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Abstract

The flexibility and scope of the R programming environment has made it a popular
choice for statistical modeling and scientific prototyping in a number of fields. In the
field of chemistry, R provides several tools for a variety of problems related to statistical
modeling of chemical information. However, one aspect common to these tools is that they
do not have direct access to the information that is available from chemical structures,
such as contained in molecular descriptors.

We describe the rcdk package that provides the R user with access to the CDK, a Java
framework for cheminformatics. As a result, it is possible to read in a variety of molecular
formats, calculate molecular descriptors and evaluate fingerprints. In addition, we describe
the rpubchem that will allow access to the data in PubChem, a public repository of
molecular structures and associated assay data for approximately 8 million compounds.
Currently, the package allows access to structural information as well as some simple
molecular properties from PubChem. In addition the package allows access to bio-assay
data from the PubChem FTP servers.

Keywords: R, Java, CDK, PubChem, cheminformatics.

1. Background

The R programming language (R Development Core Team 2006) has been used for the pur-
poses of statistical analyses in a variety of fields. Numerous examples of its use in chemistry
can be found (Versteeg, Richardson, and Rowe 2006; Vidal, Thormann, and Pons 2005; Guha,
Dutta, and Jurs 2006). However, the feature common to these applications is that R is used
for the purposes of modeling data that has been generated outside the R environment. Exam-
ples of such data are the results of spectroscopic or chromatographic analyzes and molecular
descriptor values calculated using a variety of software. In many situations, this is sufficient
since we are more interested in the data analysis rather than in how to get the data.

However, given that R can be considered a general purpose programming language, oriented
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towards prototyping scientific applications, it would be useful in a number of cases if we
were able to access cheminformatics functionality within the R environment. That is, we
are interested in being able to represent, manipulate and analyze chemical structures and
related information from within R. A number of cheminformatics toolkits are available in-
cluding OEChem (OpenEye Scientific Software, Inc. 2006), JOELib (JOELib Development
Team 2006) and the CDK (Steinbeck, Hoppe, Kuhn, Floris, Guha, and Willighagen 2006).
These toolkits provide a variety of functionality including the ability to read in chemical file
formats and obtaining molecular features such as atom counts and so on. Furthermore, they
allow the manipulation of chemical structures in terms of atoms, bonds and whole molecules.
An additional feature of JOELib and the CDK also allow the calculation of a variety of molec-
ular descriptors which are fundamental to the development of quantitative structure-activity
relationship (QSAR) models.

Enhancing the R environment by integrating one or more of the above packages allows the
chemical modeler to work in an environment that provides the tools to extract molecular infor-
mation and subsequently develop statistical and mathematical models using the information.
It should be noted that the above toolkits are libraries and thus, do not always provide
prepackaged functionality. In general, cheminformatics applications will need to be composed
using the methods provided by the toolkits. Hence, the integration of cheminformatics toolkits
in R does not lead to a full-fledged cheminformatics modeling application. Rather, it provides
the tools that are needed to develop such an application in the R environment.

In addition to being able to manipulate chemical structures it is also useful to be able to
access repositories of chemical information. In the past such repositories were not com-
mon, unlike the field of bioinformatics which have a number of freely accessible databases
for gene sequences and protein structures. Recently, efforts in the field of chemistry include
ZINC (Irwin and Shoichet 2005) which is a database of more than 2.7 million, commercially
available compounds, and the PubChem initiative (http://pubchem.ncbi.nlm.nih.gov/)
which provides publicly accessible databases for chemical compounds and biological assay
data. Currently, the compound database had more than 8 million entries, which included
2D structure, SMILES representations, synonyms and a number of constitutional descriptors
(such as atom count, hydrogen bond donor and acceptor counts). The biological assay data
currently contains 276 datasets ranging in size from a few hundred molecules to more than
80000 molecules.

Clearly, the PubChem databases are a rich source of chemical information and thus very
attractive for the purposes of chemical data mining. Thus access to the PubChem repository
would further enhance a cheminformatics modeling environment based on R.

2. The rcdk Package

The rcdk package was designed for the purposes of enhancing the R environment with chem-
informatics functionality provided by the CDK toolkit, an open-source Java framework for
cheminformatics. The following sections describe the requirements and functionality available
and present some simple examples of the usage of this package.

