
JSS Journal of Statistical Software
January 2008, Volume 23, Issue 10. http://www.jstatsoft.org/

yaImpute: An R Package for kNN Imputation

Nicholas L. Crookston
USDA Forest Service

Andrew O. Finley
Michigan State University

Abstract

This article introduces yaImpute, an R package for nearest neighbor search and impu-
tation. Although nearest neighbor imputation is used in a host of disciplines, the methods
implemented in the yaImpute package are tailored to imputation-based forest attribute
estimation and mapping. The impetus to writing the yaImpute is a growing interest in
nearest neighbor imputation methods for spatially explicit forest inventory, and a need
within this research community for software that facilitates comparison among differ-
ent nearest neighbor search algorithms and subsequent imputation techniques. yaImpute
provides directives for defining the search space, subsequent distance calculation, and im-
putation rules for a given number of nearest neighbors. Further, the package offers a suite
of diagnostics for comparison among results generated from different imputation analyses
and a set of functions for mapping imputation results.

Keywords: multivariate, imputation, Mahalanobis, random forests, correspondence analysis,
canonical correlation, independent component analysis, most similar neighbor, gradient near-
est neighbor, mapping predictions.

1. Introduction

Natural resource managers and policymakers rely on spatially explicit forest attribute maps
to guide forest management decisions. These maps depict the landscape as a collection of
areal units. Each unit, or stand, delineates a portion of forest that exhibits similar attribute
values (e.g., species composition, vegetation structure, age, timber volume, etc.). Collecting
field-based forest measurements of these variables of interest is very expensive and this cost
precludes exhaustive stand-level inventory across an entire landscape. Rather, to produce the
desired maps, practitioners can use k-nearest neighbor (kNN) imputation which exploits the
association between inexpensive auxiliary variables that are measured on all stands and the
variables of interest measured on a subset of stands.

The basic data consist of a set of n reference points, [pi]ni=1, strictly defined in real d-

http://www.jstatsoft.org/

2 yaImpute: An R Package for kNN Imputation

dimensional space, S ⊂ Rd, and a set of m target points [qj]mj=1 ∈ Rd. A coordinate vector,
X, of length d is associated with each point in the reference and target sets (i.e., auxiliary
variables define points’ coodinates). The Y vector of forest attributes of interest is associated
with points in the reference set and holds values to be imputed to each target point q. The
basic task is to find the subset of k reference points within S that have minimum distance
to a given q, where distance is a function of the respective coordinate vectors X. Then,
given this set of k nearest reference points, impute the vector of Y to q. When k = 1 the Y
associated with the nearest p is assigned to q, but if k > 1 other rules are used. Note that
imputation described here is different than the common imputation approach used in missing
data problems, that is, when some p, q, or both, have missing X values. Here, missing values
of X are not allowed in the target or reference set and missing values of Y are not allowed in
the reference set.

Qualities of the kNN method make it an attractive tool for forest attribute estimation and
mapping (Holmström and Fransson 2003). These qualities include multivariate imputation,
preservation of much of the covariance structure among the variables that define the Y and X
vectors (e.g., Moeur and Stage 1995; Tomppo 1990), and relaxed assumptions regarding nor-
mality and homoscedasticity that are typically required by parametric estimators. There are
several popular variants of the kNN method. The basic method, within the forest attribute
imputation context, is described by Tomppo (1990), McRoberts, Nelson, and Wendt (2002),
and Franco-Lopez, Ek, and Bauer (2001). Others include most similar neighbor (MSN, Moeur
and Stage 1995) and gradient nearest neighbor (GNN, Ohmann and Gregory 2002). All of
these methods define nearness in terms of weighted Euclidean distance. The principal dis-
tinction is how the d-dimensional search space is constructed (i.e., how the weight matrix is
defined). In addition to implementing these and other popular weighted Euclidean distance
based methods, the yaImpute package offers a novel nearest neighbor distance metric based
on the random forest proximity matrix (Breiman 2001). The package written in R (R De-
velopment Core Team 2007) and is available from the Comprehensive R Archive Network at
http://CRAN.R-project.org/.

The remainder of the article is as follows. Section 2 details the various approaches used
for defining nearness within the search space, offers several diagnostics useful for comparing
imputation results, and describes the efficient nearest neighbor search algorithm use within
yaImpute. Section 3 outlines functions available within yaImpute. Section 4 provides two
example analyses. Finally, Section 5 provides a brief summary and future direction.

