
JSS Journal of Statistical Software
January 2007, Volume 18, Issue 10. http://www.jstatsoft.org/

spectrino Software: Spectra Visualization and

Preparation for R

Teodor Krastev
SpecLabs

Abstract

spectrino is a spectra preparation software utility for the R language and environment
for statistical computing. It is an operating-system specific tool, for use under Microsoft
Windows, with specialized visualization, organization and preprocessing features for spec-
tra. The software accepts spectral data from analytical instruments and then prepares
a data structure to be introduced in R. spectrino has a rich set of features to create
data structures and visually manipulate/compare spectra. The application is accessible
by a library of functions from within R. These commands allow for the creation and ma-
nipulation of data structures in spectrino and the selective extraction of spectral data.
Before exporting, the spectra are preprocessed according the requirements of consecutive
discriminant analysis. This preprocessing is adjustable by a series of options.

Keywords: spectroscopy, spectrometry, analytical instruments, spectral data tank, visualiza-
tion, R project, discriminant analysis.

1. Introduction

The increasing use of a variety of discriminant analysis (a.k.a. pattern recognition) techniques
in spectroscopy and spectrometry is due to an increasing instrumental reproducibility, as well
as to more widespread use of versatile statistical methods (PCA-MD, neural networks, etc.).
The purpose of these discriminant techniques is to classify samples into well defined categories
based on a training set of similar samples. A discriminant method can “learn” to recognize a
spectrum to belong to a category by “training” it with spectra of the same group.

The popular open statistical software project R (R Development Core Team 2006) has hun-
dreds of contributors from various fields of science and mathematics, and offers flexible pack-
ages for discriminant analysis: e.g., prcomp from stats (R Development Core Team 2006),
mda (Hastie et al. 2006), AMORE (Castejón Limas et al. 2006), mclust (Fraley and Raftery

http://www.jstatsoft.org/

2 spectrino Software: Spectra Visualization and Preparation for R

2006), etc. A fast-growing variety of analytical instruments produce large amounts of spec-
tral data. It seems natural to have some universal intermediator, which imports the spectral
data, organizes it in a structure appropriate for discriminant analysis, performs preprocessing
and finally exports the spectra into R (or allows the data to be imported from within R).
Our suggestion for such a universal intermediator is spectrino, with the addition of an ability
for visual control and comparison of spectra. R–spectrino communication requires the rcom
package. Both the spectrino and rcom packages are platform specific and can be run under
Microsoft Windows operating systems only.

2. Program purpose

The spectrino application can be connected to R (using the rcom library) as an out-of-process
COM server. A range of visual options and tools allows the user to visually control and
compare spectra. The principal aim of the program is to organize spectra into a three-level
structure for selective data extraction into R.

From the point of view of R, spectrino is a library of functions for creation/modification
of spectral data structures and selective data extraction. The latter is preceded by tunable
preprocessing, optimized for discriminant analysis. The main data-extraction functions can
also be initiated from spectrino’s own menu.

A typical procedure involving spectrino would be:

• Exporting a set of spectra files in flat-text x-y format from the spectrometer software
and placing them in one directory.

• Creating and filling in a spec-group data structure in spectrino. This process involves
showing and comparing the loaded spectra, looking for obvious errors and adjusting
preprocessing options. This is performed independent of R.

• Extraction of the spectral data from spectrino. This may be accomplished by including
spectrino library functions in an R-script that also performs the discriminant analysis,
or by extracting spec-groups in R variables (from R or from spectrino) and then using
them in user R-script.

3. Graphical user interface

The graphical user interface (GUI) of the spectrino application is divided into three panels
as shown in Figure 1. The application is a Windows executable and can be run without R.
Its menu interface is described in detail in Appendix A.

3.1. Names panel and data organization

The main objective of spectrino is to give structured access to a collection of measured spectra,
which we refer to as a spectral data tank. spectrino puts the data in a a three-level structure,
facilitating discriminant analysis.

