}.

(Hettmansperger and Randles 2002; Vardi and Zhang 2001; Oja and Randles 2004). The
symmetric transformation matrix V̂−1/2 is found via the spectral decomposition of the matrix
V̂.

We have also implemented a protection against landing iteration on a data point (Vardi and
Zhang 2001). Their modification ensures that iteration moves on even then. The need for
such protection is rare, but it does have practical value in bootstrapping, since—for some
bootstrap samples—the iteration might encounter a large mass of data on a single point.

estimate_1 Input for the module are the data matrix and the desired level of precision. The
module returns a (p+1)× p matrix where the first row is the location estimate and the
remaining rows consist of the scatter matrix estimate.

estimate_c Input for the module are the data matrix, the desired level of precision and the
number of samples. The module returns a (p + c)× p matrix where the first c rows are
the location estimates and the remaining rows consist of the scatter matrix estimate.

4.2. Modules for hypothesis testing

Modules for testing the null hypothesis are named as test_1 (one-sample case) and test_c
(multisample case).

test_1 Input for the module are the data matrix, the desired level of precision and the
number of sign change permutations. Module estimates the scatter matrix under H0

(fixed location), and returns a 1×4 vector with value of the test statistic, a p-value based
on the limiting distribution, a p-value based on a sign change permutation distribution
and its standard error (from a binomial distribution) as elements.

test_c Input for the module are the data matrix, the desired level of precision and the number
of permutations. Calls the estimate_1 module. The module returns a 1×4 vector with
value of the test statistic, a p-value based on the limiting distribution, a p-value based
on a permutation distribution and its standard error (from binomial distribution) as
elements.

Small number of permutations guarantees a reasonable computation time.

4.3. Modules for estimation of accuracy

Module asymptotic estimates the covariance matrix of µ̂ based on the limiting distribution.
Similarly, module bootstrap estimates the covariance matrix by bootstrapping, and module
jackknife estimates it by the delete-1 jacknife. Note that jackknife module is available
only for the one-sample case.
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asymptotic Input for the module consist of the data matrix, the estimated parameters values
and the desired level of precision. In a multisample case the number of samples has to
be given as well. The module returns a p×p covariance matrix estimate in a one-sample
case, and a cp× (p + 1) matrix in a multisample case, where the first column identifies
the rows which contain the covariance matrix estimate of µ̂i.

bootstrap Input for the module consist of the data matrix, the desired level of precision
and the number of bootstrap samples. In a multisample case the number of samples
has to be given as well. Calls the respective estimate modules. The module returns
a p × p covariance matrix estimate in a one-sample case, and a cp × (p + 1) matrix
in a multisample case, where the first column identifies the rows which contain the
covariance matrix of µ̂i.

jackknife Input for the module consist of the data matrix, location estimate and the desired
level of precision. Calls the estimate_1 module. The module returns a p×p covariance
matrix estimate.

It is a good idea to start with a small number of bootstrap samples.

5. Examples

5.1. Multivariate normal distribution

We simulated a two-sample case (n1 = n2 = 50)

x1j ∼ N3(µ1,Σ) and x2j ∼ N3(µ2,Σ),

where

µ1 =

 0
0
0

 , µ2 =

 1
1
1

 and Σ =

 1 1 1
3 1

3

 .

One-sample analysis. We start by analysing the first sample data as a one-sample problem.
The null hypothesis of interest is H0 : µ1 = 0. The SAS statements

%INCLUDE ’<full path>\sgnmanova_1.sas’;
sgnmanova_1(y3onesam, eps=1E-9, nperm=1000, nboot=500);

produce the output

Q2
Value of the test statistic: 0.6305067

P_AS
p-value (large sample appr.): 0.8894144

P_PERM SE_P
p-value (sign change test): 0.898 0.0095706 ( 1000 permutations)
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The null hypothesis is thus not rejected; p-values based on the limiting χ2
3-distribution and

on a permutation distribution were 0.889 and 0.898, respectively. The estimate of µ1 and
covariance matrix estimates of µ̂1 are obtained from the output as well (the output is reduced
to fit it on the page):

MU
-0.054617 0.0340526 0.0930009

COV_AS
0.0236718 0.0211768 0.0165879
0.0211768 0.0594587 0.0227896
0.0165879 0.0227896 0.049833

COV_BS
0.025025 0.0262765 0.0181631
0.0262765 0.0674611 0.0308509
0.0181631 0.0308509 0.0511991

COV_JK
0.0238118 0.0238157 0.0178145
0.0238157 0.061081 0.0289153
0.0178145 0.0289153 0.0480224

The subindices ”AS”, ”BS” and ”JK” refer to the approximation method by asymptotics, boot-
strapping and jackknife, respectively (see Section 3.3). The estimates are very similar. For
comparison, the sample mean vector is x̄1 = (−0.02 0.09 0.06)> and the estimated covariance
matrix of the sample mean is  0.020 0.020 0.014

0.054 0.018
0.048

 .

The mean is slightly more accurate in the normal case. But, if just one observation of the
data set is contaminated (by adding, say, 10 to all its components), the covariance matrix
estimates are:

ĈOVAS(µ̂1) =

 0.027 0.024 0.019
0.062 0.025

0.048

 , ĈOVBS(µ̂1) =

 0.028 0.027 0.021
0.068 0.031

0.051

 ,

ĈOVJK(µ̂1) =

 0.026 0.024 0.019
0.062 0.030

0.044

 and ĈOV(x̄1) =

 0.059 0.059 0.042
0.093 0.046

0.065

 ..

