Journal of Statistical Software

January 2007, Volume 18, Issue 2. http:/ /www.jstatsoft.org/

The pls Package: Principal Component and Partial
Least Squares Regression in R

Bjosrn-Helge Mevik Ron Wehrens

Norwegian University of Life Sciences Radboud University Nijmegen

Abstract

The pls package implements principal component regression (PCR) and partial least
squares regression (PLSR) in R (R Development Core Team 2006b), and is freely available
from the Comprehensive R Archive Network (CRAN), licensed under the GNU General
Public License (GPL).

The user interface is modelled after the traditional formula interface, as exemplified by
1m. This was done so that people used to R would not have to learn yet another interface,
and also because we believe the formula interface is a good way of working interactively
with models. It thus has methods for generic functions like predict, update and coef. It
also has more specialised functions like scores, loadings and RMSEP, and a flexible cross-
validation system. Visual inspection and assessment is important in chemometrics, and
the pls package has a number of plot functions for plotting scores, loadings, predictions,
coefficients and RMSEP estimates.

The package implements PCR and several algorithms for PLSR. The design is modular,
so that it should be easy to use the underlying algorithms in other functions. It is our
hope that the package will serve well both for interactive data analysis and as a building
block for other functions or packages using PLSR or PCR.

We will here describe the package and how it is used for data analysis, as well as how
it can be used as a part of other packages. Also included is a section about formulas and
data frames, for people not used to the R modelling idioms.

Keywords: principal component regression, PCR, partial least squares regression, PLSR, R.

1. Introduction

Multivariate regression methods like principal component regression (PCR) and partial least
squares regression (PLSR) enjoy large popularity in a wide range of fields, including the nat-
ural sciences. The main reason is that they have been designed to confront the situation that

http://www.jstatsoft.org/

2 pls: Principal Component and Partial Least Squares Regression in R

there are many, possibly correlated, predictor variables, and relatively few samples—a situ-
ation that is common, especially in chemistry where developments in spectroscopy since the
seventies have revolutionised chemical analysis. In fact, the origin of PLSR lies in chemistry
(see, e.g., Wold 2001; Martens 2001). The field of near-infrared (NIR) spectroscopy, with its
highly overlapping lines and difficult to interpret overtones, would not have existed but for a
method to obtain quantitative information from the spectra.

Also other fields have benefited greatly from multivariate regression methods like PLSR and
PCR. In medicinal chemistry, for example, one likes to derive molecular properties from the
molecular structure. Most of these quantitative structure—activity relations (QSAR, and also
quantitative structure—property relations, QSPR), and in particular, comparative molecular
field analysis (ComFA) (Cramer, Patterson, and Bunce 1988), use PLSR. Other applications
range from statistical process control (Kresta, MacGregor, and Marlin 1991) to tumour clas-
sification (Nguyen and Rocke 2002) to spatial analysis in brain images (McIntosh, Bookstein,
Haxby, and Grady 1996) to marketing (Fornell and Bookstein 1982).

In the usual multiple linear regression (MLR) context, the least-squares solution for
Y=XB+¢& (1)

is given by
B=(X"X)"'X"y (2)

The problem often is that X ' X is singular, either because the number of variables (columns)
in X exceeds the number of objects (rows), or because of collinearities. Both PCR and PLSR
circumvent this by decomposing X into orthogonal scores T and loadings P

X=TP (3)

and regressing Y not on X itself but on the first a columns of the scores T'. In PCR, the scores
are given by the left singular vectors of X, multiplied with the corresponding singular values,
and the loadings are the right singular vectors of X . This, however, only takes into account
information about X, and therefore may be suboptimal for prediction purposes. PLSR aims
to incorporate information on both X and Y in the definition of the scores and loadings. In
fact, for one specific version of PLSR, called SIMPLS (de Jong 1993), it can be shown that the
scores and loadings are chosen in such a way to describe as much as possible of the covariance
between X and Y, where PCR concentrates on the variance of X. Other PLSR algorithms
give identical results to SIMPLS in the case of one Y variable, but deviate slightly for the
multivariate Y case; the differences are not likely to be important in practice.

1.1. Algorithms

In PCR, we approximate the X matrix by the first a principal components (PCs), usually
obtained from the singular value decomposition (SVD):

Y T T
X =X +&x = U@Dw)V @ +Ex =TwPq) +Ex
Next, we regress Y on the scores, which leads to regression coefficients

B=PT'T)'T'Y =VvD 'U'Y

Journal of Statistical Software

where the subscripts a have been dropped for clarity.

For PLSR, the components, called Latent Variables (LVs) in this context, are obtained iter-
atively. One starts with the SVD of the crossproduct matrix S = X 'Y, thereby including
information on variation in both X and Y, and on the correlation between them. The first
left and right singular vectors, w and ¢, are used as weight vectors for X and Y, respectively,
to obtain scores ¢t and wu:

t=Xw=FEw (4)

u=Yq=Fq (5)

where E and F are initialised as X and Y, respectively. The X scores t are often normalised:
t=t/VitTt (6)

The Y scores u are not actually necessary in the regression but are often saved for interpre-
tation purposes. Next, X and Y loadings are obtained by regressing against the same vector
t:

p=E't (7)

¢g=F"t (8)

Finally, the data matrices are ‘deflated’: the information related to this latent variable, in
the form of the outer products tp' and tq', is subtracted from the (current) data matrices
E and F.

