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Abstract

Missing data is a common problem in survey based research. There are many packages
that compensate for missing data but few can easily compensate for missing longitudinal
data. WinBUGS compensates for missing data using multiple imputation, and is able to
incorporate longitudinal structure using random effects. We demonstrate the superiority
of longitudinal imputation over cross-sectional imputation using WinBUGS. We use ex-
ample data from the Australian Longitudinal Study on Women’s Health. We give a SAS
macro that uses WinBUGS to analyze longitudinal models with missing covariate date, and
demonstrate its use in a longitudinal study of terminal cancer patients and their carers.
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1. Introduction

Missing data is a common problem in survey-based research. Ignoring any missing data by
using a complete case analysis can produce biased results. Biases occur when participants
with complete data are systematically different from those with missing data. Longitudinal
studies are especially susceptible to such bias, as missing data accumulates over time due to
wave non-response and participant drop-out. One method of compensating for missing data
is imputation. Over the past twenty years the body of literature on imputation theory and
methodology has grown considerably and software has evolved accordingly. However, there
has been relatively little work on imputation in a longitudinal setting.

There are several theoretical approaches to imputation. Raghunathan (2004) reviews such
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approaches and identifies three classes: weighted estimating equations, multiple imputation,
and likelihood-based formulations. Ibrahim et al. (2005) identify fully Bayesian as a fourth
class.

Weighted estimating equations (WEE) weight records with complete data to compensate for
similar cases with missing data. Most recently, literature has focussed on improving estimates
of variance (Robins et al. 1994, 1995) as WEE, when unadjusted, underestimate the true
variance in the data. Implementation of WEE currently relies on model-specific, user-defined
algorithms, rather than standard procedures in mainstream statistical packages. Multiple
imputation (MI) uses Bayesian simulation to fill in missing data, drawing together results
from repeatedly imputed datasets. See Rubin (1987) for a comprehensive coverage of multiple
imputation. Fully Bayesian (FB) models extend MI methodology by jointly simulating the
distributions of variables with missing data as well as unknown parameters in a regression
equation. In FB the analysis and imputation models are fully and simultaneously specified.
Maximum likelihood (ML) techniques also rely on fully specified models, but differ from FB
in that parameter estimates are constructed using likelihood-based approximations, rather
than Bayesian simulation.

Maximum likelihood approaches to imputation are often intractable in mainstream software
packages. Implementation relies upon strict assumptions about patterns of missingness that
are frequently violated in complex survey data. While MI procedures exist in a range of
software packages such as SAS (SAS Institute Inc. 2003), Stata (StataCorp. 2003), S-PLUS
(Insightful Corp. 2003), and R (R Development Core Team 2007), they generally rely on
the assumption that data are multivariate normal or can be approximated by a multivariate
normal distribution (Schafer 1997). More recent work on chained regression equations has
led to a number of add-on packages that can incorporate categorical data: MICE in S-
PLUS (van Buuren and Oudshoorn 1999), Ice in Stata (Royston 2005), and IVEware for SAS
(Raghunathan et al. 2002). However, the authors have still had difficulty in incorporating
longitudinal information into the imputation methodology of these programs. FB techniques
are most suited to longitudinal imputation, as they can incorporate hierarchical structure into
the modelling process, and, like chained regressions, they have the capability to systematically
deal with categorical data. The software packages WinBUGS (Spiegelhalter et al. 2003) and
MLwiN (Rasbash et al. 2005) both use a FB framework. Cowles (2004) and Woodworth
(2004) both provide a useful overview to WinBUGS, while Carpenter and Kenward (2005)
and Congdon (2001) present introductory examples of FB imputation with missing data.
Pettitt et al. (2006) and Qiu et al. (2002) present thorough analyses in the context of missing
categorical data.

