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Abstract

This paper describes the use of GLDEX in R to fit distributions to empirical data using
the discretized and maximum likelihood methods. The GLDEX package also provides
diagnostic tests to examine the quality of fit through the resample Kolmogorov-Smirnoff
test, quantile plots and comparison of the mean, variance, skewness and kurtosis between
the empirical data and the fitted distribution.
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1. Introduction

GLDEX (Su 2007b) for R (R Development Core Team 2007) is designed to fit a range of em-
pirical data using both the RS (Ramberg and Schmeiser 1974) and the FMKL (Freimer, Mud-
holkar, Kollia, and Lin 1988) generalized lambda distributions. For unimodal data, GLDEX
provides the maximum likelihood estimation (Su 2007a) as well as the discretized approach
(Su 2005), which acts as a smoothing device similar to the concept of loess smoothing. For
bimodal data, GLDEX provides partition likelihood estimation and maximum likelihood es-
timation using the EM algorithm to find the parameters of the mixture of two generalized
lambda distributions (Su 2006). As this package is built from gld (King 2007) in R with some
modifications, the starship method of fitting FMKL GAD (generalized lambda distribution)
to data (King and MacGillivray 1999) is also included. The quality of the distribution fit can
be assessed by using histograms, qq pots and resample KS (Kolmogorov-Smirnov) test.
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2. Background

2.1. Generalized lambda distributions

The RS GAD is due to the work of Ramberg and Schmeiser (1974) and it is an extension of
Tukey’s lambda distribution (Hastings, Mosteller, Tukey, and Windsor 1947). It is defined
by its inverse distribution function:

ut — (1 —u)M
A2

Fl(u) =X\ + 0<u<l1 (1)
From (1) A1, A2, A3, A4 are respectively the location, inverse scale, and shape parameters of gen-
eralized lambda distribution GAD (A1, Ag, )\3, A1). Karian, Dudewicz, and McDonald (1996)
noted that GAD is defined only if wmee 1+/\4(1 mEvES >0for0<u<l.

Freimer et al. (1988) describe another distribution known as FMKL GAD. This distribution
is slightly different to RS GAD. The FMKL GAD can be written as:

ws-1  (1—w)M-1
Fl(u) = A 4 —2 S A 0<u<l (2)
2
Under (2), A1, A2, A3, A4 are respectively the location, scale, and shape parameters of general-
ized lambda distribution.

The fundamental motivation for the development of FMKL GAD is that the distribution is

defined over all A3 and Ay (Freimer et al. 1988). The only restriction on FMKL GAD is
Ao > 0.

2.2. Fitting generalized lambda distributions to data

There are two possible general approaches to fitting generalized lambda distributions to data.
The first approach is to fit GAD to the empirical data using the discretized method (Su
2005), similar to the concept of loess smoothing or kernel density estimation. This provides a
range of different plausible distributions for the same data set, which can be very valuable in
sensitivity analysis. The second approach aims to provide a definite fit to the data set such as
maximizing the goodness of fit (King and MacGillivray 1999; Lakhany and Massuer 2000) or
use the maximum likelihood estimation (Su 2007a, 2006). The current literature is primarily
concerned with providing definite fits to a data set using the GAD. The maximum likelihood
estimation is usually the preferred method (Su 2007a). Maximum likelihood estimation is not
only more efficient than the starship method but also tends to produce GAD that has closer
first four moments to the data set.

The GLDEX package provides distribution fitting methods using both approaches. Specifi-
cally, it covers discretized and maximum likelihood approaches (Su 2007a, 2005, 2006). The
starship method (King and MacGillivray 1999) is taken directly from gld but is included as
part of this package to allow comparison of various fitting schemes.