E,..=E,—tp' (9)

F,,=F,—tq" (10)

The estimation of the next component then can start from the SVD of the crossproduct matrix
EI 11 Fny1. After every iteration, vectors w, ¢, p and g are saved as columns in matrices W, T,
P and Q), respectively. One complication is that columns of matrix W can not be compared
directly: they are derived from successively deflated matrices E and F'. It has been shown
that an alternative way to represent the weights, in such a way that all columns relate to the
original X matrix, is given by

R=W(/P'W)! (11)

Now, we are in the same position as in the PCR case: instead of regressing Y on X, we use
scores T to calculate the regression coeflicients, and later convert these back to the realm of
the original variables by pre-multiplying with matrix R (since T = X R):

B=R(T'T)'T'"Y =RT'Y = RQ"

Again, here, only the first a components are used. How many components are optimal has to
be determined, usually by cross-validation.

Many alternative formulations can be found in literature. It has been shown, for instance, that
only one of X and Y needs to be deflated; alternatively, one can directly deflate the crossprod-
uct matrix S (as is done in SIMPLS, for example). Moreover, there are many equivalent ways
of scaling. In the example above, the scores t have been normalised, but one can also choose
to introduce normalisation at another point in the algorithm. Unfortunately, this can make
it difficult to directly compare the scores and loadings of different PLSR implementations.

4 pls: Principal Component and Partial Least Squares Regression in R

1.2. On the use of PLSR and PCR

In theory, PLSR should have an advantage over PCR. One could imagine a situation where a
minor component in X is highly correlated with Y'; not selecting enough components would
then lead to very bad predictions. In PLSR, such a component would be automatically present
in the first LV. In practice, however, there is hardly any difference between the use of PLSR
and PCR; in most situations, the methods achieve similar prediction accuracies, although
PLSR usually needs fewer latent variables than PCR. Put the other way around: with the
same number of latent variables, PLSR will cover more of the variation in Y and PCR will
cover more of X. In turn, both behave very similar to ridge regression (Frank and Friedman
1993).

It can also be shown that both PCR and PLSR behave as shrinkage methods (Hastie, Tib-
shirani, and Friedman 2001), although in some cases PLSR seems to increase the variance of
individual regression coeflicients, one possible explanation of why PLSR is not always better
than PCR.

1.3. Outline of the paper

Section 2 presents an example session, to get an overview of the package. In Section 3 we
describe formulas and data frames (as they are used in pls). Users familiar with formulas
and data frames in R can skip this section on first reading. Fitting of models is described
in Section 4, and cross-validatory choice of components is discussed in Section 5. Next,
inspecting and plotting models is described (Section 6), followed by a section on predicting
future observations (Section 7). Finally, Section 8 covers more advanced topics such as setting
options, using the underlying functions directly, and implementation details.

2. Example session

In this section we will walk through an example session, to get an overview of the package.

To be able to use the package, one first has to load it:
R> library("pls")

This prints a message telling that the package has been attached, and that the package
implements a function loadings that masks a function of the same name in package stats.
(The output of the commands have in some cases been suppressed to save space.)

Three example data sets are included in pls:

yarn A data set with 28 near-infrared spectra (NIR) of PET yarns, measured at 268 wave-
lengths, as predictors, and density as response (density) (Swierenga, de Weijer, van
Wijk, and Buydens 1999). The data set also includes a logical variable train which can
be used to split the data into a training data set of size 21 and test data set of size 7.
See ?yarn for details.

oliveoil A data set with 5 quality measurements (chemical) and 6 panel sensory panel vari-
ables (sensory) made on 16 olive oil samples (Massart, Vandeginste, Buydens, de Jong,
Lewi, and Smeyers-Verbeke 1998). See ?oliveoil for details.

Journal of Statistical Software 5

N |
—
~~]
o _
a9 © _
S ©
8 _
o _|
o

T T T T
1000 nm 1200 nm 1400 nm 1600 nm

Figure 1: Gasoline NIR spectra

gasoline A data set consisting of octane number (octane) and NIR spectra (NIR) of 60
gasoline samples (Kalivas 1997). Each NIR spectrum consists of 401 diffuse reflectance
measurements from 900 to 1700 nm. See ?gasoline for details.

These will be used in the examples that follow. To use the data sets, they must first be loaded:

R> data("yarn")
R> data("oliveoil™)
R> data("gasoline")

For the rest of the paper, it will be assumed that the package and the data sets have been
loaded as above. Also, all examples are run with options(digits = 4).

In this section, we will do a PLSR on the gasoline data to illustrate the use of pls. The
spectra are shown in Figure 1. We first divide the data set into train and test data sets:

R> gasTrain <- gasoline[1:50,]
R> gasTest <- gasoline[51:60,]

A typical way of fitting a PLSR model is
R> gasl <- plsr(octane ~ NIR, ncomp = 10, data = gasTrain, validation = "L0OO")

This fits a model with 10 components, and includes leave-one-out (LOO) cross-validated
predictions (Lachenbruch and Mickey 1968). We can get an overview of the fit and validation
results with the summary method:

R> summary(gas1)

Data: X dimension: 50 401
Y dimension: 50 1
Fit method: kernelpls
Number of components considered: 10

VALIDATION: RMSEP
Cross-validated using 50 leave-one-out segments.

6 pls: Principal Component and Partial Least Squares Regression in R

octane
< | — CV
i --- adjicv
o o _|
L —
0
= _
oY
©
S
N
= I I I I I I
0 2 4 6 8 10

number of components

Figure 2: Cross-validated RMSEP curves for the gasoline data

(Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps

Cv 1.545 1.357 0.2966 0.2524 0.2476 0.2398 0.2319

adjCv 1.545 1.356 0.2947 0.2521 0.2478 0.2388 0.2313
7 comps 8 comps 9 comps 10 comps

Cv 0.2386 0.2316 0.2449 0.2673

adjCv 0.2377 0.2308 0.2438 0.2657

TRAINING: % variance explained
1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 8 comps

X 78.17 85.58 93.4 96.06 96.94 97.89 98.38 98.85

octane 29.39 96.85 97.9 98.26 98.86 98.96 99.09 99.16
9 comps 10 comps

X 99.02 99.2

octane 99.28 99.4

The validation results here are root mean squared error of prediction (RMSEP). There are
two cross-validation estimates: CV is the ordinary CV estimate, and adjCV is a bias-corrected
CV estimate (Mevik and Cederkvist 2004) (For a LOO CV, there is virtually no difference).