2.1. Requirements

As noted above the CDK toolkit is a Java library. To access the CDK API from R we require

http://pubchem.ncbi.nlm.nih.gov/


Journal of Statistical Software 3

an R-Java interface. Two such interfaces are available: SJava (Temple Lang and Chambers
2005) and rJava (Urbanek 2006). Versions of the rcdk package prior to 2.0 (Guha 2006a)
required the SJava package. However, due to difficulties in installation of the SJava, we no
longer support the older versions of rcdk. From version 2.0 onwards we now require rJava.
The rcdk package is available in source form and comes with a precompiled jar file and R
source code. The jar file was compiled with Java 1.5.0. It is probably a good idea to ensure
that the users rJava installation and the rcdk package use the same version of Java. The
complete R and Java sources for the rcdk package are available from http://cheminfo.
informatics.indiana.edu/~rguha/code/R/#rcdk

The rcdk package includes the jar files from the CDK, JChemPaint (Krause, Willighagen,
and Steinbeck 2000) and Jmol (Jmol Development Team 2006) projects. Thus, the user is
not required to obtain any external software to fully utilize the package.

2.2. Functionality

The CDK provides a wide variety of functionality including reading and writing molecular file
formats, generating binary fingerprints and calculating molecular descriptors. Since the CDK
is a toolkit library much of these functionalities must be tied together using an appropriate
sequence of method calls. The goal of the rcdk package is to encapsulate many of the more
common features of the CDK into simple one or two line function calls. In addition to exposing
the cheminformatics API of the CDK, the rcdk package also integrates the JChemPaint
2D structure editor and the Jmol 3D structure viewer. The inclusion of these two tools
allows the user to draw and subsequently manipulate molecular structures directly in the R
environment. It should be noted that though the goal of the rcdk package is to allow easy
use of CDK functionality, this does not preclude the user from directly accessing CDK classes
and methods using rJava. Table 1 summarizes the R functions that are currently available.
Though these functions do not encompass the whole CDK API, they are sufficient for a
number of tasks common in cheminformatics work such as loading molecules and evaluating
molecular descriptors.
The functions related to molecular descriptors provide an example of the complexity hidden
by this package. A molecular descriptor is a numerical characterization of some structural
feature of a molecule. Many types of descriptors are available and a good overview can
be found in Todeschini and Consonni (2002). The CDK provides a number of descriptor
implementations. These are all derived from a set of base classes and implement a uniform
interface. Ordinarily, we must first choose which descriptor to use and then instantiate the
required class. Once the descriptor has been evaluated, the return value is not a numeric
value, but rather a Java object, which must be interrogated to determine the actual numeric
value (or values) of the descriptor. Though this whole process can be performed using rJava
calls, it is very tedious. With the help of rcdk it is possible to write:

R> desc.values <- eval.desc(aMolecule,
+ "org.openscience.cdk.qsar.descriptors.molecular.BCUTDescriptor")

At this point, the rcdk interface does not allow setting the parameters for individual descriptor
methods and as a result we are restricted to the default values, though this functionality
will be included in later versions of the package. A question that might arise is how to
determine the names of the descriptor classes for use in eval.desc. The CDK uses a dynamic
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Function Description

Editing and viewing draw.molecule Draw 2D structures
view.molecule View a molecule in 3D
view.molecule.2d View a molecule in 2D
view.molecule.table View 3D molecules along with data

IO load.molecules Load arbitrary molecular file formats
write.molecules Write molecules to MDL SD format-

ted files

Descriptors eval.desc Evaluate a single descriptor
get.desc.engine Get the descriptor engine which can

be used to automatically generate all
descriptors

get.desc.classnames Get a list of available descriptors

Miscellaneous get.fingerprint Generate binary fingerprints
get.smiles Obtain SMILES representations
parse.smiles Parse a SMILES representation into

a CDK molecule object
get.property Retrieve arbitrary properties on

molecules
set.property Set arbitrary properties on molecules
remove.property Remove a property from a molecule
get.totalcharge Get the total charge of a molecule
get.total.hydrogen.count Get the count of (implicit and ex-

plicit) hydrogens
remove.hydrogens Remove hydrogens from a molecule

Table 1: A summary of the functions available in the rcdk package.

approach to determine available descriptor classes. Thus, by calling get.desc.engine and
get.desc.classnames it is possible to get a list of available descriptor classes matching a
specific type (atomic, bond or molecular descriptors). From this list we can then choose the
descriptor of interest. Currently, the rcdk package will only provide a list of descriptor names.

In the area of input/output functionality, the CDK can read in a variety of file formats.
This is accessed in R using the load.molecules() function which simply takes a vector of file
names and loads the molecules into individual objects. Note that some formats allow multiple
molecules in a single file. This function will load each molecule in a multi-molecule file. The
result is a list of Java object references, that can be used in other rcdk functions.