To fit an implicitly defined distribution such as GAD to the data set, it is necessary to find:
1) suitable initial values and 2) optimize the values through an optimization scheme. The
initial values and the optimization scheme required for each method (Su 2007a, 2005, 2006)
are discussed below.
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Discretized and maximum likelihood estimation for single GAD fit

1. Finding initial values.

The first step is to generate a set of feasible initial values. The initial values for the
RS GAD are derived from generating a set of low discrepancy quasi random values for
A3 and Ay ranging from -1.5 to 1.5. These low discrepancy quasi random numbers can
either be generated from the Halton or Sobol sequence. Similarly, for the FMKL GAD,
the initial A3 and A4 comprise of low discrepancy quasi random numbers ranging from
-0.25 to 1.5. These values were chosen by the author as they appear to work well for a
wide range of situations and can be modified if necessary.

Once generated, A3 and A4 can be used to derive A1 and Ao using the method of moment
for FMKL GAD (Lakhany and Massuer 2000) and method of percentile for RS GAD
(Karian and Dudewicz 2000). Each set of A1, A2, A3, A\ is checked to ensure the set is a
legal parameterization of the GAD and spans the entire data set.

From these sets of valid initial values, GLDEX will attempt to find the best set of initial
values for the subsequent optimization process. For the RS GAD, the goal is to find the
GAD that matches most closely to the third and fourth percentile of the data in terms
of the sum of minimum squared deviations. Similarly, for the FMKL GAD, the goal is
to find the GAD that matches most closely to the third and fourth moment of the data,
again using the minimum squared criterion.

2. Terminology.

The distributional fitting methods developed in GLDEX begin by using the percentile
approach for RS and method of moment for FMKL GAD to find initial values. Ac-
cordingly, the discretized approach for the RS and FMKL GAD is known as the revised
percentile RS (RPRS) method and revised method of moment FMKL (RMFMKL)
method respectively. The maximum likelihood approach adds a suffix .ML to the name,
so the methods are labeled as RPRS.ML and RMFMKL.ML throughout this article.
These abbreviations are used frequently in the GLDEX package and form a part of the
graphical outputs to allow distinction between different fitting methods.

3. Discretized approach.
In the discretized approach, the sample data is sorted in ascending order and divided
into evenly spaced classes with bin edges that span the data set. Then the proportion
of the sample in each class is calculated. An example is shown in Table 1.

Table 1 shows four classes, with the proportion of the data set belonging to each class
shown in the second row. For i = 1, 2, 3 ...k classes, the proportion of data in each
class is defined as d; and the proportion of data from the GAD is t;. The quantity to
be minimized under discretized approach is indicated in Equation (3) or (4).

Classes 1.5-2 | 2-2.5 | 2.5-3 | 3-3.5 | Sum
Proportion of Data 0.1 0.6 0.2 0.1 1

Table 1: Proportion of data in each class for a sample data
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k

> di(di —t;)* (3)

=1

Equation (3) is the weighted squared deviation of the theoretical proportions with the
empirical proportions. This weighting scheme forces data with higher proportions to
be given priority in the minimization scheme and this tends to accentuate the peak
and suppress the tails of the empirical data. The weighting factor d; can be removed,
resulting in Equation (4).

(di — ti)z (4)

k
=
The number of classes, k, can be solely determined by the user, or determined by finding
the number of classes that best matches the mean and variance of the actual data set in
terms of minimum squared error. Using the mid point between the boundaries in each
class, the mean and variance of data shown in Table 3 are 2.4 and 0.1525 respectively.
Alternatively, it is possible to choose a different number of classes as described by Scott
(1979) or Freedman and Diaconis (1981) for plotting histograms. The smoothing effect
of the discretized method comes from the fact that different choices of k can give different
GAD fits, providing a range of different distributions for the same data set.

4. Maximum likelihood estimation.
To find GAD using the maximum likelihood estimation, it is necessary to obtain quan-
tiles u; under the RS or FMKL GAD for every observation xz;, for i = 1, 2, 3, ...n
observations under a set of initial values. This requires solving Equation (1) or (2)
numerically. This can be done via gld in R which uses Newton-Raphson method.

Once the u;’s are obtained, they are substituted into the appropriate numerical log
likelihood equation as shown in (5) and (6).