It is often simpler to judge the RMSEPs by plotting them:
R> plot (RMSEP(gasl1), legendpos = "topright")

This plots the estimated RMSEPs as functions of the number of components (Figure 2). The
legendpos argument adds a legend at the indicated position. Two components seem to be
enough. This gives an RMSEP of 0.297. As mentioned in the introduction, the main practical
difference between PCR and PLSR is that PCR often needs more components than PLSR to

Journal of Statistical Software

octane, 2 comps, validation

87

predicted

84

I I I I I I
84 85 86 87 88 89

measured

Figure 3: Cross-validated predictions for the gasoline data

achieve the same prediction error. On this data set, PCR would need three components to
achieve the same RMSEP.

Once the number of components has been chosen, one can inspect different aspects of the fit
by plotting predictions, scores, loadings, etc. The default plot is a prediction plot:

R> plot(gasl, ncomp = 2, asp = 1, line = TRUE)

This shows the cross-validated predictions with two components versus measured values (Fig-
ure 3). We have chosen an aspect ratio of 1, and to draw a target line. The points follow the
target line quite nicely, and there is no indication of a curvature or other anomalies.

Other plots can be selected with the argument plottype:
R> plot(gasl, plottype = "scores", comps = 1:3)

This gives a pairwise plot of the score values for the three first components (Figure 4). Score
plots are often used to look for patterns, groups or outliers in the data. (For instance,
plotting the two first components for a model built on the yarn dataset clearly indicates the
experimental design of that data.) In this example, there is no clear indication of grouping or
outliers. The numbers in parentheses after the component labels are the relative amount of X
variance explained by each component. The explained variances can be extracted explicitly
with

R> explvar(gas1)

loading value

pls: Principal Component and Partial Least Squares Regression in R

0.3

0.1

-0.1

-0.10 0.05 0.15

o o - g
o o 0 o
ﬂ?’ % ° o o
o ‘6‘, o o o % ony
0%o aJ L ©
Comp 1 (78.2 %) ¥ oo $o00 o o 3
@ o % ° o °
€ ° ° % L
°a °o <
5 | =
(-] o o o ?
7o) o o
-
d ﬂo oo
0 N %, © o & o
o °
S aa:iz;,o&n Comp 2 (7.4 %) oo %uo;: ol
_° o ©9 ® o %n °0®
9 ‘e %
o Le P8 ‘g ° % ° :°
|
° o o © 8
I AR 2 [©
o © 9% 0 o 0% ° © |
o
o o @ ©%o o
o o 8%;‘ ° °s 6 %, o| | comp3@sw [S
L) P
e R0 -3 00 - °
° ° |
® 8 o
o aﬂ 05 o !
T T T T T T T T T T
-04 00 0.4 -0.10 0.00 0.10
Figure 4: Score plot for the gasoline data
—— Comp 1 (78.2 %)
--- Comp 2 (7.4 %)
) /«
N i
71\
N o= =S = o L) ! ' LS = 7 =7
= 7 v \
of '
v |»' v
I I I I
1000 1200 1400 1600
nm

Figure 5: Loading plot for the gasoline data

Journal of Statistical Software 9

Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8 Comp 9 Comp 10
78.1708 T7.4122 7.8242 2.6578 0.8768 0.9466 0.4922 0.4723 0.1688 0.1694

The loading plot (Figure 5) is much used for interpretation purposes, for instance to look for
known spectral peaks or profiles:

R> plot(gasl, "loadings", comps = 1:2, legendpos = "topleft",
+ labels = "numbers", xlab = "nm")
R> abline(h = 0)

The labels = "numbers" argument makes the plot function try to interpret the variable
names as numbers, and use them as x axis labels.

A fitted model is often used to predict the response values of new observations. The following
predicts the responses for the ten observations in gasTest, using two components:

R> predict(gasl, ncomp = 2, newdata = gasTest)

, » 2 comps
octane
51 87.94
52 87.25
53 88.16
54 84.97
b5 85.15
56 84.51
b7 87.56
58 86.85
59 89.19
60 87.09

Because we know the true response values for these samples, we can calculate the test set
RMSEP:

R> RMSEP(gasl, newdata = gasTest)

(Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps
1.5114 1.1696 0.2445 0.2341 0.3287 0.2780
6 comps 7 comps 8 comps 9 comps 10 comps
0.2703 0.3301 0.3571 0.4090 0.6116

For two components, we get 0.244, which is quite close to the cross-validated estimate above
(0.297).

10 pls: Principal Component and Partial Least Squares Regression in R

3. Formulas and data frames

The pls package has a formula interface that works like the formula interface in R’s standard
1m functions, in most ways. This section gives a short description of formulas and data
frames as they apply to pls. More information on formulas can be found in the 1m help file, in
Chapter 11 of “An Introduction to R” (R Development Core Team 2006a), and in Chapter 2
of “The White Book” (Chambers and Hastie 1992). These are good reads for anyone wanting
to understand how R works with formulas, and the user is strongly advised to read them.

3.1. Formulas

A formula consists of a left hand side (lhs), a tilde (), and a right hand side (rhs). The lhs
consists of a single term, representing the response(s). The rhs consists of one or more terms
separated by +, representing the regressor(s). For instance, in the formulaa ~ b + ¢ + 4, a
is the response, and b, c, and d are the regressors. The intercept is handled automatically,
and need not be specified in the formula.