2. Methods

2.1. Measures of nearness

yaImpute offers several methods for finding nearest neighbors. For all methods, except those
based on a random forest proximity matrix discussed below, nearness is defined using weighted
Euclidean distance, dist(p, q,W) = [(p − q)T W(p − q)]1/2, where W is the weight matrix.
Table 1 defines the weight matrices for the given methods. The key words in the first column
of Table 1 are used as function directives within the yaImpute package. The method raw
bases distance on the untransformed, or raw, values of the X variables, whereas, euclidean
uses normalized X variables to define distance. The method mahalanobis transforms the

http://CRAN.R-project.org/

Journal of Statistical Software 3

Method Value of W
raw Identity matrix, I

euclidean Inverse of the direct sum of the X’s covariance matrix.
mahalanobis Inverse of the X’s covariance matrix.

ica KΩT KΩ, where Ω and K correspond to W and K definitions
given in the fastICA R package.

msn ΓΛ2ΓT , where Γ is the matrix of canonical vectors correspond-
ing to the X’s found by canonical correlation analysis between
X and Y , and Λ is the canonical correlation matrix.

msn2 ΓΛ(I−Λ2)− 1ΛΓT .
gnn Θ, weights assigned to environmental data in canonical corre-

sponence analysis.
randomForest No weight matrix.

Table 1: Summary of how W is computed.

search space by the inverse of the covariance matrix of the X variables, prior to computing
distances. Method ica computes distance in a space defined using Independent Component
Analysis calculated by the fastICA function in the R package fastICA (see Marchini, Heaton,
and Ripley 2007, for details). For methods msn and msn2, (see e.g., Moeur and Stage 1995;
Crookston, Moeur, and Renner 2002), distance is computed in projected canonical space,
and with method gnn distance is computed using a projected ordination of Xs found using
Canonical Correspondence Analysis. For the last method listed in Table 1, randomForest,
observations are considered similar if they tend to end up in the same terminal nodes in a
suitably constructed collection of classification and regression trees (see e.g., Breiman 2001;
Liaw and Wiener 2002, for details). The distance measure is one minus the proportion of trees
where a target observation is in the same terminal node as a reference observation. Similarly
to the other methods, kNNs are the k minimum of these distances. There are two notable
advantages of method randomForest, it is non-parametric, and the variables can be a mixture
of continuous and categorical variables. The other methods require continuous variables to
define the search space axes. A third advantage is that the data can be rank-deficient, having
many more variables than observations, colinearities, or both.

For methods msn and msn2, a question arises as to the number of canonical vectors to use in the
calculations. One option is for the user to set this number and indeed that can be done in this
package. Another option is to find those canonical vectors that are significantly greater than
zero and use them all. Rao (1973) defines an approximate F-statistic for testing the hypothesis
that the current and all smaller canonical correlations are zero in the population. Gittins
(1985) notes that Λ2 varies in the range from zero to one and if the F-statistic is sufficiently
small the conclusion is drawn that the X- and Y -variables are linearly dependent. It turns
out that if the first row is linearly dependent, we can test the second, as it is independent
of the first. If the second F-statistic is significantly small we conclude that the X- and Y -
variables are linearly dependent in a second canonical dimension. The tests proceed for all
non-zero canonical coefficients until it fails, signifying that the number of correlations that
are non-zero in the population corresponds to the last coefficient that past the test. The test
requires a user specified p-value, which is commonly set as 0.05.

4 yaImpute: An R Package for kNN Imputation

For method randomForest a distance measure based on the proximity matrix is used (Breiman
2001). This matrix has a row and column for every observation (all reference plus target
observations). The elements contain the proportion of trees where observations are found in
the same terminal nodes. Since every observation is in the same terminal node as itself, the
diagonal elements of this matrix have the value 1. Breiman (2001) shows that the proximities
are a kind of Euclidean distance between observations and uses them as a basis for imputing
missing values to observations.

Note that the random forest proximity matrix is often too large to store in main memory.
Therefore, the yaImpute code stores a much smaller matrix called the nodes matrix. This
matrix is n × ntree where ntree is the number of trees, rather than n × n for the proximity
matrix. The elements of this matrix are terminal node identifications. In yaImpute, the node
matrix is partitioned into two matrices, one each for the reference and target observations.
When finding the k nearest neighbors, only the necessary proximities are computed and used
when needed thereby avoiding the allocation of the potentially prohibitorly large matrix.