The aim of this paper is to demonstrate WinBUGS’s capacity to compensate for missing
longitudinal data, with a particular focus on missing covariate data. We do this by looking at
a longitudinal analysis of diabetes incidence in Australian women. In Section 2 we introduce
the motivating example from the Australian Longitudinal Study on Women’s Health. In
Section 3 we specify a fully Bayesian model for the incidence of diabetes without and with
missing covariate data. In Section 4 we describe its implementation in WinBUGS, and present
the results in Section 5. In Section 6 we give a general SAS macro (that calls WinBUGS) for
analysing longitudinal models with missing covariate data. We conclude with a discussion
and some recommendations in Section 7.
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2. Motivating example

Women who are overweight have an increased risk of developing diabetes. However the relative
impact of longer-term adiposity and short-term weight changes on the incidence of diabetes
is of scientific interest (Mishra et al. 2007). The Australian Longitudinal Study on Women’s
Health (ALSWH) is designed to answer such questions as it tracks over time the health and
well-being of a representative sample of Australian women (Lee, Dobson, Brown, Bryson,
Byles, Warner-Smith, and Young 2005).

The ALSWH study collects self-reported data from mail-out surveys every two to three years.
For this analysis we used data from the mid-aged cohort of women who were aged 45 to 50 at
the time of the initial survey in 1996 (S1). Subsequent surveys occurred in 1998 (S2), 2001
(S3), and 2004 (S4). At S1 13,716 women agreed to take part in the longitudinal study and by
S4 10,905 women remained. Key variables for the analysis of diabetes incidence and weight
are outlined below.

At S1 women were asked if they had ever been diagnosed with diabetes. At S2, S3 and S4
women were asked if they had been diagnosed with diabetes since the previous survey. Using
this data women were classified into one of the following groups: existing case at S1, incident
case between S1 and S2, incident case between S2 and S3, incident case between S3 and S4,
free from diabetes, or unknown.

Women were asked to report their height and weight at each survey. Self-reported heights
from the first three surveys were used to obtain a single estimated value for each woman by
averaging the available data. Body mass index (BMI) for each woman at S1 was calculated
as self-reported weight (kilograms) at S1 divided by the square of estimated height (metres).
BMI was categorized as (according to the World Health Organization (2000)): ‘underweight’,
< 18.5 kg/m2; ‘healthy weight’, [18.5, 25) kg/m2; ‘overweight’, [25, 30) kg/m2; ‘obese’, [30, 35)
kg/m2; or ‘very obese’, ≥ 35 kg/m2. Fewer than 2% of women were classified as ‘underweight’
at S1, so this category was combined with the ‘healthy weight’ group.

At S1 women were asked what they would like to weigh. Responses were categorized into:
happy/like to weigh more, like to weigh 0 to 5 kg less, like to weigh 5 to 10 kg less, like to
weigh more than 10 kg less.

3. Model specification

Examining the association between health and weight is often difficult in survey data because
weight is a sensitive question and is sometimes not reported. For example, in the ALSWH
at S1 545 women (4.0%) did not report their weight, whereas for the other variables used in
this paper the average percent of missing was 1.3%. If women who are overweight are less
likely to report their weight then a complete case analysis could well underestimate the true
association between weight and diabetes incidence.

Figure 1 gives a graphical summary of our model. The model is split into the imputation and
diabetes components. In the diabetes component we examined the association between BMI
at S1 and annual percentage weight change on the incidence of diabetes, adjusting for age at
baseline. BMI at S1 represented longer-term adiposity while annual percentage weight change
represented short-term weight change. Because we were interested in weight change before
diabetes onset, weight change was measured in the survey period prior to reported incidence
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Figure 1: Model of the association between diabetes incidence and long-term BMI and short-
term changes in weight

(to avoid the risk of ‘reverse causation’ whereby women who were diagnosed with diabetes
subsequently lost weight). Therefore, the study population for the analysis was confined to
those women who became an incident case between S2 and S3 or S3 and S4, or those who were
free from diabetes. Women who became an incident case between S2 and S3 were excluded
from the analysis in the following period as they were no longer in the population at risk.

As shown in Figure 1 there were different amounts of missing covariates, with likely different
reasons for why they were not completed. Rubin defines three potential patterns of miss-
ingness: missing completely at random (MCAR), in which there is no systematic difference
between the characteristics of those with and without missing data; missing at random (MAR),
in which there is a systematic difference but this can be explained by other observed data;
and missing not at random (MNAR) where the difference cannot be explained by observed
data.