Each term represents a matrix, a numeric vector or a factor (a factor should not be used as
the response). If the response term is a matrix, a multi-response model is fit. In pls, the right
hand side quite often consists of a single term, representing a matrix regressor: y ~ X.

It is also possible to specify transformations of the variables. For instance, log(y) ~ msc(Z)
specifies a regression of the logarithm of y onto Z after Z has been transformed by multiplicative
scatter (or signal) correction (MSC) (Geladi, MacDougall, and Martens 1985), a pre-treatment
that is very common in infrared spectroscopy. If the transformations contain symbols that
are interpreted in the formula handling, e.g., +, * or ~, the terms should be protected with
the I() function, like this: y ~ x1 + I(x2 + x3). This specifies two regressors: x1, and the
sum of x2 and x3.

3.2. Data frames

The fit functions first look for the specified variables in a supplied data frame, and it is
advisable to collect all variables there. This makes it easier to know what data has been used
for fitting, to keep different variants of the data around, and to predict new data.

To create a data frame, one can use the data.frame function: if vi, v2 and v3 are factors
or numeric vectors, mydata <- data.frame(y = v1, a = v2, b = v3) will result in a data
frame with variables named y, a and b.

PLSR and PCR are often used with a matrix as the single predictor term (especially when
one is working with spectroscopic data). Also, multi-response models require a matrix as the
response term. If Z is a matrix, it has to be protected by the ‘protect function’ I() in calls
to data.frame: mydata <- data.frame(..., Z = I(Z)). Otherwise, it will be split into
separate variables for each column, and there will be no variable called Z in the data frame,
so we cannot use Z in the formula. One can also add the matrix to an existing data frame:

R> mydata <- data.frame(...)
R> mydata$Z <- Z

This will also prevent Z from being split into separate variables. Finally, one can use cbind
to combine vectors and matrices into matrices on the fly in the formula. This is most useful
for the response, e.g., cbind(y1l, y2) ~ X.

Journal of Statistical Software

Variables in a data frame can be accessed with the $ operator, e.g., mydata$y. However, the
pls functions access the variables automatically, so the user should never use $ in formulas.

4. Fitting models

The main functions for fitting models are pcr and plsr. (They are simply wrappers for the
function mvr, selecting the appropriate fit algorithm). We will use plsr in the examples in
this section, but everything could have been done with pcr (or mvr).

In its simplest form, the function call for fitting models is plsr(formula, ncomp, data)
(where plsr can be substituted with pcr or mvr). The argument formula is a formula as
described above, ncomp is the number of components one wishes to fit, and data is the data
frame containing the variables to use in the model. The function returns a fitted model
(an object of class "mvr") which can be inspected (Section 6) or used for predicting new
observations (Section 7). For instance:

R> densl <- plsr(demnsity ~ NIR, ncomp = 5, data = yarn)
If the response term of the formula is a matrix, a multi-response model is fit, e.g.,

R> dim(oliveoil$sensory)
[1] 16 6
R> plsr(sensory ~ chemical, data = oliveoil)

Partial least squares regression, fitted with the kernel algorithm.
Call:
plsr(sensory ~ chemical, data = oliveoil)

(As we see, the print method simply tells us what type of model this is, and how the fit
function was called.)

The argument ncomp is optional. If it is missing, the maximal possible number of components
are used. Also data is optional, and if it is missing, the variables specified in the formula
is searched for in the global environment (the user’s workspace). Usually, it is preferable to
keep the variables in data frames, but it can sometimes be convenient to have them in the
global environment. If the variables reside in a data frame, e.g. yarn, do not be tempted to
use formulas like yarn$density ~ yarn$NIR! Use density ~ NIR and specify the data frame
with data = yarn as above.

There are facilities for working interactively with models. To use only part of the samples
in a data set, for instance the first 20, one can use arguments subset = 1:20 or data =
yarn[1:20,]. Also, if one wants to try different alternatives of the model, one can use the
function update. For instance

R> trainind <- which(yarn$train == TRUE)
R> dens2 <- update(densl, subset = trainind)

11

12 pls: Principal Component and Partial Least Squares Regression in R

will refit the model dens1 using only the observations which are marked as TRUE in yarn$train,
and

R> dens3 <- update(densl, ncomp = 10)

will change the number of components to 10. Other arguments, such as formula, can also be
changed with update. This can save a bit of typing when working interactively with models
(but it doesn’t save computing time; the model is refitted each time). In general, the reader
is referred to “The White Book” (Chambers and Hastie 1992) or ‘An Introduction to R” (R
Development Core Team 2006a) for more information about fitting and working with models
in R.

Missing data can sometimes be a problem. The PLSR and PCR algorithms currently imple-
mented in pls do not handle missing values intrinsically, so observations with missing values
must be removed. This can be done with the na.action argument. With na.action =
na.omit (the default), any observation with missing values will be removed from the model
completely. With na.action = na.exclude, they will be removed from the fitting process,
but included as NAs in the residuals and fitted values. If you want an explicit error when there
are missing values in the data, use na.action = na.fail. The default na.action can be set
with options(), e.g., options(na.action = quote(na.fail)).

Standardisation and other pre-treatments of predictor variables are often called for. In pls,
the predictor variables are always centered, as a part of the fit algorithm. Scaling can be
requested with the scale argument. If scale is TRUE, each variable is standardised by dividing
it by its standard deviation, and if scale is a numeric vector, each variable is divided by
the corresponding number. For instance, this will fit a model with standardised chemical
measurements:

R> olivel <- plsr(sensory ~ chemical, scale = TRUE, data = oliveoil)

As mentioned earlier, MSC (Geladi et al. 1985) is implemented in pls as a function msc that
can be used in formulas:

R> gas2 <- plsr(octane ~ msc(NIR), ncomp = 10, data = gasTrain)

This scatter corrects NIR prior to the fitting, and arranges for new spectra to be automatically
scatter corrected (using the same reference spectrum as when fitting) in predict:

R> predict(gas2, ncomp = 3, newdata = gasTest)

There are other arguments that can be given in the fit call: validation is for selecting
validation, and ... is for sending arguments to the underlying functions, notably the cross-
validation function mvrCv. For the other arguments, see 7mvr.