MLRS = zn:log [ /\2 ] (5)

= )\3%\371 + )\4(1 — ui)M*l

n

A2

MLrykr = E log — (6)
i=1 ug‘3 P (1 — )Mt

The key here is to maximize the likelihood in (5) and (6) and this can be done using
Nelder-Simplex algorithm. To check the numerical optimization, it is always desirable
to use a different set of initial values to see if similar results can be obtained in the
optimization process.

Fitting mizture of two GADs: Partition maximum likelihood and EM algorithm

The mixture of two GADs is an extension of the maximum likelihood estimation for the
single distribution fit case. The automated procedure begins by dividing the data into two
parts using either clara or fanny from cluster (Maechler, Rousseeuw, Struyf, Hubert, and
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Hornik 2007) in R. The clara clustering method appears to work well for a wide variety of
empirical data and so the GLDEX uses this as the default. These classification procedures
are described in Kaufman and Rousseeuw (1990). Any clustering method can be used, thus it
is not necessary to use clara or fanny classification scheme. From the classification process,
it is possible to obtain an estimate for p in the mixture distribution equation pf; + (1 — p) fo,
with the GADs being represented by f1 and fa respectively.

Under the partition maximum likelihood estimation, the above classification scheme is suf-
ficient without the need for any further modification. In the case of maximizing the log
likelihood using EM algorithm, GLDEX will force each partition of the data set to contain
the maximum and minimum values of the entire data set as well as 1-2% of randomly selected
data from the other group. For example, if data set 1 has 1000 observations and data set
2 has 500, data set 1 is modified to have 1011 observations, with 10 observations randomly
selected from data set 2, plus 1 maximum value from data set 2, assuming data set 1 already
contains the minimum value of the original data set. A similar procedure is also applied to
data set 2. This ensures the partitioned data span the entire range of the data; a necessary
step since maximizing the log likelihood for mixture data requires the distribution for each
part of the mixture to span the entire data set.

Once the bimodal data set has been split into two, the sub data sets are fitted separately using
the maximum likelihood estimation or the starship method. This step gives the necessary
initial values for finding the parameters of the mixture GAD.

For partition maximum likelihood estimation, the formulae to optimize is (7). This is also
the complete log likelihood.

S (1 - 2){log(fole,0)) + log(n)} + ={log(f1(2.6)) + log(1 — p)} G
=1

For maximum likelihood estimation via EM algorithm, the conditional expectation of (7)
given x is given in (8).

ST {log(fole. 0)) + log(p)} + Si{lo(fi(x,0)) + log(1 — p)} (8)
=1
P(Zi|X; = a;) = (@, 0)(1 —p) — S 1—8 =T, (9)

Si(wi, 0)(1 = p) + fo(wi, 0)(p)

In the above formulae, (8) and (9), X and Z are the complete data, with X ~ fo(z,0) if z =0
and X ~ fi(z,0) if z = 1. The fy and f; are the GAD fits for each partition of the data set
with 0 representing the parameters associated with these distributions. In the case of two RS
GAD partition maximum likelihood mixture distribution fits, the final equation to maximize

is given in (10).
)+
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In (10), ny + no = n, ny and ny represent the number of observations in each partition of
the data set and d, for k = 1, 2, 3, 4 represents the parameters of the second GAD fit.
Additionally, u; and v; represent the quantiles for each partition of the data set for the i-th
observation.

All the other combinations of different RS and FMKL GAD fits for complete data log likelihood
and maximum likelihood via EM algorithm can be easily found by substituting the relevant
distribution into (7) or (8) and hence will not be written in full here. In GLDEX, this
final maximization step is done numerically via the Nelder-Mead Simplex algorithm and only
solutions which span the entire original data set are accepted.

2.3. Assessing the quality of fit

Once a distribution has been fitted to the data set, it is possible to assess the quality of the
distribution fit by using three methods in GLDEX:

1. Graphical outputs.

The most obvious diagnostic check on the resulting distribution fit is to superimpose
the resulting distribution fit on to the histogram. While simple and effective, it has
shortcomings as it can be difficult to assess the adequacy of the distributional fit on the
tails and it remains a subjective matter as to what constitutes a good or bad fit. Different
classes or number of bins in the histogram can also give different distributional shape
of the data set. It may not be easy to determine whether the resulting fit is adequate
if it appears to capture the shape of the data very well under a histogram with 10 bins
but not so well with 50. For this reason, quantile plots are also provided so that the
user can see more objectively which part of the data the GAD distribution appears to
give an adequate fit.