We relied on the MAR assumption to build an imputation component into the model using
the question, “How much would you like to weigh?” There were far fewer missing responses to
the ‘like to weigh’ question compared with actual weight. Also, the ‘like to weigh’ variable at
S1 was highly correlated with self-reported weight at all surveys (Mishra and Dobson 2004).
Hence we used ‘like to weigh’ to impute missing weights at each survey. For each imputed
weight we recalculated BMI at S1 and percentage weight change. Women for whom height was
unknown (3.2%) or who didn’t respond to the ‘like to weigh’ question (3.2%) were excluded
from the analysis.

For illustrative purposes we constructed three separate models:
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(i) A complete case model (7113 women),

(ii) A cross-sectional imputation model (9557 women),

(iii) A longitudinal imputation model using random effects to incorporate within-subject
correlation (9557 women).

Models (ii) and (iii) both had the diabetes and imputation component (Figure 1). Model (i)
only had the diabetes component.

We now describe the three models in more detail.

3.1. Complete case model

Let Yit be a binary variable denoting incidence of diabetes for individual i (i = 1, . . . , 7113)
at time t (t = 1, 2). The complete case model is then,

Yit ∼ Bernoulli(pit),
logit(pit) = αt + XT

i β + Zi(t−1)Ψ

where X is a matrix of the time-invariant covariates (BMI at S1, age at S1), Z is a vector
containing the single time varying covariate (percentage weight change in the survey period
prior to reported incidence) and α is an intercept that varies according to survey (time).

3.2. Cross-sectional imputation model

The diabetes component of this model followed the same structure as the complete case model.

In the imputation component of the model, we assumed that the weight of individual i (i =
1, . . . , 9557) at survey s (s = 1, . . . , 4) was distributed as:

Wis ∼ Normal(µis, σ
2),

µis = γ + ϕt + LT
i φ,

where L is a vector containing the response of each individual i to the ‘like to weigh’ question.
Thus weight for individual i at survey s was described by a population mean γ plus an
increment of ϕ at each survey, and was adjusted according to the response of individual i to
‘like to weigh’ at S1 (φ). The estimates of γ, ϕ and φ were based on records with partial or
complete data. Women with a missing weight (Wis) had their weight imputed from a Normal
distribution with mean µ̂is and variance σ̂2.

Note that the diabetes component is evaluated over two time periods (t = 1, 2, surveys 3 and
4) whereas the weight component is evaluated over four time periods (s = 1, 2, 3, 4, surveys 1
to 4). This meant that we used the maximum amount of information to impute weight, whilst
excluding surveys 1 and 2 from the diabetes component because we were only interested in
incident cases.

3.3. Longitudinal imputation model

The diabetes component of the model followed the same structure as the complete case model.
We introduced a random intercept into the imputation component of the model to incorporate
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within-subject correlation in weight, and hence take account of the longitudinal study design.
The imputation component for weight was:

Wis ∼ Normal(µis, σ
2
b ),

µis = γi + ϕt + LT
i φ,

γi ∼ Normal(λ, σ2
w).

Instead of a population mean for weight, each subject had her own estimate (γi, known as
a random intercept). The total variance in weight from the previous model (σ2) has been
partitioned into the within-subject variance σ2

w, and the between-subject variance σ2
b . The

within-subject correlation is given by ρ = σ2
b/(σ2

b + σ2
w).

3.4. Inference using Gibbs sampling

The models that we have presented above use two parametric distributions (Bernoulli and
Normal), with many parameters at several hierarchical levels. An analytical solution to the
model is therefore intractable. Fortunately we can make inference about the parameters
using Gibbs sampling (the default method in WinBUGS). In Gibbs sampling each unknown
parameter is estimated conditional on all the other observed data and the other estimated
parameters (for a detailed description of Gibbs sampling see Gelman et al. (2004)). For
example, in the hierarchical imputation model, a missing weight would be sampled from a
normal distribution with mean µ̂is and variance σ̂2. A complete iteration occurs when all
the parameters and missing data have been estimated. The next iteration is then based on
these estimates and the data. To start the iterations an initial set of values for each unknown
parameter and observation is specified. Many iterations are run (usually greater than 1000)
in an attempt to converge to a solution. We discuss some of the practical issues of running
such iterations in the next section.