The random forests algorithm implemented in the R package randomForest can currently
be used to solve unsupervised classification (no Y -variable), regression on a single Y , and
classification on a single Y so long the number of levels is 32 or less (Liaw and Wiener 2002).

In yaImpute we have extended the randomForest package to serve our needs, as follows. First,
in unsupervised classification the idea of making a prediction for a value for Y is nonsense
and therefore not allowed. In yaImpute, however, we forced the randomForest to make a
prediction only because we want to save the nodes matrix that results from attempting a
prediction. Second, we devised an experimental way to handle multivariate Y s. The method
is to build a separate forest for each Y and then join the nodes matrices of each forest. The
forests are each conditioned to reduce the error for a given Y and the proximities reflect
choosing X-variables and split points that best accomplish that goal. If two or more Y -
variables are used, the joint proximities reflect the joint set of X-variables and split points
found to achieve the multiple goals. Since some Y -variables may be more important than
others, users are allowed to specify a different number of trees in the forests corresponding to
each Y -variable.

2.2. Diagnostics

There is a great need to develop techniques useful for diagnosing whether or not a given
application of imputation is satisfactory for a specific purpose, or whether one method of
computing distance results in better results than another. yaImpute includes functions to
plot results from a given run, compute root mean square differences, compare these differences
and plot them, and so on. It also provides the function errorStats to compute the statistics
proposed by Stage and Crookston (2007).

The package includes a function to compute the correlations between observed and imputed
(function cor.yai) even though we do not believe correlation should be used, preferring root
mean square difference (function rmsd.yai). Following Warren (1971), we recommend against
using correlation as a measure of the degree of association between observed and imputed val-
ues because correlation is dependent on the sample distribution along the scale of X-variables
while root mean square difference (rmsd) and standard error of imputation (SSI, see Stage
and Crookston (2007) and function errorStats) are not biased by distribution of the sample.
Furthermore, correlation is usually viewed as measuring the degree of association between two

Journal of Statistical Software 5

variables, say one X with one Y . When used to measure association in imputation, it is used
to measure the degree of association between paired observations of a single Y . While this
may be an interesting statistic, it is easy to forget that it does not have the same statistical
properties as those attributed to the relationship between the population attribute ρ and its
sample estimate r.

In regression, R2 is used to measure the degree of association between a predicted value of
a given variable and an observed value. As the regression function gets closer to the true
relationship, the value of R2 approaches 1. Lets say that we have a perfectly true regression,
y = f(X). If we used this formula in a nearest neighbor-style imputation, we would not
be imputing the predicted value of y (its perfect estimate), we would be imputing a value
of y measured on a second (nearby) sample from the population. If every member of the
population has a different value of y, the correlation between observed an imputed would
never be perfect, even if the regression used to order samples near each other were a perfect
predictor, and if the sample were actually a complete census!

Because imputated values include different components of error than those estimated using
regression, Stage and Crookston (2007) exchanged the word error with difference in defining
root mean square difference (rmsd). In the case described above, rmse will approach zero as
the regression approaches the true function, but rmsd can never be zero.

Another useful diagnostic is to identify notably distant target observations (function
notablyDistant). These are observations that are farther from the closest reference ob-
servation than is typical of distances between references. The cause may be that they are
outside the range of variation of the references or because they fall in large gaps between
references. Given a threshold distance, it is a simple job to identify the notably distant target
observations. The question then becomes, what is a reasonable threshold distance?

For all the distance methods except randomForest, we assume that the distribution of dis-
tances among randomly sampled references follows a lognormal distribution. The justification
for using the lognormal is that distances (d) are constrained by zero (0 ≤ d < ∞) and have
few large values in practice. Following that assumption, a threshold is defined as the value of
d corresponding to the fraction of distances that account for the p proportion of the properly
parameterized lognormal probability density function. When randomForest is used, the dis-
tribution of distances is assumed to follow the Beta distribution as 0 ≤ d ≤ 1. We used the
formulas provided by Evans, Hastings, and Peacock (1997) for estimating the parameters of
these distributions. Alternatively, users may specify the threshold, perhaps by inspecting the
frequency distribution and choosing the threshold visually. This alternative enables user’s to
use the notablyDistant function without using our distributional assumptions.