2. Comparing the mean, variance, skewness and kurtosis of the fitted distribution with the
empirical data.
This method provides a more objective way of choosing between alternative distribu-
tional fits. The derivation of the four moments of the RS and FMKL GAD (Karian
and Dudewicz 2000; Lakhany and Massuer 2000) involves the use of beta function. It is
imperative to appreciate, however, a GAD that has very similar mean, variance, skew-
ness and kurtosis to the actual data may still be a bad fit (Karian and Dudewicz 2000;
Lakhany and Massuer 2000). In some cases, it may be desirable to choose a good dis-
tributional fit with the closest mean, variance, skewness and kurtosis to the data set so
that the fitted distribution can be used for simulation studies to model the population
of interest.

3. KS resample test.

Resample KS test assesses the similarity between fitted distribution and actual data
by sampling a proportion (for example 90%) of the data and fitted distribution and
calculating the KS test p-value. This process is then repeated many times, and the
number of times the p-value is not significant is recorded and reported. For example,
if 950 times out of 1000 times the p-value does not reject the null hypothesis, then it
is possible to state that it is quite likely that the resulting fit is quite adequate for the
given data set.
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In R 2.5.0, the ks.test does not handle ties. While it is true that a real continuous
distribution cannot have ties, real life data are often round figures which results in ties.
In GLDEX, ties in ks.gof are handled by jittering, that is, if a tie appears, the tie will
be added with a very small uniform random number generated from the minimum value
of the data set divided by 10® to the minimum value divided by 107.

3. Using GLDEX in R

3.1. Installation

The package GLDEX is available from the Comprehensive R Archive Network at http://
CRAN.R-project.org/. The following command will load the package and allow the user to
browse a summary of the important functions of this package.

R> library("GLDEX")
R> ?GLDEX

3.2. Examples using GLDEX

Single distribution fit

The following examples illustrate distributional fitting methods for 300 randomly generated
Weibull variates with shape = 3 and scale = 2. The generation of these random numbers is
done as below.

R> set.seed(1000)
R> junk <- rweibull(300, 3, 2)

As an example, assume that the user wants to use the discretized weighted approach with
the default number of classes to fit the junk data set. The following command will store the
resulting RS and FMKL GAD fits in obj.fit1.hs.

R> obj.fitl.hs <- fun.data.fit.hs(junk)

To check the resulting fit, it is possible to plot a histogram as in Figure 1a.

R> fun.plot.fit(obj.fitl.hs, junk, nclass = 50, param = c("rs", "fmkl"),
+ xlab = "x")

The result seems adequate but should be verified by further testing. It is possible to assess
the goodness of fit through use of the resample KS test. The KS resample test demonstrates
the fit is inadequate and indicates that there is no difference between the fitted and simulated
distribution at 5% significance level in just over half of the tests.
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Figure 1: Examples of GAD fits using the weighted discretized method: a) obj.fit1l.hs and
b) obj.fit2.hs

R> fun.diag.ks.g(obj.fitl.hs[,1], junk, param = "rs")
[1] 646

R> fun.diag.ks.g(obj.fit1.hs[,2], junk, param = "fmkl")
[1] 591

Lastly, the following functions can be used to compare the theoretical mean, variance, skew-
ness and kurtosis of the fitted distribution with the simulated junk data. There are significant
deviations particularly in the skewness and kurtosis statistics.