4. WinBUGS code

To run an analysis in WinBUGS there are four basic requirements: specify a model; load the
data; specify initial values; and run the Gibbs sampler. This process is most efficient when the
above information is stored in four batch files: an input data file; a file containing the model
specification; an initial values file; and a script file that executes WinBUGS commands. We
focus here on the model specification file, illustrating the conversion of our three models into
a WinBUGS format. Model specification in WinBUGS differs from other standard statistical
packages in that the model must be fully and explicitly specified by the user, rather than
inserting model specifications into pre-programmed statistical procedures. Information on
the construction of the remaining batch files is in Appendix A.

4.1. Complete case model

The first lines of code are:

model{
for (i in 1:7311){

for (t in 1:nsurvey[i]){
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The model statement opens the model specification file. We looped through records for 7311
individuals at two time points, except where a woman first reported diagnosis of diabetes at
S3, in which case she was no longer included in the population at risk at S3 and data from
a single time point was used. This condition was achieved through the use of the indicator
variable, nsurvey, which took the value of 1 when diabetes incidence occurred between S2
and S3, and took the value of 2 otherwise.

In this model t = 1 refers to diabetes incidence between S2 and S3 and weight change between
S1 and S2. Similarly t = 2 refers to diabetes incidence between S3 and S4 and weight change
between S2 and S3. BMI and age at S1 did not change over time.

We specified the distribution of diabetes incidence (diab) to be Bernoulli,

diab[i,t] ~ dbern(diab.prob[i,t]);

Ending statements with a semi-colon is optional in WinBUGS.

Our interest lay in the parameter diab.prob, which represents the probability of becoming an
incident case of diabetes. We modelled the relationship between the probability of diabetes
and other explanatory variables as follows.

logit(diab.prob[i,t]) <- d.int + (d.time*equals(t,2)) + (d.wtspc*wtspc[i,t])
+ (d.bmi[1]*equals(bmi[i],2)) + (d.bmi[2]*equals(bmi[i],3))
+ (d.bmi[3]*equals(bmi[i],4)) + (d.age*age[i]);

The equals function was used with the integer value of t (representing time) to turn the
parameter d.time ‘on’ for time 2 and ‘off’ for all other times. Hence the parameter d.time
estimates the change in diabetes risk at S4 compared to S3 (all estimated parameters for the
diabetes components have a ‘d.’ prefix). We also used the equals function to create indicator
variables for categories of BMI.

We specified non-informative priors for each of the unknown parameters in the bottom tier of
the hierarchy. We did this by assigning each unknown parameter a normal distribution with
a zero mean and small precision dnorm(0.0,1.0E-6), where the precision is the inverse of
the variance.

4.2. Cross-sectional imputation model

The specification of the diabetes component of the model was very similar to the complete
case model. As above, we modelled diabetes as a Bernoulli variable.

diab[i,t] ~ dbern(diab.prob[i,t]);

However, to assist with convergence, we imposed a constraint on the minimum value that
diab.prob could take (as very small probabilities led to non-estimable likelihoods).

diab.prob[i,t] <- max(0.0001, diab.temp[i,t]);
logit(diab.temp[i,t]) <- d.int + (d.time*equals(t,2)) + (d.wtspc*wtspc[i,t])

+ (d.bmi[1]*step(1.9-bmi[i,t])) + (d.bmi[2]*step(2.9-bmi[i,t]))
+ (d.bmi[3]*step(3.9-bmi[i,t])) + (d.age*age[i]);
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With the introduction of missing data in weight, BMI became a stochastic variable in the
model. For this reason, we could not use the equals function to create an indicator function
for BMI. The problem was overcome by using the step function, with thresholds set at some
value between the integer categories. Further explanation on the use of the indicator functions
step and equals can be found in the WinBUGS user’s manual Spiegelhalter et al. (2003).