The lowest level of the structure (to the raw data) collects sets of data points into spectra.
The primary purpose of spectrino is to work with mass-spectra. However, there is only one

Journal of Statistical Software 3

Figure 1: The graphical user interface of spectrino. From left to right are the names panel,
the chart panel, and a panel for preprocessing options. Optionally, a communication panel
can be shown on the left hand side.

relatively small restriction related to that - the reference X-scale uses integer numbers. The
restriction can be overcome easily by converting the data, before input into spectrino, to
appropriate (in regard to the instrument resolution) X-axis units of measurement (e.g. using
Angstrom instead of nanometer for VIS spectra) or simply using natural channel numbers in
case of a multi-channel detector. A spectrum can have a comment text attached to it (kept
in the spec-group file).

In spectrino, a spectrum is either enabled or disabled, appearing in the spec-group list as
checked/unchecked. Only enabled spectra are shown in the chart. All the commands for data
extraction in R have an “OnlyChecked” booloean option which allows the user to extract only
the enabled spectra. The state of the spectra can be changed from R as well. The main
purpose of enabled/disabled state is to allow implementation of spectrum quality control -
either visually or by calculations from within R. A secondary purpose can be to experiment
with ”what-if” exclusion of some spectra. This can be used to estimate how sensitive your
algorithm to a random exclusion of spectra is.

The second level in the structured representation of data in spectrino is a group of spectra
(or spec-group) which correspond to one classification group or category or class. Typically,
spectra of one group represent measurements of the same material or type of materials. One of
the groups is marked active. The active group is also identifiable in R, and can be selectively
analyzed. Which group is active can be changed using the visual interface (in particular,
using a radio button in the title bar) or via an R command.

The third level of data representation is a tree representing the whole list of all the groups

4 spectrino Software: Spectra Visualization and Preparation for R

loaded, which we term a spec-tree. Typically, this is one statistical “experiment” in discrim-
inant analysis. Only one spec-tree can be loaded at a time. The spec-tree file contains the
preprocessing options applied; the user can choose to load only the list of groups, so that
alternative preprocessing options may be applied.

The left panel of Figure 1 shows that it is visually easy to follow this three-tier structure. The
remainder of this section is a manual devoted to the explanation of chart and preprocessing
panels of Figure 1 in detail.

3.2. Chart panel

The main purpose of chart panel is visualization of selected (enabled) spectra for quality
control and comparison.

Left mouse button can be used to zoom part of the chart and right one - to scroll (move)
visible part of it.

Buttons

The following buttons are present on the chart panel.

• Unzoom button, undoes the zoom (mouse zoom backwards will do the same).

• AutoY, rescales the Y-axis when zooming or scrolling, so as to fit the maximum of the
visible part of the spectra.

• Stacked view, shows the spectra in a separate y-axes (stacked) or overlays them with
a common y-axis.

• Pseudo 3D, shows the spectra in 3D depth.

• Reorder spectra, rotates the order of the spectra so the last spectrum on the back
becomes the first (in the front). It works only with a common y-axis.

• All checked, shows all checked spectra from all the groups.

• Active group, shows the checked spectra from the active group only.

• One spectrum, shows only the active spectrum (the selected one from the active
group).

• Update, updates Proc. Data table. Because of the low update speed, the updating of
the table is manual.

• Copy, copies the table into the clipboard, including the X-axis values (left column),
but without the column titles (top row).

3.3. Preprocessing

The preprocessing is applied before the spectra are exported to R as array.

Described here are options for preprocessing.

Journal of Statistical Software 5

Mass bin modes

Typically, the discriminant techniques require each measurement (or spectrum) to be pre-
sented as a set of values of established variables. These variables are usually the intensities of
some natural type of channels (or bins). In mass-spectrometry these are the mass numbers.
In any type of multi-channel detector (e.g. CCD in optical spectroscopy), one channel is one
detector cell. Thus, in case a calibration is needed to attach an intensity peak to a channel
(as with the mass numbers) and in order to keep the same set of variables for the whole spec-
tree, all the spectra must have a common X-scale. Fist, spectrino creates the reference scale
(as a set of bins) using all the integers inside the boundaries and without ”excluded ranges”.
If the scale of a spectrum does not match the reference scale, that spectrum is recalculated
according to the reference one, using one of the ”Mass Bin” modes:

In the “Round” bin mode, every mass peak is accumulated into the closest integer bin (e.g.
1124.3 mass peak goes to 1124 bin; 1128.8 to 1129, etc). This mode is applicable when there
are no big deviations from the calibration (mass positions). If the calibration error is inferior
to half of the bin size, that method will produce a better correction of the calibration.