R> fun.theo.mv.gld(obj.fitl1.hs[1, 1], obj.fitl.hs[2, 1],
+ obj.fitl.hs[3, 1], obj.fit1.hs[4, 1], param = "rs")

mean variance skewness kurtosis
1.740486e+00 2.722239e-01 -7.440031e+02 -7.006149e+08
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R> fun.theo.mv.gld(obj.fitl.hs[1, 2], obj.fitl.hs[2, 2],
+ obj.fitl.hs[3, 2], obj.fitl.hs[4, 2], param = "fmkl")

mean variance skewness Kkurtosis
1.7376465 0.2507075 0.4792900 4.0042590

R> unlist(fun.moments (junk))

al a2 a3 a4
1.7583304 0.3800741 0.2766219 2.7230887

The advantage of the discretized approach to distributional fitting is that it is possible to
change the number of classes to improve the fit. Alternatively, the unweighted discretized
version using fun.data.fit.hs.nw can be used to avoid accentuating the peak of the data
and suppressing the tails of the distribution. As a further example, assume the junk data is
refitted using the weighted discretized method with the number of classes = 15.

R> obj.fit2.hs <- fun.data.fit.hs(junk, rs.default = "N",
+ fmkl.default = "N", no.c.rs = 15, no.c.fmkl = 15)

Using exactly the same code, replacing obj.fit1l.hs with obj.fit2.hs, the graphical output
is shown in Figure 1b.

The theoretical moments of the fitted distributions are again evaluated and these are quite
different to the empirical moments and there are some undefined moments.

R> fun.theo.mv.gld(obj.fit2.hs[1, 1], obj.fit2.hs[2, 1],
+ obj.fit2.hs[3, 1], obj.fit2.hs[4, 1], param = "rs")

mean variance skewness kurtosis
1.7679902 0.7307534 2.8705474 NA

Warning message: NaNs produced in: beta(a, b)

R> fun.theo.mv.gld(obj.fit2.hs[1, 2], obj.fit2.hs[2, 2],
+ obj.fit2.hs[3, 2], obj.fit2.hs[4, 2], param = "fmk1")

mean variance skewness kurtosis
1.8021270 0.9314562 NA NA

Warning messages:
1: NaNs produced in: beta(a, b)
2: NaNs produced in: beta(a, b)

The KS resample test however suggests that the resulting fit is better than the previous fit.
More than 90% of the time, the KS tests indicate there is no difference between the fitted
distribution and the empirical data.
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R> fun.diag.ks.g(obj.fit2.hs[,1], junk, param = "rs")
[1] 904
R> fun.diag.ks.g(obj.fit2.hs[,2], junk, param = "fmkl")

[1] 916

While the discretized methods act like smoothers with different degrees of smoothing applied
under different number of classes, they do not provide a definite fit to the data set. The
maximum likelihood estimation and the starship method are useful when it is preferable to
find a definite fit to the empirical data, under the assumption that the data represents the
underlying population with sufficient accuracy.

To fit the data using maximum likelihood estimation and starship method, the following
function is used:

R> obj.fitl.ml <- fun.data.fit.ml (junk)

As in the previous example, it is possible to plot the resulting distribution fits as shown in
Figure 2.

R> fun.plot.fit(obj.fitl.ml, junk, nclass = 50,
+ param = c("rs", "fmkl", "fmkl"), xlab = "x")

It is also possible to examine the quantiles using qgplot.gld as shown below. The quantile
plots in Figure 3 suggest both starship and maximum likelihood estimation give very good
fits.

R> par(mfrow = c(2, 3))

R> qgplot.gld(junk, obj.fitl.ml1[,1], "rs", name = "RPRS.ML")

R> qgplot.gld(junk, obj.fit1.ml[,2], "fmkl", name "RMFMKL .ML")
R> qgplot.gld(junk, obj.fitl.m1[,3], "fmkl", name = "STAR")

R> qgplot.gld(junk, obj.fit1.m1[,1], "rs", name = "RPRS.ML",

+ type = "str.qgplot")

R> qgplot.gld(junk, obj.fit1.m1[,2], "fmkl", name = "RMFMKL.ML",
+ type = "str.qgplot")
R> qgplot.gld(junk, obj.fit1.m1[,3], "fmkl", name = "STAR",

+ type = "str.qgplot")