The imputation component of the model focussed exclusively on the imputation of weight
at each survey, which is used to calculate both BMI and percentage weight change. Where
weight for individual i at survey s was unknown, we specified the distribution of weight to
be Normal. Our interest lay in the relationship between the mean value of weight and other
information contained within the existing data, as shown below.

for (s in 1:4){
wtkg[i,s] <-cut(wtkg.uncut[i,s]);
wtkg.uncut[i,s] ~ dnorm(wt.mu[i,s],wt.tau);
wt.mu[i,s] <- w.int + (w.slo*s) + (w.like[1]*equals(like[i],2)) +

(w.like[2]*equals(like[i],3)) + (w.like[3]*equals(like[i],4));}

We used the cut function to prevent ‘feedback’ from the results from diabetes influencing
the imputed weights. In other words to maintain the flow of information as indicated by the
arrows in Figure 1.

This above code was embedded within the ‘individual’, or ‘i’, loop but external to the ‘t’ loop
in which the diabetes component was contained. This enabled weight to be modelled using
data from all four surveys and in so doing, ensured that the imputation model incorporated all
available information. Weight was not a variable of direct interest so we used logical functions
to recalculate the variables bmi (categorical) and wtspc (continuous) as follows.

wtspc[i,t] <- ((wtkg[i,t+1]-wtkg[i,t])/wtkg[i,t])/(t+1)*100;
bmic[i,t] <- wtkg[i,1]/(height[i]*height[i]);
bmi[i,t] <- 1 + step(bmic[i,t]-25) + step(bmic[i,t]-30) + step(bmic[i,t]-35);

4.3. Longitudinal imputation model

The diabetes component of the model was the same as that in the cross-sectional model. The
imputation component required only a slight modification to the intercept term, and one new
line of code to describe the distribution of the random intercept.

for (s in 1:4){
wtkg[i,s] <-cut(wtkg.uncut[i,s]);
wtkg.uncut[i,s] ~ dnorm(wt.mu[i,s],wt.tau);
wt.mu[i,s] <- w.int[i] + (w.slo*s) + (w.like[1]*equals(like[i],2)) +

(w.like[2]*equals(like[i],3)) + (w.like[3]*equals(like[i],4));}
w.int[i] ~ dnorm(w.mu,w.tau);

We compare the fit of the three models using the Deviance Information Criterion (DIC)
(Spiegelhalter et al. 2002) and using 10-fold cross-validation (Breiman et al. 1984).
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5. Results

Analyses for each of the three models were performed in WinBUGS, Version 1.4.1. Each model
was run for 25,000 iterations, with an additional 5000 iterations for burn-in. The time taken
to run the longitudinal imputation model (the most complex) in WinBUGS was 53 minutes,
using a server running Microsoft Windows Server 2003 Enterprise Edition with dual 3.6 GHz
Xeon processors and 6 GB of RAM. The length of time is mostly dependent upon the number
of observations in the data and the number of iterations required.

To compare the results from WinBUGS with another package, the complete case analysis was
also implemented in SAS, Version 9.1.3, using proc genmod with the options type=exch and
d=binomial and link=logit.

Odds ratios for incidence of diabetes in each of the three models are shown in Table 1. There
was little difference in the odds ratios for diabetes, or their posterior limits, between the
various models and two packages. Nor did the interpretation of the results change, with the
main result being that long-term obesity (BMI) was a stronger predictor of diabetes incidence
compared to short-term weight gain (Mishra et al. 2007).

The longitudinal model was a better fit to the data than the cross-sectional model as the
longitudinal model had a smaller DIC (Table 2). The longitudinal model used many more
parameters as each woman had her own intercept. This large increase in parameters gave
a much improved fit to the imputation component of the model. This improved imputation
gave a slightly better fit to the diabetes component (DIC of 2570.1 vs 2573.8).