Molecule objects can also be saved to disk in the MDL SD format via write.molecules().
Since the SD format can include numeric and character data by the use of SD tags, it is
possible to annotate molecules with data (source information, descriptor values etc.) via
set.property(). This is an important aspect since molecule objects in the R environment
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Figure 1: A display of a set of structures in 2D.

are really references to Java objects. As such it is not possible to save such objects via the
save function to the R binary format. The use of annotated SD files allows for persistence.

One attractive feature of the rcdk package is the visualization functions. The CDK itself
provides functionality to generate 2D structure diagrams from connectivity information. This
feature can be accessed using the view.molecule.2d() function and an example of the 2D
visualization of a set of structures is shown in Figure 1. In addition, the JChemPaint program
which is built on top of the CDK toolkit can be used to draw 2D structures. This can be
accessed via the draw.molecule() function. This is a very useful feature since it is possible
to create 2D structures within the R environment, without having to use external editors.
Currently, this approach restricts us to generating 2D molecular coordinates. However, the
CDK project is currently working on the development of a 3D model builder. This would
allow the 2D structure drawn in using JChemPaint to be geometry optimized resulting in 3D
coordinates.

If the molecule is loaded with 3D coordinates, view.molecule.3d() can be used to view the
3D structure using the Jmol viewer. Figure 2 shows a display of a set of molecules in 3D in
which each molecule can be rotated and zoomed. The rcdk package also provides a function
to view a table of molecular structures along with one or more columns of data. This is very
useful when performing QSAR modeling as we are usually interested in viewing the structures
of certain groups of molecules and their associated descriptor and property values. Currently,
the table view only provides 3D structures but this will be updated to allow the user to choose
between 2D and 3D views.
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Figure 2: A display of a set of structures in 3D.

2.3. A clustering example

Using the rcdk package it is very easy to perform a number of cheminformatics tasks. A
common example is the clustering of a set of molecules. There have been a number of stud-
ies on the application of clustering for cheminformatics and the most common method is to
use binary fingerprints with some form of hierarchical clustering. Binary fingerprints are bit
strings, ranging in length from 1024 bits to as many as 27000 bits, in which each bit charac-
terizes a specific molecular feature. However, certain fingerprints using a hashing scheme, as
a result of which, the one to one correspondence between bit positions and structural features
are lost. A more detailed description of fingerprints can be found in Gasteiger (2003).

As an example of the usage of the rcdk package we present a clustering example. We con-
sidered a dataset of 756 dihydrofolate reductase (DHFR) inhibitors studied by Sutherland,
O’Brien, and Weaver (2003). The first steps are to load the molecules and generate the
fingerprints:

R> library("rcdk")
R> mols <- load.molecules("dhfr_3d.sd")
R> fp.list <- lapply(mols, get.fingerprint)

The result is to obtain a list of numeric vectors. Each element of the vector indicates a
bit position that is set to 1 in the fingerprint. Before performing the clustering we need
to generate a distance matrix. Traditionally, distance matrices for binary fingerprints are
generated using the Tanimoto metric, though other metrics are available (Willet, Barnard,
and Downs 1998; Holliday, Salim, Whittle, and Willet 2003). This step can be performed using
the fingerprint package (Guha 2006b). This package is designed to handle binary fingerprint
data and provides a function to evaluate a distance matrix using the Tanimoto distance. Thus
we have

R> library("fingerprint")
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Figure 3: Hierarchical clustering of the DHFR dataset using binary fingerprints.

R> fp.dist <- fp.sim.matrix(fp.list)
R> fp.dist <- as.dist(1-fp.dist)

Note that we the elements of the similarity matrix from 1.0, since clustering routines work
with a dissimilarity matrix. Note that the calculation of the similarity matrix can take a
long time since we must evaluate N(N − 1)/2 pairwise similarities, where N is the number of
molecules in the dataset. Once we have the distance matrix we can then cluster the molecular
structures. For this example we investigate a hierarchical clustering using hclust() using
wards method (Ward 1963):

R> clus.hier <- hclust(fp.dist, method="ward")

Figure 3 shows a dendrogram of the resulting clustering. We then manually selected the four
top-level clusters in the dendrogram (highlighted) and then evaluated the average dissimilarity
for the individual clusters. These are plotted in the right hand graph in Figure 3. The red
line indicates the average dissimilarity of the whole dataset.