5. Choosing the number of components with cross-validation

Cross-validation, commonly used to determine the optimal number of components to take
into account, is controlled by the validation argument in the modelling functions (mvr,
plsr and pcr). The default value is "none". Supplying a value of "CV" or "L00" will cause

Journal of Statistical Software

the modelling procedure to call mvrCv to perform cross-validation; "LOO" provides leave-
one-out cross-validation, whereas "CV" divides the data into segments. Default is to use ten
segments, randomly selected, but also segments of consecutive objects or interleaved segments
(sometimes also referred to as ‘Venetian blinds’) are possible through the use of the argument
segment.type. One can also specify the segments explicitly with the argument segments;
see 7mvrCv for details.

When validation is performed in this way, the model will contain an element comprising
information on the out-of-bag predictions (in the form of predicted values, as well as MSEP
and R2 values). As a reference, the MSEP error using no components at all is calculated as
well. The validation results can be visualised using the plottype = "validation" argument
of the standard plotting function. An example is shown in Figure 2 for the gasoline data;
typically, one would select a number of components after which the cross-validation error does
not show a significant decrease. Unfortunately, no generally applicable tests are available, so
the decision on how many components to retain will always be subjective to some extent.

When a pre-treatment that depends on the composition of the training set is applied, the cross-
validation procedure as described above is not optimal, in the sense that the cross-validation
errors are biased downward. As long as the only purpose is to select the optimal number of
components, this bias may not be very important, but it is not too difficult to avoid it. The
modelling functions have an argument scale that can be used for auto-scaling per segment.
However, more elaborate methods such as MSC need explicit handling per segment. For this,
function crossval is available. It takes an mvr object and performs the cross-validation as it
should be done: applying the pre-treatment for each segment. The results can be shown in a
plot (which looks very similar to Figure 2) or summarised in numbers.

R> gas2.cv <- crossval(gas2, segments = 10)
R> plot (MSEP(gas2.cv), legendpos = "topright")
R> summary(gas2.cv, what = "validation")

Data: X dimension: 50 401
Y dimension: 50 1
Fit method: kernelpls
Number of components considered: 10

VALIDATION: RMSEP
Cross-validated using 10 random segments.
(Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps

Cv 1.545 1.346 0.2872 0.2612 0.2479 0.2390 0.2503

adjCv 1.545 1.342 0.2841 0.2600 0.2435 0.2353 0.2441
7 comps 8 comps 9 comps 10 comps

Cv 0.2438 0.2653 0.2791 0.2885

adjCv 0.2383 0.2576 0.2697 0.2777

Applying MSC in this case leads to nearly identical cross-validation estimates of prediction
error.

When the scaling does not depend on the division of the data into segments (e.g., log-scaling),
functions crossval and mvrCv give the same results; however, crossval is much slower.

13

14 pls: Principal Component and Partial Least Squares Regression in R

octane

€ e
o N ot i .
5;:3 A . . .’Mi ,"li .i "‘.\ A, h]
8 o 4 N = \—\-M\WJA : - ,\\’— /_.vlb.m’
© ’ I // \'\" ‘1 .’J "
5 9 - ¥ !
Ty V1
a — 1 comps v Y
¥ H --- 2comps Ly
(@] |-
o | 3 comps !

o J

[| | | |

1000 1200 1400 1600
nm

Figure 6: Regression coefficients for the gasoline data

6. Inspecting fitted models

A closer look at the fitted model may reveal interesting agreements or disagreements with
what is known about the relations between X and Y. Several functions are implemented in
pls for plotting, extracting and summarising model components.

6.1. Plotting

One can access all plotting functions through the "plottype" argument of the plot method
for mvr objects. This is simply a wrapper function calling the actual plot functions; the latter
are available to the user as well.

The default plot is a prediction plot (predplot), showing predicted versus measured values.
Test set predictions are used if a test set is supplied with the newdata argument. Otherwise, if
the model was built using cross-validation, the cross-validated predictions are used, otherwise
the predictions for the training set. This can be overridden with the which argument. An
example of this type of plot can be seen in Figure 3. An optional argument can be used to
indicate how many components should be included in the prediction.

To assess how many components are optimal, a validation plot (validationplot) can be used
such as the one shown in Figure 2; this shows a measure of prediction performance (either
RMSEP, MSEP, or R?) against the number of components. Usually, one takes the first local
minimum rather than the absolute minimum in the curve, to avoid over-fitting.

The regression coefficients can be visualised using plottype = "coef" in the plot method,
or directly through function coefplot. This allows simultaneous plotting of the regression
vectors for several different numbers of components at once. The regression vectors for the
gasoline data set using MSC are shown in Figure 6 using the command

R> plot(gasl, plottype = "coef", ncomp = 1:3, legendpos = "bottomleft",
+ labels = "numbers'", xlab = "nm")

Journal of Statistical Software

O_
—
©
o

<

=

N

T o

(qV] o

o

S

o

@)
n
S 4
[
o
‘Ti_

I I I I I
-1.0 -0.5 0.0 0.5 1.0

Comp 1 (78.2 %)

Figure 7: Correlation loadings plot for the gasoline data

Note that the coefficients for two components and three components are similar. This is
because the third component contributes little to the predictions. The RMSEPs (see Figure 2)
and predictions (see Section 7) for two and three components are quite similar.