The results of the 10-fold cross-validation were similar to those from the DIC. For the cross-
sectional model the average error for an imputed weight was 10.4 kilograms (standard devi-
ation (SD) = 0.23 kg). For the longitudinal model the average error was a much smaller 5.3
kilograms (SD = 0.17 kg). The cross-validation found little difference between the models in
terms of their fit to the diabetes component. For the cross-sectional model the average area
under the receiver operating characteristic (ROC) curve for predicted diabetes (yes/no) was
0.548. For the longitudinal model the average area under the ROC curve was 0.543.

6. A more general SAS macro

In this section we describe a SAS macro for analysing general longitudinal models with missing
covariate data. The macro converts a SAS data set to WinBUGS format and writes WinBUGS

Complete case (N = 7311) Imputed (N = 9557)
SAS WinBUGS Cross-sectional Longitudinal

Time (years) NA 1.34 (1.00, 1.76) 1.48 (1.16, 1.87) 1.50 (1.17, 1.94)
BMI

Healthy Reference Reference Reference Reference
Overweight 2.95 (2.00, 4.36) 3.02 (2.00, 4.41) 2.88 (2.03, 3.97) 3.08 (2.15, 4.35)
Obese 7.56 (5.10, 11.21) 7.73 (5.13, 11.20) 6.36 (4.37, 9.03) 6.74 (4.61, 9.69)
Very obese 13.43 (8.50, 21.23) 12.97 (8.61, 18.2) 13.68 (9.13, 19.67) 13.55 (9.11, 19.74)

% weight change 1.03 (0.99, 1.07) 1.03 (0.99, 1.08) 1.02 (0.99, 1.05) 1.03 (0.99, 1.07)
Age (years) 1.10 (1.00, 1.22) 1.10 (1.00, 1.21) 1.13 (1.04, 1.22) 1.13 (1.03, 1.23)

Table 1: Odds ratios (and 95% confidence/posterior limits) for incidence of diabetes
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Cross-sectional Longitudinal
Number of DIC Number of DIC

Component parameters parameters
Diabetes 7.7 2573.8 8.9 2570.1
Imputation 6.0 261271 9016.2 211418
Total 13.6 263844 9025.1 213988

Table 2: Comparisons of model fit for cross-sectional and longitudinal models (DIC = De-
viance Information Criterion)

code to run a longitudinal model. It then reads the results from WinBUGS and summarizes
them in SAS.

This particular macro is restricted to models with a continuous dependent variable and so
is more limited than the models used in section 4. Multiple covariates are allowed and
these may be either categorical or continuous. However, the covariate with missing data
must be continuous and time-dependent (i.e., change over time). This macro uses a simpler
model than that discussed in the previous section for the diabetes data set. The model for
diabetes included specific functions (such as calculating body mass index from weight) and
used different time periods for the model of interest and imputation model. Such specific
programming can be added to the WinBUGS code generated by our SAS macro.

We demonstrate the SAS macro for a continuous dependent variable with a smaller longitu-
dinal data set from a study of terminal cancer patients and their carers (Correa-Velez et al.
2003). The outcome is the carer’s level of anxiety, measured on the hospital anxiety and de-
pression scale (HADS), for which higher scores indicate greater anxiety (Zigmond and Snaith
1983). In this study patients and their carers were regularly interviewed during the final year
of life. The study was particularly interested in how patient anxiety impacted on carer anxi-
ety. Both patient anxiety and carer anxiety had some missing values. The other variables are
the carer’s gender, the time to death (in weeks), and the patient’s number of symptoms. The
number of symptoms and anxiety scores are time-varying covariates. The data set contains
514 interviews from 109 carers.

Using the terminal cancer data our SAS macro longimp is called using the following statement
(note the text between ‘/*’ and ‘*/’ is comment and can be omitted):