In the “Distribute” bin mode, the intensity of every peak is distributed to the bins next to
it. The portion of the intensity complementary to 100 percents is accumulated in the closest
bin and the rest of it, in the farther bin. For example, a peak at position 1124.4 will be
distributed, as follows: 60 percents of its intensity to bin 1124 and 40 percents - to bin 1125.
If the calibration is off more than half of a bin or the calibration error is unknown, this would
be the method of choice.

In the example given in Figure 2, the spectrum that is second from the top has been simulated
to be Gaussian-distributed. The top spectrum is a Gaussian with an artificial de-calibration
(with added noise of 0.4 sigma). The third spectrum has been corrected with the “Round”
method, and the bottom spectrum has been corrected with the “Distribute” method. As it is
quite obvious from the chart, the “Distribute” method gives a better correction (similarity to
the gauss).

In the case where all spectra have a natural integer X-scale (as from a multi-channel detector),
either one of the modes would produce the same result.

Low and high boundaries

The boundaries are required to limit the X-scale of exported spectra. These values can be
set manually or calculated using the two buttons (“from Act.Group” and “from All Groups”)
from the active group or from the whole spec-tree. The calculated value for the low boundary
is equal to the highest (rightmost) from the left boundaries of the spectra. Likewise, the high
boundary is the lowest (leftmost) of the right boundaries.

Excluded ranges

Exclusion of some parts of spectra may be desirable. spectrino applies all the ranges given in
the range list. Some reasons to exclude parts of the spectra could be:

• Recognizable contamination/buffer of the samples - if the contamination is presented
only in some parts of the spectrum, these parts can be excluded.

• If for some reason parts of the detector channels are defective or work poorly.

6 spectrino Software: Spectra Visualization and Preparation for R

Figure 2: Mass bin modes comparison. The spectrum second from the top is Gaussian-
distributed. The top spectrum is a Gaussian with an artificial de-calibration (with added
noise of 0.4 sigma). The third spectrum has been corrected with the “Round” method, and
the bottom spectrum has been corrected with the “Distribute” method.

• If in some spectra certain spectral lines are distinctively saturated, but the user still
wishes to use these spectra.

Baseline correction

If “Baseline correction” is on, each intensity in the spectra is decreased by a baseline threshold
value and then the negative values are replaced with zeros.

Normalization

The intensities of the peaks are multiplied by such a coefficient that the total of them is equal
to 1,000,000. This option is most commonly used to compensate for the different overall
intensities of the spectra (usually due to the varying long-term sensitivity of the instrument,
or sample mass variation).

Mean extraction

The mean extraction option calculates the base-group’s mean spectrum (average of all the
spectra in the base group) and extracts this mean from every spectrum processed.

This option is applicable only when variation analysis is used (e.g. PCA). The purpose of the
operation is to rescale the intensities, so that the predominant magnitude is the variation. This
should increase the precision of any further calculations without changing the recognizable
pattern.

Journal of Statistical Software 7

Precision

This option defines the machine zero. It is used in calculations (e.g. to stop sequence of
iterations).
Although the primary aim of spectrino is to be used with qualitative (discriminant) analysis,
it is also usable for quantitative analysis. In the case, the concentrations should be encoded
in the spec/group names.

4. Calling spectrino from R

Besides its visualization features, spectrino can be used independent of its graphical user
interface as a spectra storage, organizer and preprocessing utility.
The concept of the commands is to reproduce the functionality of the GUI using only the
R environment installed under Microsoft Windows. The user may start learning spectrino
from its GUI and later move to performing the same analysis via the R commands in the
list below. The commands can be classified as open/save file operations, getting/setting item
state, reading names, counting items, deleting item and data extraction. This classification
is valid on spec-tree level, where the items are the groups and on the group level where
the items are spectra. The general commands are initializing and quitting spectrino; and
reading/changing options.