The mean, variance, skewness and kurtosis of the fitted distribution are then compared with
the actual data using fun.comp.moments.ml. As can be seen, the resulting fits have very
close first four moments to the data set. It is often the case that the maximum likelihood
estimation provides closer moments to the empirical data than the starship method. The
$eval.mat gives the sum of the squared deviations between the theoretical four moments and
the empirical four moments. It is designed to act as an alternative, objective way of assessing
the closest overall estimation. It should be used with caution since a large deviation in one
of the moments can seriously inflate $eval .mat.
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Figure 2: The GAD fits on the junk data using maximum likelihood estimation and starship
method

R> fun.comp.moments.ml(obj.fitl.ml, junk)

$r.mat

DATA ML RPRS ML RMFMKL ML  STAR ML
mean 1.7583304 1.7607691 1.7590855 1.7639115
variance 0.3800741 0.3779583 0.3784118 0.4029118
skewness 0.2766219 0.2254039 0.2152840 0.5060725
kurtosis 2.7230887 2.6243629 2.7238032 3.5589265

$eval .mat
RPRS ML RMFMKL ML STAR ML
0.15449838 0.06446981 1.09370711

Lastly, the KS resample test on the resulting fit confirms these GAD fits are satisfactory.
R> fun.diag2(obj.fit1.ml, junk, 1000)

rs fmkl star
[1, ] 952 944 963
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Figure 3: Quantile plots for GAD fits on the junk data using maximum likelihood estimation
and starship method

The above distributional fits use the sobol sequence, however, it is possible to use other low
discrepancy number generator such as QUnif or runif.halton to see if better solutions can
be found. The syntax for running these procedures are shown below.

409, fmkl.leap = 409, FUN = "QUnif")
3, fmkl.leap = 3, FUN = "runif.halton")

R> fun.data.fit.ml(junk, rs.leap
R> fun.data.fit.ml(junk, rs.leap

Fitting mizture distributions

Due to the versatile and rich shapes of the GADs, they are particularly suited for mixture
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modeling as they eliminate the need to choose between a wide range of different distributions
on the same data set. To illustrate the partition maximum likelihood and the maximum
likelihood estimation, the Old faithful data faithful is used for illustration.

To fit the first column of the faithful data using mixtures of RS and FMKL distributions,
the functions fun.auto.bimodal.ml and fun.auto.bimodal.pml automate the mixture fit-
ting procedure. The resulting fits are shown in Figure 4. The quantile plots are given by
the qgplot.gld.bi function. In this case, the partition maximum likelihood method has
minimum and maximum values beyond the range of the data set, hence the two out of place
values from the straight line in the lower bottom qq plot of Figure 4.

R> par(mfrow = c(2, 3))

R> junk <- fun.auto.bimodal.ml(faithfull[,1], per.of.mix = 0.01,

+ clustering.m = clara, initl.sel = "rprs", init2.sel = "rmfmkl",

+ initl = ¢(-1.5, 1.5), init2 = ¢(-0.25, 1.5), leapl = 3, leap2 = 3)
R> fun.plot.fit.bm(nclass = 50, fit.obj = junk, data = faithfull[,1],
+ name = "Maximum likelihood using", xlab = "faithfull",

+ param.vec = c("rs", "fmk1l"))

R> qgplot.gld.bi(faithful[,1], junk$par, paraml = "rs", param2
+ name = "\n Maximum likelihood", range = c(0.001, 0.999))

R> qgplot.gld.bi(faithful[,1], junk$par, paraml = "rs", param2 = "fmkl",
+ name = "\n Maximum likelihood", type = "str.qgplot",

+ range = c(0.001, 0.999))

R> junk <- fun.auto.bimodal.pml(faithfull[,1], clustering.m = clara,

+ initl.sel = "rprs", init2.sel = "rmfmkl", initl = c(-1.5, 1.5),

+ init2 = ¢(-0.25, 1.5), leapl = 3, leap2 = 3)

R> fun.plot.fit.bm(nclass = 50, fit.obj = junk, data = faithfull[,1],

+ name = "Partition maximum likelihood using", xlab = "faithfull",

+ param.vec = c("rs", "fmk1l"))

R> qgplot.gld.bi(faithful[,1], junk$par, paraml = "rs", param2
+ name = "\n Partition Maximum likelihood")

R> qgplot.gld.bi(faithful[,1], junk$par, paraml = "rs", param2 = "fmkl",
+ name = "\n Partition Maximum likelihood", type = "str.qgplot")

”fmkl n ,

”fmkl n ,

Similarly, it is possible to compare the theoretical moments and do the KS resample test. It
is also possible to use different low discrepancy quasi random numbers in the initial value
search process. The following examples illustrate how these are done in GLDEX.