%longimp(dsetin=data.carer, /* Input data set */
depvar=hadsanx, /* Dependent variable (model of interest) */
vars=phadsanx gender deathwks, /* Explanatory var(s) (model of interest) */
class=gender, /* Class explanatory variable(s) (model of interest) */
depvari=phadsanx, /* Dependent variable (imputation model, continuous) */
varsi=count, /* Explanatory variable(s) (imputation model) */
classi=, /* Class explanatory variable(s) (imputation model) */
time=interno, /* Time variable */
repeated=carerid, /* Repeated variable (e.g. subject) */
centre=Y, /* Centre continuous explanatory variables (Y/N), default=Y */
MCMC=5000 /* Number of MCMC iterations & burn-in, default=1000 */
);
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The dependent variable in the model of interest is the carer’s anxiety (depvar=hadsanx). This
is dependent on: their gender (which is a categorical variable, class=gender), their patient’s
level of anxiety (phadsanx) and the time to patient’s death (deathwks). The patient’s level of
anxiety is a time-dependent covariate and has some missing values. We impute these missing
values by making them the dependent variable of the imputation model (depvari=phadsanx).
The patient’s level of anxiety is dependent on their number of symptoms (count). There are
no missing values for the number of symptoms.

The other necessary inputs are the variable that defines time, which in this case is the inter-
view number (time=interno), and an identification number for each carer which links their
repeated results (repeated=carerid).

There is the option to centre the continuous explanatory variables by subtracting their mean
(centre). This is generally advisable in WinBUGS as it often improves the convergence of the
MCMC algorithm. The final option is to choose the number of MCMC iterations and burn-in
(MCMC).

The above SAS macro call produces the following four pages of output:

Longitudinal model using WinBUGS 1
Model information

Input data set: work.carer
Dependent variable: hadsanx
Observations: 514
Subjects/Clusters: 109

Longitudinal model using WinBUGS 2
Geweke’s MCMC converge diagnostic

Mean
Variable difference df t-value p-value

count -0.00057 2998 -0.24445 0.80690
deathwks 0.00082 2998 1.47354 0.14071
gender_1 0.11865 2998 3.30014 0.00098
intercept -0.01108 2998 -0.46386 0.64278
intercept_i -0.01178 2998 -0.86887 0.38499
phadsanx 0.00506 2998 1.90966 0.05627

Longitudinal model using WinBUGS 3
Parameter estimates - Model of interest

95% Posterior Interval
Variable Mean SD Lower Upper

intercept 6.464 0.486 5.556 7.479
deathwks 0.039 0.011 0.016 0.062
gender_1 -2.649 0.756 -4.112 -1.203
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phadsanx 0.288 0.054 0.182 0.390
sigma2 8.377 0.610 7.278 9.656
rho 0.597 0.047 0.502 0.684

Longitudinal model using WinBUGS 4
Parameter estimates - Imputation model

95% Posterior Interval
Variable Mean SD Lower Upper

intercept_i 0.263 0.271 -0.281 0.792
count 0.351 0.046 0.261 0.443

The first page of output gives some basic information on the model. The second page gives
the MCMC convergence diagnostic of Geweke (1992). This compares the first 10% of the
chain to the last 50%. It is important for valid inference to have MCMC chains that are
stable and have converged. A chain that has converged should have a constant mean and
the output compares the means of the first and last sections of the chain using an unpaired
t-test. In this case the mean for the gender variable seems to have increased slightly. The
chain should be run again (possibly for longer) to give a more stable estimate for gender.

The third and fourth pages give the parameter estimates from the model of interest and the
imputation model. The results show that as the patient’s death approached the carer’s anxi-
ety increased (deathwks). Also male carers had much lower anxiety (gender), and increased
patient anxiety was associated with increased carer anxiety (phadsanx). The average anxi-
ety score was 6.464 (intercept) and the variance was 8.377 (sigma2). The within-subject
correlation for carers was a relatively strong 0.597 (rho), indicating a good deal of similarity
over time in each carer’s anxiety level. For the imputation model the patient’s number of
symptoms was positively associated with their level of anxiety (count).

7. Discussion

Survey data is often partially completed and using a complete case analysis can produce
biased results. For an example used here concerning the risk of diabetes incidence this was
not the case, as a complete case analysis and analyses after imputation gave similar estimates.
However, the complete case analysis used data from 7311 women, whereas the analyses using
imputation used data from 9557 women (a 31% increase). Using a larger sample generally
gives results that are more representative.