Scores and loadings can be plotted using functions scoreplot (an example is shown in Fig-
ure 4) and loadingplot (in Figure 5), respectively. One can indicate the number of compo-
nents with the comps argument; if more than two components are given, plotting the scores
will give a pairs plot, otherwise a scatter plot. For loadingplot, the default is to use line
plots.

Finally, a ‘correlation loadings’ plot (function corrplot, or plottype = "correlation" in
plot) shows the correlations between each variable and the selected components (see Figure 7).
These plots are scatter plots of two sets of scores with concentric circles of radii given by
radii. Each point corresponds to an X variable. The squared distance between the point
and the origin equals the fraction of the variance of the variable explained by the components
in the panel. The default values for radii correspond to 50% and 100% explained variance,
respectively.

The plot functions accept most of the ordinary plot parameters, such as col and pch. If
the model has several responses or one selects more than one model size, e.g. ncomp = 4:6,
in some plot functions (notably prediction plots (see below), validation plots and coefficient
plots) the plotting window will be divided and one plot will be shown for each combination
of response and model size. The number of rows and columns are chosen automatically, but
can be specified explicitly with arguments nRows and nCols. If there are more plots than fit
the plot window, one will be asked to press return to see the rest of the plots.

15

16 pls: Principal Component and Partial Least Squares Regression in R

6.2. Extraction

Regression coefficients can be extracted using the generic function coef; the function takes
several arguments, indicating the number of components to take into account, and whether
the intercept is needed (default is FALSE).

Scores and loadings can be extracted using functions scores and loadings for X, and Yscores
and Yloadings for Y. These also return the percentage of variance explained as attributes.
In PLSR, weights can be extracted using the function loading.weights. When applied to a
PCR model, the function returns NULL.

Note that commands like plot(scores(gas1)) are perfectly correct, and lead to exactly the
same plots as using scoreplot.

6.3. Summaries

The print method for an object of class "mvr" shows the regression type used, perhaps
indicating the form of validation employed, and shows the function call. The summary method
gives more information: it also shows the amount of variance explained by the model (for all
choices of a, the number of latent variables). The summary method has an additional argument
(what) to be able to focus on the training phase or validation phase, respectively. Default is
to print both types of information.

7. Predicting new observations

Fitted models are often used to predict future observations, and pls implements a predict
method for PLSR and PCR models. The most common way of calling this function is
predict (mymod, ncomp = myncomp, newdata = mynewdata), where mymod is a fitted model,
myncomp specifies the model size(s) to use, and mynewdata is a data frame with new X obser-
vations. The data frame can also contain response measurements for the new observations,
which can be used to compare the predicted values to the measured ones, or to estimate the
overall prediction ability of the model. If newdata is missing, predict uses the data used to
fit the model, i.e., it returns fitted values.

If the argument ncomp is missing, predict returns predictions for models with 1 component,
2 components, ..., A components, where A is the number of components used when fitting the
model. Otherwise, the model size(s) listed in ncomp are used. For instance, to get predictions
from the model built in Section 2, with two and three components, one would use

R> predict(gasl, ncomp = 2:3, newdata = gasTest[1:5,])

, » 2 comps
octane
51 87.94
b2 87.25
53 88.16
b4 84.97

55 85.15

Journal of Statistical Software

, » 3 comps
octane
51 87.95
52 87.30
53 88.21
54 84.87
55 85.24

(We predict only the five first test observations, to save space.) The predictions with two and
three components are quite similar. This could be expected, given that the regression vectors
(Figure 6) as well as the estimated RMSEPs for the two model sizes were similar.

One can also specify explicitly which components to use when predicting. This is done by
specifying the components in the argument comps. (If both ncomp and comps are specified,
comps takes precedence over ncomp.) For instance, to get predictions from a model with only
component 2, one can use

R> predict(gasl, comps = 2, newdata = gasTest[1:5,])

octane
51 87.53
52 86.30
53 87.35
54 85.82
55 85.32

The results are different from the predictions with two components (i.e., components one
and two) above. (The intercept is always included in the predictions. It can be removed by
subtracting mymod$Ymeans from the predicted values.)

The predict method returns a three-dimensional array, in which the entry (i,7, k) is the
predicted value for observation ¢, response j and model size k. Note that singleton dimensions
are not dropped, so predicting five observations for a uni-response model with ncomp = 3
gives an b x 1 x 1 array, not a vector of length five. This is to make it easier to distinguish
between predictions from models with one response and predictions with one model size.
(When using the comps argument, the last dimension is dropped, because the predictions
are always from a single model.) One can drop the singleton dimensions explicitly by using
drop(predict(...)):

R> drop(predict(gasl, ncomp = 2:3, newdata = gasTest[1:5, 1))

2 comps 3 comps
51 87.94 87.95
52 87.25 87.30
53 88.16 88.21
54 84.97 84.87
55 85.15 85.24

17

18 pls: Principal Component and Partial Least Squares Regression in R

Missing values in newdata are propagated to NAs in the predicted response, by default. This
can be changed with the na.action argument. See 7na.omit for details.

The newdata does not have to be a data frame. Recognising the fact that the right hand side
of PLSR and PCR formulas very often are a single matrix term, the predict method allows
one to use a matrix as newdata, so instead of

newdataframe <- data.frame(X = newmatrix)
predict(..., newdata = newdataframe)

one can simply say
predict(..., newdata = newmatrix)

However, there are a couple of caveats: First, this only works in predict. Other functions
that take a newdata argument (such as RMSEP) must have a data frame (because they also
need the response values). Second, when newdata is a data frame, predict is able to perform
more tests on the supplied data, such as the dimensions and types of variables. Third,
with the exception of scaling (specified with the scale argument when fitting the model),
any transformations or coding of factors and interactions have to be performed manually if
newdata is a matrix.