4.1. Variables used in command definitions

The following Variables are used in the commands definitions:

• Grp,Spc: string or integer variable. String corresponds to the group/spec name, and
integer to the index of it (by default - 0). Index 0 for Grp points to the active group
and Spc index 0 is the selected spectrum. The names of groups or spectra are their
filenames without path or extension (no space or special characters allowed). To avoid
misinterpretation the names of group or spectrum cannot be numbers (even Windows
lets you do it). In some cases "*" masks all the items.

• GrpIdx, SpcIdx: integer variable; symbol "*" masks all the items.

• OnlyChecked, Checked, InclOpt, Visible: logical variables; (TRUE/FALSE); the value
by default is FALSE

• *Filename: string; if full path filename is required, forward slashes must be used e.g.
D:/Prime/Data/Test.txt

• On the lest side of definitions - i is an integer, b is a boolean, s is a string, v is a vector,
m is a matrix.

4.2. R commands

Initialization of spectrino

Check if R-object of spectrino exists, and if not, creates spectrino object in R, runs and
initializes spectrino application.

8 spectrino Software: Spectra Visualization and Preparation for R

The command is recommendable, but optional - it would be called, when any other command
is executed and R-object of spectrino does not exist. The function returns FALSE, if failed.

The syntax of this command is

b <- spnNew()

Retrieve number of groups loaded

The command to retrieve the number of groups loaded is

i <- spnGetGrpCount()

Retrieve number of spectra in group

The command to retrieve the number of spectra in a group is

i <- spnGetSpcCount(OnlyChecked,Grp)

Some examples are

i1 <- spnGetSpcCount(TRUE,2) # the number of the checked spectra in second group
i1 <- spnGetSpcCount(FALSE,0) # the number of all spectra in the active group

Get the group name

The command to retrieve the name associated with a group having index GrpIdx is as follows.

s <- spnGetGrpName(GrpIdx)

If GrpIdx="*", this command returns a comma-separated list of all groups.

Get the spectrum name

The command to retrieve the name associated with a spectrum having index GrpIdx is as
follows.

s <- spnGetSpcName(Grp,SpcIdx)

If SpcIdx="*", this command returns a comma-separated list of all spectra in the group.

Get reference X set of values

All the spectra in a spec-tree are assumed to have common X set of values, so in case of a
spectrum in different X values, X sets are recalculated according to the preprocessing options.
The command to return the vector of X values is as follows.

v <- spnGetRefer()

Journal of Statistical Software 9

Return a spectrum

To obtain only the intensities (Y-values) of Spc spectrum from Grp group, similar to spnGetGrp
and spnGetTree, a command as follows may be used.

v <- spnGetSpc(Grp,Spc)

Some examples are

v1 <- spnGetSpc(2,3) # or in an equivalent form
v1 <- spnGetSpc("waer","sea12") # where "waer" is the second group,

and "sea12" - the third spectrum in it.
spnGetSpc(2,"*") # is equivalent to spnGetGrp(FALSE,2)

Get spectra from one group (matrix)

This retrieves spectra in m array from Grp group. Variables are by columns; measurements
are by rows, for more convenient use with prcomp (principal component analysis) function.

m <- spnGetGrp(OnlyChecked,Grp)

Some examples are

m1 <- spnGetGrp(FALSE,3) # creates matrix with all the spectra in
spnGetGrp(TRUE,"*") # is equivalent to spnGetTree(TRUE)

Get spectra from all the groups (matrix)

This retrieves spectra in m array from the entire spec-tree, excluding the spectra from a group
called ”unknowns”. That special name is supposed to be for testing purposes only, so the data
from that group are not included in all-data-get command. The command is as follows

m <- spnGetTree(OnlyChecked)

Get the logical vector of the state of spectra

The command of getting the logical vector of the state of spectra is as follows

lv <- spnGetSpcChecked(Grp)

Set Spc spectrum of Grp spec-group checkbox

If Spc="*" then all of spectra in Grp group are set. If Grp="*" then all of spectra in all groups
are set to Checked. The command is as follows

spnSetSpcChecked(Grp,Spc,Checked)

Some examples are

10 spectrino Software: Spectra Visualization and Preparation for R

spnSetSpcChecked(2,5,TRUE) # check just one;
spnSetSpcChecked(2,"*",FALSE) # all the spectrum from second group to OFF;
spnSetSpcChecked("*","*",TRUE) # all the spectra in all groups to ON

Open SFilename in Grp group

In this command to open a SFilename in Grp group, the path of SFilename is ignored and
the path of Grp group is used. So the spectrum file must be in group file directory.