R> plot(clus.hier, label=FALSE)
R> members <- identify(clus.hier, N=4) # manually select clusters
R> avg.dissim <- unlist(lapply(members, function(x) {
+ d <- as.matrix(fp.dist)
+ mean(d[x,x])/2
+ }))

Although the figure indicates that the clustering appears to be successful, the average silhou-
ette width for the four clusters is only 0.11. Performing clustering using the clara() function
with a variety of k indicated that the clustering was not of high quality as measured by the
average silhouette width of the various clusterings.
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2.4. A QSAR modeling example

Another example usage of the rcdk package involves the development of a QSAR model to
predict some molecular property. QSAR models have been developed for a wide variety of
physical properties (such as boiling point and aqueous solubility) and biological activities (such
as carcinogenecity and toxicity). For this example we consider a data set of 259 molecules
whose measured property was boiling point and has been studied previously by Goll and Jurs
(1999).

Since we have already loaded the molecules we focus on the calculation of molecular descrip-
tors. A molecular descriptor is a numerical representation of some aspect of the chemical
structure. Molecular descriptors can be considered in terms of groups: constitutional (counts
of atoms, bonds, etc.), geometrical (characterizing the 3D structure of a molecule), topologi-
cal (characterizing the molecule in terms of a graph theoretical representation) and electronic
(characterizing the molecule in terms of electronic features). The descriptors thus represent
the structural features of a molecule that can be used to obtained predictions of the property
under study. The CDK provides a number of molecular descriptors covering all the categories
mentioned and is a continuous work in progress.

As described in Section 2.2, it is possible to query the CDK API to determine which descriptors
are available. For the purposes of this example we will manually specify a set of descriptors
to calculate.

R> # load the data
R> mols <- load.molecules("bp.sdf")

R> # load the dependent variable
R> depv <- scan("depv.txt")

R> desc.names <- c(
+ "org.openscience.cdk.qsar.descriptors.molecular.BCUTDescriptor",
+ "org.openscience.cdk.qsar.descriptors.molecular.MDEDescriptor",
+ "org.openscience.cdk.qsar.descriptors.molecular.CPSADescriptor",
+ "org.openscience.cdk.qsar.descriptors.molecular.XLogPDescriptor",
+ "org.openscience.cdk.qsar.descriptors.molecular.KappaShapeIndicesDescriptor",
+ "org.openscience.cdk.qsar.descriptors.molecular.GravitationalIndexDescriptor",
+ "org.openscience.cdk.qsar.descriptors.molecular.TPSADescriptor",
+ "org.openscience.cdk.qsar.descriptors.molecular.WeightedPathDescriptor")

R> # some setup to get column names
R> prefix <- gsub("org.openscience.cdk.qsar.descriptors.molecular",
+ "", desc.names)
R> prefix <- gsub("Descriptor", "", prefix)

R> # now calculate these descriptors
R> desc.list <- list()
R> for (i in 1:length(mols)) {
+ tmp <- c()
+ for (j in 1:length(desc.names)) {
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+ values <- eval.desc(mols.qsar[[i]], desc.names[j])
+ tmp <- c(tmp, values)
+ if (i == 1)
+ data.names <- c(data.names, paste(prefix[j],
+ 1:length(values), sep="."))
+ }
+ desc.list[[i]] <- tmp
+ }
R> desc.data <- as.data.frame(do.call("rbind", desc.list))
R> names(desc.data) <- data.names

At this point we will have 73 calculated descriptors for the 259 molecules. Many of the
descriptors will be correlated with each other and a number of them will be constant (or
near-constant). The next step is then to reduce the size of the pool of descriptors. This is
easily performed using R. After such reduction we are left with a pool of 38 descriptors. Using
all the descriptors in the reduced pool will, in general, lead to over-fitting. Thus the next step
is to obtain a small subset of descriptors from this reduced pool. A number of techniques are
available for subset selection and for this example we use an exhaustive search using the leaps
package.

R> library("leaps")
R> # autoscale the data
R> desc.data <- as.data.frame(apply(desc.data, 2,
+ function(x) (x-mean(x))/sd(x)))

R> # assign training and prediction set
R> tset <- 1:200
R> pset <- 201:259
R> sel <- regsubsets(x=desc.data[tset,], y=depv[tset],
+ method="exhaustive", nvmax=4)

Note that, in the above code, we have used a subset of the dataset to perform model selection.
This subset is also used to build the final model, which is then tested for predictive ability
using the remainder of the dataset.