It is often interesting to predict scores from new observations, instead of response values.
This can be done by specifying the argument type = "scores" in predict. One will then
get a matrix with the scores corresponding to the components specified in comps (ncomp is
accepted as a synonym for comps when predicting scores).

Predictions can be plotted with the function predplot. This function is generic, and can also

be used for plotting predictions from other types of models, such as 1m. Typically, predplot
is called like this:

R> predplot(gasl, ncomp = 2, newdata = gasTest, asp = 1, line = TRUE)

This plots predicted (with 2 components) versus measured response values. (Note: newdata
must be a data frame with both X and Y variables.)

8. Further topics

This section presents a couple of slightly technical topics for more advanced use of the package.

8.1. Selecting fit algorithms

There are several PLSR algorithms, and the pls package currently implements three of them:
the kernel algorithm for tall matrices (many observations, few variables) (Dayal and Mac-
Gregor 1997), the classic orthogonal scores algorithm (A.K.A. NIPALS algorithm) (Martens
and Naes 1989) and the SIMPLS algorithm (de Jong 1993). The kernel and orthogonal scores
algorithms produce the same results (the kernel algorithm being the fastest of them for most
problems). SIMPLS produces the same fit for single-response models, but slightly different
results for multi-response models. It is also usually faster than the NIPALS algorithm.

Journal of Statistical Software 19

octane, 2 comps, test

predicted

I I I I I
85 86 87 88 89

measured

Figure 8: Test set predictions

The factory default is to use the kernel algorithm. One can specify a different algorithm with
the method argument; i.e., method = "oscorespls".

If one’s personal taste of algorithms does not coincide with the defaults in pls, it can be quite
tedious (and error prone) having to write e.g. method = "oscorespls" every time (even
though it can be shortened to e.g. me = "o" due to partial matching). Therefore, the defaults
can be changed, with the function pls.options. Called without arguments, it returns the
current settings as a named list:

R> pls.options()

$mvralg
[1] "kernelpls"

$plsralg
[1] "kernelpls"

$pcralg
[1] "svdpc"

The options specify the default fit algorithm of mvr, plsr, and pcr. To return only a specific
option, one can use pls.options("plsralg"). To change the default PLSR algorithm for the
rest of the session (and for future settings, if the global environment is saved and restored),
one can use, e.g.

20 pls: Principal Component and Partial Least Squares Regression in R

R> pls.options(plsralg = "oscorespls")

When changed, the options are stored in a variable .pls.Options in the global environment.
A quick-n-dirty way to get back to the ‘factory defaults’ is to remove this variable:

R> pls.options("plsralg")

$plsralg
[1] "oscorespls"

R> rm(.pls.0Options)
R> pls.options("plsralg")

$plsralg
[1] "kernelpls"

8.2. Package design

The pls package is designed such that an interface function mvr handles the formula and
data, and calls an underlying fit function (and possibly a cross-validation function) to do the
real work. There are several reasons for this design: it makes it easier to implement new
algorithms, one can easily skip the time-consuming formula and data handling in computing-
intensive applications (simulations, etc.), and it makes it easier to use the pls package as a
building block in other packages.

The plotting facilities are implemented similarly: the plot method simply calls the correct
plot function based on the plottype argument. Here, however, the separate plot functions are
meant to be callable interactively, because some people like to use the generic plot function,
while others like to use separate functions for each plot type. There are also plot methods
for some of the components of fitted models that can be extracted with extract functions, like
score and loading matrices. Thus there are several ways to get some plots, e.g.:

plot (mymod, plottype = "scores", ...)
scoreplot (mymod, ...)
plot(scores(mymod), ...)

One example of a package that uses pls is Ispls, available on CRAN. In that package LS is
combined with PLS in a regression procedure. It calls the fit functions of pls directly, and also
uses the plot functions to construct score and loading plots. There is also the plsgenomics
package, which includes a modified version of (an earlier version of) the SIMPLS fit function
simpls.fit.

8.3. Calling fit functions directly

The underlying fit functions are called kernelpls.fit, oscorespls.fit, and simpls.fit
for the PLSR methods, and svdpc.fit for the PCR method. They all take arguments X, Y,
ncomp, and stripped. Arguments X, Y, and ncomp specify X and Y (as matrices, not data

Journal of Statistical Software 21

frames), and the number of components to fit, respectively. The argument stripped defaults
to FALSE. When it is TRUE, the calculations are stripped down to the bare minimum required
for returning the X means, Y means, and the regression coefficients. This is used to speed
up cross-validation procedures.

The fit functions can be called directly, for instance when one wants to avoid the overhead of
formula and data handling in repeated fits. As an example, this is how a simple leave-one-out
cross-validation for a uni-response-model could be implemented, using the SIMPLS:

R> X <- gasTrain$NIR

R> Y <- gasTrain$octane

R> ncomp <- 5

R> cvPreds <- matrix(nrow = nrow(X), ncol = ncomp)
R> for (i in 1:nrow(X)) {

+ fit <- simpls.fit(X[-i,], Y[-i], ncomp = ncomp, stripped = TRUE)
+ cvPreds([i,] <- (X[i,] - fit$Xmeans) J,*), drop(fit$coefficients) +
+ fit$Ymeans

+ F

The RMSEP of the cross-validated predictions are

R> sqrt(colMeans((cvPreds - Y)~2))
[1] 1.3570 0.2966 0.2524 0.2476 0.2398

which can be seen to be the same as the (unadjusted) CV results for the gasl model in
Section 2.

8.4. Formula handling in more detail

The handling of formulas and variables in the model fitting is very similar to what happens in
the function 1m: The variables specified in the formula are looked up in the data frame given
in the data argument of the fit function (plsr, pcr or mvr), or in the calling environment
if not found in the data frame. Factors are coded into one or more of columns, depending
on the number of levels, and on the contrasts option. All (possibly coded) variables are then
collected in a numerical model matrix. This matrix is then handed to the underlying fit or
cross-validation functions. A similar handling is used in the predict method.