The function returns the number of the spectra in that group after the adding, as spnGetSpcCount(false,Grp).
The command is as follows

i <- spnOpenSpc(Grp,SFilename)

An example is

i1 <- spnOpenSpc(2,"sassul") # loads in second group the file "sassul.txt"

Open a group from GFilename file

If NewGrp is true, then GFilename must not exist to be created. If NewGrp is false, then
GFilename must exist to be opened. If directory is omitted, the spec-tree directory is assumed.

The function returns the number of groups after the adding, which is the index of added
group, as spnGetGrpCount(). The command is as follows

i <- spnOpenGrp(GFilename,NewGrp)

An example is

s1 <- spnOpenGrp("gassul",FALSE) # loads a group from the file "gassul.gsp"
from the current spec-tree direcory.

Open a spec-tree from TFilename

InclOpt rules where the preprocessing options will be taken from.

If InclOpt = 0 then no preprocessing will be is used; if InclOpt = 1, the last used options
are applied; if InclOpt = 2 the options are taken from TFilename.

The spec-tree file (*.str) always is saved with the preprocessing options. The function returns
the number of groups in the new spec-tree. i=spnGetGrpCount. The command is

i <- spnOpenTree(TFilename,InclOpt)

Create a new spec-tree

To create new spec-tree you have to empty current one by spnDelGrp("*") and save the
empty one under new name.

Journal of Statistical Software 11

Save Grp group as GFilename file

The path of GFilename is ignored, because any group file must be in the same directory as
the spectra in it. If GFilename is empty, then spectrino uses the proper name of the group
(value by default). In that case the function returns the filename under which the file has
been saved.
If Grp="*" then all groups are saved under their proper names (in that case GFilename is
ignored, but some string must be present) and nothing gets back to R. The command is

s <- spnSaveGrp(Grp,GFilename)

Some examples are

spnSaveGrp(2,"") # save second group under its own name;
spnSaveGrp(2,"gassew") # rename second group to "gassew" and then save it;
spnSaveGrp("*","") # save all the groups under their names;

Save the spec-tree along with the preprocessing options

If TFilename is empty then spectrino uses the proper name of the spec-tree (value by default).
The list of the groups contains the full filenames of the groups, except if all the groups and
TFilename are in the same directory. In that case the directory part of group filenames is
omitted and which allows easy transfer of the whole experiment to another location (with no
directory reference inside). The function returns the filename under which the file has been
saved. The command is

s <- spnSaveTree(TFilename)

Some examples are

spnSaveTree("") # save the spec-tree under its name
spnSaveTree("savenow") # rename the spec-tree and save it

Delete Spc spectrum from Grp group

If Spc="*" then delete all of the spectra in that group them. The function returns number of
the spectra in that group after the deleting, as spnGetSpcCount(false,Grp). The command
is

i <- spnDelSpc(Grp,Spc)

Some examples are

spnDelSpc(3,"*") # delete all the spectra in third group
spnDelSpc(0,3) # delete third spectra in the active group

Delete Grp group

If Grp="*" then delete all of the spec-groups. The function returns number of groups after
the deleting, as spnGetGrpCount() The command is

12 spectrino Software: Spectra Visualization and Preparation for R

i <- spnDelGrp(Grp)

Some examples are

spnDelGrp(3) # delete third group from the tree
spcDelGrp("*") # empty the entire spec-tree

Set spectrino to be visible or hidden

If Visible = TRUE, spectrino is shown; else spectrino is hidden. This command gets back
the current visibility. The command is

b <- spnSetVis(Visible)