The fit begins by using the sobol sequence generator for the first distribution fit and the
halton sequence for the second distribution fit and selects both distributions to be FMKL
GM\D.

R> fitl <- fun.auto.bimodal.ml(faithfull[,1], initl.sel = "rmfmkl",
+ init2.sel = "rmfmkl", initl = ¢(-0.25, 1.5), init2 = c¢(-0.25, 1.5),
+ leapl = 3, leap2 = 3, funl = "runif.sobol", fun2 = "runif.halton")

After fitting the distribution, a very adequate fit can be observed by running the resample
KS test.

13
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Figure 4: The GAD mixture fits on the faithful[,1] data using the maximum likelihood
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and partition maximum likelihood methods

R> fun.diag.ks.g.bimodal (fiti1$par[1:4], fiti$par[5:8],

+ propl = fiti$par[9], data

+ param2 = "fmkl")

[1] 945

Theoretical

Theoretical

Quantile plot for
Maximum likelihood

30 35 40 45 50

25

2.0

15

Data

Quantile plot for
Partition Maximum likelihood

10

faithfull[,1], paraml = "fmkl",

Then evaluate the theoretical moments of the distribution fit and compare them with the
empirical moments from the data set. The result suggests there is a very good agreement.

R> fun.theo.bi.mv.gld(fit1$par[1], fitl$par[2], fiti$par[3],
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+ fiti1$par[4], "fmkl", fitl$par[5], fitil$par([6], fiti1$par[7],
+ fiti1$par[8], "fmkl", fitl$par[9])

mean variance skewness kurtosis
3.4903990 1.3013733 -0.4281729 1.4899611

R> unlist(fun.moments(faithfull[,1]))

al a2 a3 a4
3.4877831 1.2979389 -0.4158410 1.4993996

3.3. Limitations

The methods provided in GLDEX have been tested against a number of empirical data and

the following limitations are acknowledged:

1. Initial value searching method using percentiles with RS GAD fails.

This error usually arises when the number of observations is low (< 10) and the per-
centiles do not exist for a data set. This is not a serious error as it rarely happens when
the sample size is large. Also, the initial value searching method using the method of
moment with FMKL GAD can always be used when the percentile method fails.

. Different quasi random numbers result in different GAD parameters.
This problem relates to the convergence of numerical methods (Lakhany and Massuer
2000) and highlights the importance of running the fitting algorithm using different low
discrepancy quasi random numbers (QUnif, runif.sobol and runif.halton) before
determining the best fit. GLDEX provides these alternative ways to generate initial
values thus reducing the convergence problem of numerical methods.

. Slow.

The fitting algorithms provided in GLDEX can be slow if the data set is > 1000. Future
research in this area involving narrowing the possible range of parameter values under
a given data set may eliminate some of the search algorithm used in GLDEX and speed
up the fitting algorithms.

4. Conclusion

This paper illustrates that several fitting algorithms can be used to fit GAD to data. When
GAD was first introduced in the 20th century it received relatively little attention since
computing power was limited. With the increased computing power today, it is now possible
to fit these distributions with reasonable ease. With this development, statistical techniques
can be tailored to a given data set rather than having to analyze data based on transforming
the data into mean and relying on normality. It is hoped that this paper and the software
module provided will increase the use of GAD among statisticians and encourage more research
on its practical use.

15



16 GLDEX: Fitting Generalized Lambda Distributions in R

Acknowledgments

The author is grateful to Lillias Nairn and Roma Kewani for their proof reading and encour-
agement.