Our experience using this diagnostic tool with earlier implementations of method msn (Crook-
ston et al. 2002) proved quite valuable in pointing out to users that forest types existed in their
target data with no representative samples in the reference data. This situation prompted
additional field sampling to correct the situation. A paradox emerged when the additional
references were added to the analysis. That is, the threshold values of d would decrease when
they were computed using the lognormal distribution assumption outlined above, resulting in
more, rather than fewer notably distant neighbors being identified. When the threshold was
held constant between analyses made with and without the augmented reference data sets,
an improvement due to adding reference data was evident.

6 yaImpute: An R Package for kNN Imputation

2.3. Efficient nearest neighbor search

For any given target observation (point), the n distance calculations and subsequent distance
vector sort are computationally demanding steps in the nearest neighbor brute force solution.
Specifically, the complexity of the brute force solution increases linearly as a function of the
product of d and n (i.e., with complexity on the order of dn, O(dn), assuming the distance
between points can be calculated in O(d) time). This computational burden makes kNN
model parameterization and imputation over a large set of targets very time-consuming and
therefore represents a substantial disadvantage of the kNN technique.

Several methods have been proposed to improve nearest neighbor search efficiency (see e.g.,
literature on partial codebook search algorithms Cheng and Lo 1996; Ra and Kim 1993, and
references therein). These methods, however, provide only modest improvements in search ef-
ficiency, especially within the context of kNN mapping of forest attributes (Finley, McRoberts,
and Ek 2006). Finley and McRoberts (2008) found that kd-tree data structures and asso-
ciated exact and approximate search algorithms (see e.g., Friedman, Bentley, and Finkel
1977; Sproull 1991; Arya, Mount, Netanyahu, Silverman, and Wu 1998) provide substantial
gain in search efficiency over conventional search algorithms. For kd-tree construction and
subsequent efficient nearest neighbor searches, the high-level R functions within the yaImpute
call low-level C++ routines in the approximate nearest neighbor (ANN) library written by
Mount (1998).

3. Package contents

Functions used to find neighbors, output results, and do the imputations:

yai finds kNNs given reference and, optionally, target observations. This function is the
main function in the package it returns an object of class yai, described below. A key
role played in this function is to separate the observations into reference and target
observations. Target observations are those with values for X variables and not for Y
variables, while reference observations are those with no missing values for X and Y
variables.

ann provides access to approximate nearest neighbor search routines and is called by yai and
newtargets (see below).

impute or impute.yai takes an imputation (object class yai) and an optional list of vari-
ables and returns a data frame of imputed values for specified variables. Observed values
can be requested. In addition, new variables for reference, target, or both observations,
are made for these variables using the neighbor relationships found using function yai.

foruse takes an imputation (object class yai) and returns a data frame with 2 columns.
Row names are target observation identifications, the first column is the row name of
the reference observations used to represent it, and the second column is the distance
between the reference and target observations.

newtargets takes an imputation (object class yai) and a data frame of X-variables for new
target observations and finds references for these new observations. A new yai object
is returned.

Journal of Statistical Software 7

Functions used to build maps:

AsciiGridImpute finds nearest neighbor reference observation for each grid point in the input
grid maps and outputs maps of selected Y -variables (or other data) in a set of output
grid maps.

AsciiGridPredict provides an interface to AsciiGridImpute designed for use with models
built using tools other than yai.

Functions used to display and evaluate results.

compare.yai takes several imputations (see yai and impute.yai) and provides a convenient
display of the root mean square differences (see rmsd.yai) between observed and im-
puted values. Each column for the returned data frame corresponds to an imputation
method and each row corresponds to a variable.

cor.yai takes an imputation object and computes the correlations between observed and
imputed values. We do not believe correlation should be used to compare evaluate im-
putation results but decided to include this function because many people use correlation
and this forum gives us an opportunity to present our position.

errorStats computes error statistics as proposed by Stage and Crookston (2007).

mostused returns a list of the most frequently used reference observations.

notablyDistant finds the target observations with relatively large distances from the closest
reference observation. A threshold is used to detect large distances is either specified or
the function computes a suitable one.

plot.yai provides a matrix of plots of observed verses imputed for variables in an object
created by impute.yai.

plot.compare.yai provides an informative plot of the data frame created from compare.yai.

print.yai outputs a summary of yai object (see below).

rmsd.yai takes an imputation object (see yai and impute.yai) and computes the root mean
square difference between observed and imputed values.