In our example concerning diabetes incidence there was no difference between the parameter
estimates from a cross-sectional imputation model and a model that exploited the longitudinal
structure of the data. However, the longitudinal imputation model gave better estimates of
missing weights as shown by the cross-validation (mean error of 5.3 kg for the longitudinal
model compared to 10.4 kg for the cross-sectional). Hence we still strongly recommend the
use of longitudinal imputation when the data structure is longitudinal.

Much of the software available for imputation is yet to develop capabilities for longitudinal
imputation, and instead uses cross-sectional imputation. WinBUGS, on the other hand, can
incorporate longitudinal structure with relative ease. As illustrated in Section 4, there was
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little difference in the longitudinal and cross-sectional imputation code. WinBUGS is also
able to easily deal with missing categorical data, whereas many other packages rely on an
assumption of Normality. We have provided a SAS macro for analysing longitudinal studies
with missing covariates that uses WinBUGS but is able to be run from SAS.
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A. Batch files in WinBUGS

A.1. Input data file

Raw data are values of the variables: diabetes, weight (at each survey), age, height, like to
weigh, and the indicator variable: nsurvey.
Data can be entered into WinBUGS in one of two ways: the list format of S-PLUS, or as
a series of one dimensional arrays, in a tab delimited file. In both cases, the hierarchical
dimensions of the data must be specified by the user. Data are stored as .txt files. Missing
data is entered as ‘NA’.
WinBUGS is not suited to data management, and so for large data sets another package is
required. We used SAS, Version 9.1.3, creating our data files as tab delimited text. It is also
possible to use R and the package R2WinBUGS in the management of large data sets (Sturtz
et al. 2005).
Using the data array format, data was entered under the following column headings (we also
show three example lines of data):

diab[,1] diab[,2] wtkg[,1] wtkg[,2] wtkg[,3] wtkg[,4] age[] height[] like[]
nsurvey[]
1 NA 40.5 30.2 NA 35.5 51 140 1 1
0 1 89.8 89.6 75.5 99.2 52 160 4 2
0 0 65.2 65.4 66.7 NA 50 175 2 2
...

The last line of a data file of this format must be the word ‘END’ and the return key must
be entered for WinBUGS to read the file correctly.

A.2. Initial values file

Initial values can be specified in one of two ways: by the user, or as randomly generated
values using the gen.inits() command in the WinBUGS script file. It is also possible to
specify some initial values and then use the gen.inits() function to create the remainder.
User specified values are stored in a .txt file whose structure follows the same protocol as the
data file. It is often necessary for the user to specify ballpark initial values as gen.inits()
can generate unreasonable starting values, which in turn means that WinBUGS cannot begin
to iterate the Gibbs sampler.
WinBUGS treats each unobserved record in a variable with missing data as a random variable
whose distribution must be estimated. To specify the initial values for these unobserved
records we must enter a matrix of values that matches the dimensions of the variable. If a
record is observed, then the entry in the initial value matrix is ‘NA’, otherwise, if the record
is unobserved, the entry is the user-specified initial value.

A.3. Script file

The script file is a list of WinBUGS commands which are executed sequentially and activated
by the ‘Script’ option in the Model menu. The following commands must be included in this
file, in the sequence shown below, for the model to run.
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check(’path/filename’): Calls the model specification file and scans for errors in syntax.
Notice the forward slash in the file path.

load(’path/filename’): Calls the data file.

compile(n): Ensures that the model specification file and the data file are compatible. n
denotes the number of chains to run simultaneously.

inits(n,’path/filename’): Calls the initial values file/s.

gen.inits(): Generates initial values not specified in the initial values file. Not necessary if
initial values have already been fully specified by the user.

update(n): Begins the MCMC simulation and runs for n iterations

Additional commands are required to view the output. Set(name) indicates that name is a
node of interest. WinBUGS will store information about name as it iterates through the chain.

Several of the most useful commands for viewing output are shown below.

stat(node): Displays posterior means, intervals and other statistics for nodes of interest.

history(node): A plot of all the values the chain has taken during the iteration cycle.

autoC(node): A plot of autocorrelation between adjacent values in the chain, up to a lag of
40.

The WinBUGS user manual provides a helpful and comprehensive list of commands Spiegel-
halter et al. (2003).
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