Get/set active group

If Grp=0 this command only gets the Active group index; otherwise this command sets one.
The command is

i <- spnActGrp(Grp)

Set preprocessing option(s) and returns the full list of options

This command contains a comma separated list of options as they are in a spec-tree file ->
Preprocess section. The correspondence to the visual preprocessing options should be obvious
by their names. The command is

s <- spnSetPPOpt(opt)

The list opt can contain the following items

• Normalize=0/1

• MeanExtract=0/1

• LowLimit=<integer>

• HighLimit=<integer>

• Precision=<integer 1..10>

• Baseline=<integer>

• BaselineOn=0/1

• MassBins=0/1

• BaseGrp=<GroupName>

An example is

Journal of Statistical Software 13

spnSetPPOpt("Normalize=1,MeanExtract=1,LowLimit=60")

spectrino validation

This command tests only the most common functions and modes. It should be used once,
after the spectrino installation or an update. If the result from the function on the R console
is “Validation confirmed”, there is a very good chance that spectrino will work. Otherwise
- the error message with a number appears. In the latter case, the user should contact
http://www.spectrino.com/. The command is

spnValidation()

Quitting spectrino

This command frees R-objects created by spectrino and closes the application of spectrino.
This is the proper way to close spectrino. Its call is

spnFree()

4.3. An example of the application of spectrino from R

The following example illustrates the use of spectrino from R. To execute the example, create
the subdirectory data under the (R-directory)/library/spectrino/exec directory, and then un-
pack and copy there all the files from example.zip. The data are ms-spectra of some organic
compounds.

loading spectrino; NB rcom library is required
library("spectrino")

opens spectrino application and creates spectrino object representing it
spnNew()

opens spec-tree from "data" sub-directory of spectrino executable directory
spnOpenTree("%SpnPath%data/sptree.str",2)

loading another spec-group
spnOpenGrp("%SpnPath%data/cam.sgr",FALSE)

loading two more spectra
spnOpenSpc("cam","%SpnPath%data/cam03.txt")
spnOpenSpcn("cam","%SpnPath%data/cam12.txt")

loading a matrix of all the specs into mr variable
mr <- spnGetTree(FALSE)

summary of principal components analysis

http://www.spectrino.com/

14 spectrino Software: Spectra Visualization and Preparation for R

summary(prcomp(mr))

follow the grouping (classes) of the points,
each of which represents a ms-spectrum
biplot(prcomp(mr))

5. Conclusion

The software product spectrino presented here is designed to organize spectroscopy data into
a structure suitable for further use in discriminant analysis packages in R. Along with accom-
plishing this main purpose, the program offers rich and adjustable preprocessing option as well
as options for the visual control and comparison of spectra. The interest (1.5 downloads per
day only from spectrino.com) in spectrino is due to its position as an intermediator between
instrumental spectrometry and statistics, as well as its versatility in spectra visualization.

The further development of spectrino will be in three directions. The first direction is to-
wards the support of other spectra in addition to mass spectra, e.g. optical spectra, along
with new visualization features and a wider set of preprocessing options. The second direction
of development is to make spectrino more convenient for quantitative analysis, e.g., to allow
transformation of a group list into a table with customized columns. The third direction of
development is the implementation of customizable plug-ins, to allow calling R functions spe-
cialized for spectra processing from spectrino. A plug-in will offer the user parameterization
of an R function inside spectrino, then execute the function in R and finally show the result
in spectrino.

References

Castejón Limas M, Ordieres Meré JB, Vergara González EP, Mart́ınez de Pisón Ascacibar
FJ, Perńıa Espinoza AV, Alba Eĺıas F (2006). AMORE: A MORE Flexible Neural Network
Package. R package version 0.2-9, URL http://wiki.R-project.org/rwiki/doku.php?
id=packages:cran:amore.

Fraley C, Raftery AE (2006). “Some Applications of Model-based Clustering in Chemistry.”
R News, 6(3), 17–23.

Hastie T, Tibshirani R, Leisch F, Hornik K, Ripley BD (2006). mda: Mixture and Flexible
Discriminant Analysis. R package version 0.3-2.