The covariance matrix of µ̂1 is almost unaffected, but the covariance matrix of the sample
mean nearly doubles in size. This reflects the robustness of the spatial median against outliers.
Despite of a single outlier, bootstrapping worked well. We will return to the robustness studies
in the two-sample case.
Two-sample analysis. Now we move on to the sample comparisons. The interest is to test
for differences in location, and to estimate the location, shift and scatter. Analysis for the
two-sample data set was performed by the SAS statements
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MANOVA Parameter Estimate Standard error
Spatial sign µ1 (−0.05 0.03 0.09)> (0.15 0.28 0.24)>

µ2 (0.71 0.55 0.93)> (0.15 0.28 0.24)>

∆12 (0.77 0.52 0.85)> (0.21 0.39 0.34)>

Classical µ1 (−0.02 0.09 0.06)> (0.14 0.26 0.22)>

µ2 (0.71 0.55 0.91)> (0.14 0.26 0.22)>

∆12 (0.73 0.46 0.86)> (0.20 0.37 0.32)>

Table 1: Estimates for location and shift. Standard errors are based on large sample approx-
imations.

%INCLUDE ’<full path>\sgnmanova_c.sas’;
sgnmanova_c(y3, 2, 1E-9, 1000, 500);

Resulting location and shift estimates are shown in Table 1. The sample covariance matrix
and Tyler’s scatter matrix (used to transform the data), both standardized to Tr(·) = 3, are
very much alike:

3
Tr(S)

S =

 0.42 0.51 0.38
1.48 0.42

1.10

 and V̂ =

 0.42 0.47 0.43
1.48 0.50

1.10


Test results are presented in Table 2. To demonstrate the robustness of the multivariate
spatial sign test we contaminated the elements of a single observation in the first sample by
adding a positive constant to all its elements. The effect on the multivariate spatial test is
small, but Hotelling’s trace test fails completely for large contamination values.

Contamination Hotelling’s Multivariate spatial sign test
factor trace χ2

3 1000 permutations
none 0.002 0.006 0.003 (0.002)

1 0.003 0.008 0.007 (0.003)
10 0.155 0.013 0.011 (0.003)
100 0.726 0.014 0.012 (0.003)

Table 2: p-values for testing H0 : ∆12 = 0. The standard error of the p-value estimate is
given in parentheses.

Naturally, the same phenomenon is reflected in the corresponding estimates. For a contami-
nation factor of 100,

µ̂1 = ( −0.02 0.07 0.17 )>, and

x̄1 = ( 1.98 2.09 2.06 )>.

The Hettmansperger-Randles estimate is still close to the true value, but the sample mean
vector is totally destroyed.
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5.2. Multivariate Cauchy distribution

In this section we study the behavior of the estimates for a heavy-tailed error distribution.
We simulated a data set (N = 50) from a multivariate Cauchy distribution using the model

xj =
yj

zj
,

where yj ∼ N3(0, I3), z2
j ∼ χ2

1, and yj and zj are independent. Then xj has a spherical
multivariate Cauchy distribution. The distribution does not possess finite moments, and it
has very heavy tails.
An analysis by sgnmanova_1 macro gives

µ̂ =
(

0.01 −0.06 −0.19
)>

V̂ =

 0.902 0.107 0.166
1.124 −0.081

0.974


i.e. natural estimates of the center of symmetry and the spatial sign covariance. Different
covariance matrix estimates of the location estimate are

ĈOVAS(µ̂) =

 0.034 0.004 0.006
0.043 −0.003

0.037

 ,

ĈOVBS(µ̂) =

 0.048 0.011 0.012
0.050 −0.002

0.046

 , and

ĈOVJK(µ̂) =

 0.039 0.011 0.007
0.050 −0.001

0.035

 ,

giving results mainly in the same direction. Due to the extreme values generated by the
underlying Cauchy distribution, bootstrapping appears to slightly overestimate the elements
of the variance-covariance matrix.
Due to the lack of finite moments of the noise distribution, a classical analysis is not helpful
at all:

x̄ =
(

0.36 −1.72 0.04
)>

S =

 17.720 −38.555 −2.000
142.475 3.274

6.156


By coincidence, the p-values were close to each other: p = 0.749 and p = 0.776 for the spatial
sign test and the Hotelling’s T 2 test, respectively.

6. Concluding remarks

Hettmansperger and Randles (2002) recognized that the conditions for the existence and the
uniqueness of simultaneous solutions to the estimating equations have not been established.
In authors’ experience, however, the algorithm appears always to converge.
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Lopuhaä and Rousseeuw (1991) showed that the spatial median has a 50% breakdown point.
The breakdown point of Tyler’s scatter matrix is positive, and generally within the interval
[ 1/(p + 1), 1/p ]. Both the location estimator and the scatter estimator have bounded influ-
ence functions. Given these robustness qualities, the minimal model assumptions and the
good efficiency properties, multivariate spatial sign methods are attractive alternatives to the
classical procedures particularly for skewed or heavy-tailed distributions, or in the presence
of outliers.
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