Examining the output of the above function we see that descriptors BCUT.6, CPSA.12,
WeightedPath.1 and MDE.11 were selected. Using these descriptor we can then build the
linear regression model which is summarized below, followed by obtaining the predicted boil-
ing point for the prediction set:

R> model <- lm(y ~ BCUT.6 + CPSA.12 + WeightedPath.3 + MDE.11,
+ data=data.frame(y=depv[tset], desc.data[tset,]))
R> summary(model)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 25.611 13.743 1.864 0.0639 .
BCUT.6 26.155 1.503 17.406 < 2e-16 ***
CPSA.12 2565.552 181.668 14.122 < 2e-16 ***
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Figure 4: Standardized residual plot for the training set and a plot of the observed versus
predicted boiling points for the training and prediction sets.

WeightedPath.1 7.645 0.608 12.573 < 2e-16 ***
MDE.11 91.355 17.916 5.099 8.05e-07 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 28.88 on 195 degrees of freedom
Multiple R-Squared: 0.8311, Adjusted R-squared: 0.8276
F-statistic: 239.9 on 4 and 195 DF, p-value: < 2.2e-16

R> preds <- predict(model, desc.data[pset,])
R> cor(preds, depv[pset])^2
[1] 0.8351248

Figure 4 shows a residual plot and a plot of the observed versus predicted boiling points for
the training and prediction sets. The model is statistically significant, though it is not the
best model that can be obtained, in terms of performance. One reason for this is that we
have calculated only a very small set of descriptors. In addition alternative feature selection
algorithms might lead to a subset that would exhibit better performance. However the main
point of this example is that it is possible to use R as an integrated environment for the
purposes of modeling and analysis of chemical datasets.

3. The rpubchem Package

The goal of the PubChem initiative is to provide a public repository of chemical structures
along with biological assay data. The structure and assay data are collected from a number
of sources such as screening centers as well as other collections (such as ZINC). Currently the
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repository has structural information on more than 8 million compounds and has assay results
for 276 assays. From the point of view of chemical data mining, the PubChem repository
provide a rich source of data.

3.1. Goals

The PubChem website provides forms to search for structures and assays using a variety of
methods. It is important to note that PubChem does not provide 3D structure information.
As a result we obtain structures in the form of SMILES strings. In addition to the structure
itself, PubChem precalculates a number of simple properties. The goal of the rpubchem
package is to provide easy access structure, property and assay information from within R.
Each compound in the PubChem repository is assigned a unique ID number. The rpubchem
package allows us to download the SMILES string and property values for arbitrary sets of
compound IDs. Analogously, each assay is also assigned an assay ID and assay data can be
downloaded via ID number. However, in many cases the assay ID is not known but rather,
we would like to determine which assays are related to a certain topic, like yeast or cancer.
The rpubchem package provides keyword based searches of PubChem and then returns the
assay IDs for those assays whose descriptions contain those keywords.

3.2. Usage

A simple example is to get the structure data for 10 random compound IDs.

R> library("rpubchem")
R> structs <- get.cid( sample(1:100000, 10) )

The result is a data.frame with 7 columns containing the canonical SMILES, molecular
weight, topological polar surface area (Ertl, Rhode, and Selzer 2000), XLogP value (Wang,
Fu, and Lai 1997), heavy atom count, formal charge and the count of hydrogen bond donors
and acceptors. Though this information is useful, it is of limited value on its own, since they
provide a limited view of the various structural features. However coupled with the rcdk
package we can parse the column of SMILES strings to obtain molecule objects which can
then be visualized, saved to alternate formats and evaluated for descriptors. Thus to view
the structures that we just obtained we could do:

R> library("rcdk")
R> pmols <- lapply(structs[,2], parse.smiles)
R> view.molecule.2d(pmols)

However, structural information is not the whole story. To build and test models we require
measured data, which is available from the PubChem bio-assay repository. As noted above it
is possible to specify an assay ID and obtain the assay data. But when the ID is not known, it
is useful to search for relevant assays. The rpubchem package provides the find.assay.id()
function to perform this search

R> aids <- find.assay.id("lung+cancer+carcinoma")

The above search returns 27 assay IDs. At this point, this function does not return any other
information than the assay ID. However, PubChem stores a description of each assay which
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Field Name Meaning

PUBCHEM.SID Substance ID
PUBCHEM.CID Compound ID
PUBCHEM.ACTIVITY.OUTCOME Activity outcome, which can be one of active,

inactive, inconclusive, unspecified
PUBCHEM.ACTIVITY.SCORE PubChem activity score, higher is more active
PUBCHEM.ASSAYDATA.COMMENT Test result specific comment

Table 2: The fields common to every assay dataset returned by get.assay

can be accessed by using the get.assay.desc() function. This function returns a list with
three components which provide a short description, comments and explanation of the assay
specific columns. The following call, for instance is necessary to get the one-line descriptions
of all the assay IDs we had obtained in the previous step.