R Development Core Team (2006). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//www.R-project.org/.

A. The menu of the spectrino graphical user interface

This appendix describes the menu of the spectrino GUI that operates as an executable under
the Microsoft Windows operating system.

http://wiki.R-project.org/rwiki/doku.php?id=packages:cran:amore
http://wiki.R-project.org/rwiki/doku.php?id=packages:cran:amore
http://www.R-project.org/
http://www.R-project.org/

Journal of Statistical Software 15

File - Create, open and save spec-tree or spec-group

• New Spec-Tree. . .

• Open Spec-Tree with Options. . .

• Open Spec-Tree Only. . .

• Save Spec-tree As. . .

• Save Spec-tree incl. Groups. . .

• Open/New Spec-Group. . .

• Save Act. Spec-Group As. . .

• Add Spec to Act. Group. . .

• Exit

Edit

• Copy Image Copies the image of the chart in the clipboard as a metafile image.

• Generate Test Tree Generates 9 spectra in three groups in one new tree for testing
purposes.

• Autosave On Close (option) Saves the list of groups and every group in it when
spectrino closes.

View

• COM Script Panel Shows the communication (spectrino<=>R) panel. A log of all
spectrino-R communications is kept in the COM Script Panel; from there, the user can
initiate all the spectrino functions available from R.

Send to R

Each of these menu commands requires a variable name to which the vector or matrix will be
assigned in R. The matrices’ indexes are: samples are by rows - first index; variables are by
columns - second index (making it ready for ”prcomp” - principal component analysis).

• Send Whole Spec-Tree. . . Sends a matrix of all the spectra from all the spec-groups
in the current spec-tree.

• Send All Checked Spectra from Tree. . . Sends a matrix of all the checked spectra
from all the spec-groups in the current spec-tree. If there is a group with ”unknowns”
name, that group is excluded.

• Send Whole Act. Spec-Group. . . Sends a matrix of all the spectra from the active
spec-group.

• Send Act Group Checked Spec. . . Sends a matrix of all the checked spectra from
the active spec-group.

16 spectrino Software: Spectra Visualization and Preparation for R

• Send Active Spec. . . Sends a vector of the selected spectrum from the active spec-
group.

Help

• Spectrino Help. . . Gives the table of contents of the help

• Check for updates

• About. . . Shows spectrino version number, copyright and website link http://www.
spectrino.com/

Affiliation:

Teodor Krastev
SpecLabs
2385 Marin St, Brossard
J4Y 1K7, Quebec, Canada
E-mail: spectrino@sicyon.com
URL: http://www.spectrino.com/

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/

Volume 18, Issue 10 Submitted: 2006-10-01
January 2007 Accepted: 2007-01-10

http://www.spectrino.com/
http://www.spectrino.com/
mailto:spectrino@sicyon.com
http://www.spectrino.com/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Program purpose
	Graphical user interface
	Names panel and data organization
	Chart panel
	Buttons

	Preprocessing
	Mass bin modes
	Low and high boundaries
	Excluded ranges
	Baseline correction
	Normalization
	Mean extraction
	Precision

	Calling spectrino from R
	Variables used in command definitions
	R commands
	Initialization of spectrino
	Retrieve number of groups loaded
	Retrieve number of spectra in group
	Get the group name
	Get the spectrum name
	Get reference X set of values
	Return a spectrum
	Get spectra from one group (matrix)
	Get spectra from all the groups (matrix)
	 Get the logical vector of the state of spectra
	Set Spc spectrum of Grp spec-group checkbox
	Open SFilename in Grp group
	Open a group from GFilename file
	Open a spec-tree from TFilename
	Create a new spec-tree
	Save Grp group as GFilename file
	Save the spec-tree along with the preprocessing options
	Delete Spc spectrum from Grp group
	Delete Grp group
	Set spectrino to be visible or hidden
	Get/set active group
	Set preprocessing option(s) and returns the full list of options
	spectrino validation
	Quitting spectrino

	An example of the application of spectrino from R

	Conclusion
	The menu of the spectrino graphical user interface