Functions that directly support the use of randomForest:

yaiRFsummary builds summary data for method randomForest.

yaiVarImp outputs (optionally plots) importance scores for method randomForest.

whatsMax finds the column that has the maximum value for each row, returns a data frame
with two columns. The first is the column name corresponding to the maximum and
the second is the maximum value.

Miscellaneous functions:

8 yaImpute: An R Package for kNN Imputation

unionDataJoin takes several data frames, matrices, or any combination, and creates a data
frame that has the rows defined by a union of all row names in the arguments and
columns defined by a union of all column names in the arguments. The data are loaded
into this new frame where column and row names match the individual inputs. Dupli-
cates are tolerated with the last one specified being the one kept. NAs are returned for
combinations of rows and columns where no data exist. A warning is issued when a
column name is found in more than one data source.

vars takes an imputation object (see yai) and returns a list of X-variables by calling function
xvars and a list of Y -variables by calling function yvars.

Data:

TallyLake is data from Tally Lake Ranger District, Flathead National Forest, Montana, USA
Stage and Crookston (2007).

MoscowMtStJoe is data from the Moscow Mountain area and the St. Joe Woodlands, north-
east of Moscow, Idaho, USA (Hudak, Crookston, Evans, Falkowski, Smith, Gessler, and
Morgan 2006).

Classes:

yai is a list returned by function yai that contains elements as listed in the manual entry
for the package. Of special note here are 2 pairs of data frames: neiDstTrgs holds the
distances between a target observations (identified by row names) and the k reference
observations (there are k columns) and neiIdsTrgs is a corresponding data frame of
target identifications. neiDstRefs and neiIdsRefs are counterparts for references.

impute.yai is a data frame of imputed values. The row names are target observation identi-
fications and the columns are variables (X-variables, Y -variables, both, or new variables
(ancillary data) supplied in the call to impute.yai). When observed values are included,
additional variables are included that have .o appended as a suffix to the original name.
An attribute is attached with the scaling factors for each variable that is used in com-
puting scaled rmsd.

compare.yai is a data frame of root mean square differences (scaled) values. Rows are
variables and columns correspond to each imputation result passed as arguments.

4. Examples

4.1. Iris data

The famous iris data described by Anderson (1935) is used in a simple example. This data
includes 5 attributes measured on 150 observations. For this example, we will pretend that
Sepal.Length, Sepal.Width, and Petal.Length, are measured on all observations, and are
therefore our X-variables, while Petal.Width and Species are measured on a subset and
are our Y -variables. The random number seed is set so that you will get the same results as
displayed here if you choose to run the example.

Journal of Statistical Software 9

Figure 1: Output from running the plot command on the object generated with the simple
code.

R> library("yaImpute")
R> data("iris")
R> set.seed(1)
R> refs = sample(rownames(iris), 50)
R> x <- iris[, 1:3]
R> y <- iris[refs, 4:5]

Two basic steps are taken for a complete imputation. The first step is to find the neigh-
bors relationships (function yai) and the second is to actually do the imputations (function
impute). The yaImpute plot function automatically calls impute and then provides a plot
of observed over imputed for the reference observations, where a reference observation other
than itself is used as a near neighbor (Figure 1).

R> Mahalanobis <- yai(x = x, y = y, method = "mahalanobis")
R> plot(Mahalanobis)

To see the entire list of imputations (including those for the target observations), the impute
function is used alone. The reference observations appear in the result first, and the targets
at the end of the result. Note that NAs are returned for the “observed” values (variable names
with a .o appended) for target observations (details on options controlling the behavior of the
impute function are provided in the manual pages).

R> head(impute(Mahalanobis))

Petal.Width Petal.Width.o Species Species.o
40 0.2 0.2 setosa setosa

10 yaImpute: An R Package for kNN Imputation

56 1.2 1.3 versicolor versicolor
85 1.3 1.5 versicolor versicolor
134 1.6 1.5 versicolor virginica
30 0.2 0.2 setosa setosa
131 2.2 1.9 virginica virginica

R> tail(impute(Mahalanobis))

Petal.Width Petal.Width.o Species Species.o
144 2.2 NA virginica <NA>
145 2.4 NA virginica <NA>
146 2.0 NA virginica <NA>
147 1.6 NA versicolor <NA>
149 2.4 NA virginica <NA>
150 1.8 NA versicolor <NA>

4.2. Forest inventory data

To further illustrate the tools in yaImpute we present a preliminary analysis of the Moscow
Mountain St. Joe Woodlands (Idaho, USA) data, originally published by Hudak et al. (2006).
The analysis is broken into two major steps. First, the reference observations are analyzed
using several different methods, the results compared, and a model (method) is selected.
Second, imputations are made using ASCII grid map data as input and the maps are displayed.
Note that these data are actively being analyzed by the research team that collected the data
and this example is not intended to be a final result.