The intercept is treated specially in pls. After the model matrix has been constructed, the
intercept column is removed. This ensures that any factors are coded as if the intercept was
present. The underlying fit functions then center the rest of the variables as a part of the
fitting process. (This is intrinsic to the PLSR and PCR algorithms.) The intercept is handled
separately. A consequence of this is that explicitly specifying formulas without the intercept
(e.g., y ~ a + b - 1) will only result in the coding of any factors to change; the intercept
will still be fitted.

22 pls: Principal Component and Partial Least Squares Regression in R

References

Chambers JM, Hastie TJ (1992). Statistical Models in S. Chapman & Hall, London.

Cramer R, Patterson D, Bunce J (1988). “Comparative Molecular-Field Analysis (ComFA).
1. Effect of Shape on Binding of Steroids to Carrier Proteins.” Journal of the American
Chemical Society, 110(18), 5959-5967.

Dayal BS, MacGregor JF (1997). “Improved PLS Algorithms.” Journal of Chemometrics,
11(1), 73-85.

de Jong S (1993). “SIMPLS: An Alternative Approach to Partial Least Squares Regression.”
Chemometrics and Intelligent Laboratory Systems, 18, 251-263.

Fornell C, Bookstein F (1982). “Two Structural Equation Models — LISREL and PLS Applied
to Consumer-Exit Voice Theory.” Journal of Marketing Research, 19(4), 440-452.

Frank IE, Friedman JH (1993). “A Statistical View of Some Chemometrics Regression Tools
(with Discussion).” Technometrics, 35(2), 109-148.

Geladi P, MacDougall D, Martens H (1985). “Linearization and Scatter-Correction for NIR,
Reflectance Spectra of Meat.” Applied Spectroscopy, 39, 491-500.

Hastie T, Tibshirani R, Friedman J (2001). The Elements of Statistical Learning. Springer-
Verlag, New York.

Kalivas JH (1997). “Two Data Sets of Near Infrared Spectra.” Chemometrics and Intelligent
Laboratory Systems, 37, 255-259.

Kresta J, MacGregor J, Marlin T (1991). “Multivariate Statistical Monitoring of Process
Operating Performance.” The Canadian Journal of Chemical Engineering, 69(1), 35-47.

Lachenbruch PA, Mickey MR (1968). “Estimation of Error Rates in Discriminant Analysis.”
Technometrics, 10(1), 1-11.

Martens H (2001). “Reliable and Relevant Modelling of Real World Data: A Personal Account
of the Development of PLS Regression.” Chemometrics and Intelligent Laboratory Systems,
58(2), 85-95.

Martens H, Nees T (1989). Multivariate Calibration. Wiley, Chichester.

Massart DL, Vandeginste BGM, Buydens LMC, de Jong S, Lewi PJ, Smeyers-Verbeke J
(1998). Handbook of Chemometrics and Qualimetrics: Part B. Elsevier.

Mclntosh A, Bookstein F, Haxby J, Grady C (1996). “Spatial Pattern Analysis of Functional
Brain Images Using Partial Least Squares.” Neuroimage, 3(3), 143-157.

Mevik BH, Cederkvist HR (2004). “Mean Squared Error of Prediction (MSEP) Estimates for
Principal Component Regression (PCR) and Partial Least Squares Regression (PLSR).”
Journal of Chemometrics, 18(9), 422-429.

Journal of Statistical Software 23

Nguyen D, Rocke D (2002). “Tumor Classification by Partial Least Squares Using Microarray
Gene Expression Data.” Bioinformatics, 18(1), 39-50.

R Development Core Team (2006a). An Introduction to R. R Foundation for Statistical
Computing, Vienna, Austria. ISBN 3-900051-12-7, URL http://wuw.R-project.org/.

R Development Core Team (2006b). R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
http://www.R-project.org/.

Swierenga H, de Weijer AP, van Wijk RJ, Buydens LMC (1999). “Strategy for Construct-
ing Robust Multivariate Calibration Models.” Chemometrics and Intelligent Laboratory
Systems, 49(1), 1-17.

Wold S (2001). “Personal Memories of the Early PLS Development.” Chemometrics and
Intelligent Laboratory Systems, 58(2), 83-84.

Affiliation:

Bjgrn-Helge Mevik

Department of Chemistry, Biotechnology and Food Science
Norwegian University of Life Sciences

P.O. Box 5003

N-1432 As, Norway

E-mail: bjorn-helge.mevik@umb.no

URL: http://mevik.net/work/

Ron Wehrens

Institute of Molecules and Materials, Analytical Chemistry
Radboud University Nijmegen

P.O. Box 9010

6500 GL Nijmegen, The Netherlands

E-mail: r.wehrens@science.ru.nl

URL: http://www.cac.science.ru.nl/people/rwehrens/

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/
Volume 18, Issue 2 Submitted: 2006-10-04

January 2007 Accepted: 2007-01-10

http://www.R-project.org/
http://www.R-project.org/
mailto:bjorn-helge.mevik@umb.no
http://mevik.net/work/
mailto:r.wehrens@science.ru.nl
http://www.cac.science.ru.nl/people/rwehrens/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Algorithms
	On the use of PLSR and PCR
	Outline of the paper

	Example session
	Formulas and data frames
	Formulas
	Data frames

	Fitting models
	Choosing the number of components with cross-validation
	Inspecting fitted models
	Plotting
	Extraction
	Summaries

	Predicting new observations
	Further topics
	Selecting fit algorithms
	Package design
	Calling fit functions directly
	Formula handling in more detail