R> sapply(aids, function(x) get.assay.desc(x)$assay.desc)

Given the assay ID, we can now download the actual assay data

R> adata <- get.assay(175)

Note that the size of assays varies from a few hundred to more than 80000 observations. Thus,
for larger assays the download can be lengthy. The above function will return the data in the
form of a data.frame.

Each PubChem assay has a number of fixed fields. The data.frame contains a subset of these
fixed fields listed in Table 2.

However, each assay can also contain an arbitrary number of extra fields, whose meaning is
generally specific to the assay. The rpubchem package handles this by obtaining and parsing
an XML description of the given assay from PubChem. This description contains names for
the extra columns as well as information such as a description and comments for the assay in
question as well as a description of each of the extra columns. As an example we can obtain
this information for the assay we have downloaded before:

R> names(adata)
[1] "PUBCHEM.SID" "PUBCHEM.CID"
[3] "PUBCHEM.ACTIVITY.OUTCOME" "PUBCHEM.ACTIVITY.SCORE"
[5] "PUBCHEM.ASSAYDATA.COMMENT" "conc"
[7] "giprct" "nbrtest"
[9] "range"

R> attr(adata, "comments")
[1] "These data are a subset of the data from the NCI yeast anticancer
drug screen. Compounds are identified by the NCI NSC number. In the
Seattle Project numbering system, the mlh1 rad18 strain is SPY number
50858. Compounds with inhibition of growth(giprct) >= 70% were
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considered active. Activity score was based on increasing values of giprct."

R> attr(adata, "types")
$conc
[1] "concentration tested, unit: micromolar"
[2] "uM"

$giprct
[1] "Inhibition of growth compared to untreated controls (%)"
[2] "NA"

$nbrtest
[1] "Number of tests averaged for this data point"
[2] "NA"

$range
[1] "Range of values for this data point" "NA"

The "types" attribute is a list keyed on the names of the extra columns. Each element of
this list is a tuple containing a short description of the column and the units of the column
(NA if it is unit-less).

Once we have the assay data, we can use the PUBCHEM.CID column to obtain the structural
information of the compounds that have been tested in the assay. It is important to note
that for assays where very large numbers of compounds have been tested, obtaining structural
information for them at one go may not be possible at one go due to limits of the PubChem
query mechanism. In this case, it is advised to download structural information in chunks of
1000 compound IDs at a time.

4. Conclusions

The rcdk and rpubchem packages enhance the utility of R in the field of cheminformatics.
The latter allows us to manipulate and process chemical structures within the R environment
and the former allows access to a rich source of chemical and biological assay data. We believe
that the use of these packages will enable the cheminformatics oriented R user to work with
chemical information in an efficient manner.

A number of enhancements to the rcdk package are planned. One of the main ongoing tasks
is to include further coverage of the CDK API. This is tied to the development of the CDK
itself such as the development of the 3D model builder. It should be noted that since we
can access the CDK API directly, via rJava, the focus of the functions provided by the rcdk
package is to make cheminformatics functionality easily available. That is, the rcdk package
is task oriented.

One topic of future work is the issue of descriptor names. As the example in Section 2.4
showed, the user must define a set of names for the calculated descriptors. This is not an
optimal situation since the resultant names may differ from user to user, thus hindering
interpretation. This issue is being addressed within the CDK project and future versions of
rcdk will assign names for the descriptors automatically. The CDK also includes additional
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meta-data for each descriptor such as a categorization and definition. This information can
be used to enhance descriptor selection and future work will include this in the list of available
descriptors.
As noted previously, output of molecule objects is restricted to the MDL SD format. Future
work involves providing a variety of formats supported by the CDK, notably Chemical Markup
Language (CML)
In terms of visualization, we plan to implement structure-data tables for the 2D case, which
should be faster and more memory efficient than displaying such a table using Jmol.
With respect to the rpubchem package, we plan to implement a more transparent approach
to downloading large sets of compound data, rather than requiring the user to manually
download them in sets of 1000. As noted before this is restriction imposed by PubChem
rather than the rpubchem package itself.
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