References

Freedman D, Diaconis P (1981). “On the Histogram as a Density Estimator: L2 Theory.”
Zeitschrift fir Wahrscheinlichkeitstheorie und verwandte Gebiete, 57, 453-476.

Freimer M, Mudholkar G, Kollia G, Lin C (1988). “A Study of the Generalised Tukey Lambda
Family.” Communications in Statistics — Theory and Methods, 17, 3547-3567.

Hastings JC, Mosteller F, Tukey J, Windsor C (1947). “Low Moments for Small Samples: A
Comparative Study of Order Statistics.” The Annals of Statistics, 18, 413-426.

Karian Z, Dudewicz E (2000). Fitting Statistical Distributions: The Generalized Lambda
Distribution and Generalised Bootstrap Methods. Chapman and Hall, New York.

Karian Z, Dudewicz E, McDonald P (1996). “The Extended Generalized Lambda Distribution
Systems for Fitting Distributions to Data: History, Completion of Theory, Tables, Appli-
cations, the "Final Word” on Moment Fits.” Communications in Statistics — Computation
and Simulation, 25(3), 611-642.

Kaufman L, Rousseeuw PJ (1990). Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley, New York.

King R (2007). gld: Estimation and Use of the Generalised (Tukey) Lambda Distribution. R
package version 1.8.3, URL http://CRAN.R-project.org/.

King R, MacGillivray H (1999). “A Starship Estimation Method for the Generalised Lambda
Distributions.” Australia and New Zealand Journal of Statistics, 41(3), 353-374.

Lakhany A, Massuer H (2000). “Estimating the Parameters of the Generalised Lambda
Distribution.” Algo Research Quarterly, pp. 47-58.

Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2007). “cluster: Cluster Analysis
Basics and Extensions.” R package version 1.11.9, URL http://CRAN.R-project.org/.

Ramberg J, Schmeiser B (1974). “An Approximate Method for Generating Asymmetric Ran-
dom Variables.” Communications of the Association for Computing Machinery, 17, 78-82.

R Development Core Team (2007). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//www.R-project.org/.

Scott DW (1979). “On Optimal and Data-based Histograms.” Biometrika, 66, 605-610.

Su S (2005). “A Discretized Approach to Flexibly Fit Generalized Lambda Distributions to
Data.” Journal of Modern Applied Statistical Methods, 4(2), 408-424.


http://CRAN.R-project.org/
http://CRAN.R-project.org/
http://www.R-project.org/
http://www.R-project.org/

Journal of Statistical Software 17

Su S (2006). “Maximum Log Likelihood Estimation Using EM Algorithm and Partition
Maximum Log Likelihood Estimation for Mixtures of Generalized Lambda Distributions.”
Working paper.

Su S (2007a). “Numerical Maximum Log Likelihood Estimation for Generalized Lambda
Distributions.” Computational Statistics € Data Analysis, 51, 3983-3998.

Su S (2007b). GLDEX: Fitting Single and Mixzture of Generalized Lambda Distributions (RS
and FMKL) Using Discretized and Mazimum Likelihood Methods. R package version 1.0.1,
URL http://CRAN.R-project.org/.

Affiliation:

Steve Su

The George Institute for International Health
Affiliated with University of Sydney

PO Box M201, Missenden Road NSW 2050, Australia
E-mail: allegro.su@gmail.com

URL: http://www.georgeinstitute.org/

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/
Volume 21, Issue 9 Submitted: 2006-11-07

October 2007 Accepted: 2007-09-15



http://CRAN.R-project.org/
mailto:allegro.su@gmail.com
http://www.georgeinstitute.org/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Background
	Generalized lambda distributions
	Fitting generalized lambda distributions to data
	Discretized and maximum likelihood estimation for single generalized lambda distribution fit
	Fitting mixture of two generalized lambda distributions: Partition maximum likelihood and EM algorithm

	Assessing the quality of fit

	Using GLDEX in R
	Installation
	Examples using GLDEX
	Single distribution fit
	Fitting mixture distributions

	Limitations

	Conclusion