We start by building x and y data frames and running four alternative methods.

R> data("MoscowMtStJoe")
R> x <- MoscowMtStJoe[, c("EASTING", "NORTHING", "ELEVMEAN",
+ "SLPMEAN", "ASPMEAN", "INTMEAN", "HTMEAN", "CCMEAN")]
R> x[, 5] <- (1 - cos((x[, 5] - 30) * pi/180))/2
R> names(x)[5] = "TrASP"
R> y <- MoscowMtStJoe[, c(1, 9, 12, 14, 18)]
R> mal <- yai(x = x, y = y, method = "mahalanobis")
R> msn <- yai(x = x, y = y, method = "msn")
R> gnn <- yai(x = x, y = y, method = "gnn")
R> ica <- yai(x = x, y = y, method = "ica")

Method randomForest works best when there are few variables and when factors are used
rather than continuous variables. The whatsMax function is used to create a data frame of
containing a list of the species of maximum basal area, and two other related variables.

R> y2 <- cbind(whatsMax(y[, 1:4]), y[, 5])
R> names(y2) <- c("MajorSpecies", "BasalAreaMajorSp", "TotalBA")
R> rf <- yai(x = x, y = y2, method = "randomForest")
R> head(y2)

Journal of Statistical Software 11

Figure 2: Plot of the yai object generated with method=randomForest.

MajorSpecies BasalAreaMajorSp TotalBA
1 PSME_BA 47.716568 47.941832
2 ABGR_BA 20.904731 59.307392
3 zero 0.000000 77.123193
4 ABGR_BA 2.079060 3.740631
5 ABGR_BA 22.814781 67.938562
6 THPL_BA 11.129221 32.982188

R> levels(y2$MajorSpecies)

[1] "ABGR_BA" "PIPO_BA" "PSME_BA" "THPL_BA" "zero"

The plot command is used to plot the observed over imputed values for the variables used
in the randomForest result (Figure 2).

R> plot(rf, vars = yvars(rf))

However, the variables used to build this result are not those that are of interest. To make the
ultimate comparison, the original Y -variables are imputed using the neighbor relationships in
object rf, and then a comparison is built and plotted (Figure 3) for all the methods:

12 yaImpute: An R Package for kNN Imputation

Figure 3: Comparison of the scaled rmsd for each method. Most of the values for method
rfImp (imputed Y -variables build using method randomForest) are below the 1:1 line indi-
cating that they are generally lower than those for other methods.

R> rfImp <- impute(rf, ancillaryData = y)
R> rmsd <- compare.yai(mal, msn, gnn, rfImp, ica)
R> apply(rmsd, 2, mean, na.rm = TRUE)

mal.rmsdS msn.rmsdS gnn.rmsdS rfImp.rmsdS ica.rmsdS
1.205818 1.073877 1.118564 1.051907 1.119871

R> plot(rmsd)

The steps presented so far can be repeated using the data available in the package distribution.
However, the following steps require that ASCII grid maps of the X-variables be available
and they are not part of the distribution. The data are available as supplemental data to the
Web page for this article (http://www.jstatsoft.org/v23/i10/).

The following commands are used to create the input arguments for function AsciiGridImpute
to build output maps of the imputed values. Note that object rf was built using data trans-

http://www.jstatsoft.org/v23/i10/

Journal of Statistical Software 13

Figure 4: Grid maps of two of the predictor variables.

formed from that in the original set of Y -variables. Therefore, the original y data frame is
passed to function AsciiGridImpute as ancillary data.

R> xfiles <- list(CCMEAN = "canopy.asc", ELEVMEAN = "dem.asc",
+ HTMEAN = "heights.asc", INTMEAN = "intense.asc",
+ SLPMEAN = "slope.asc", TrASP = "trasp.asc", EASTING = "utme.asc",
+ NORTHING = "utmn.asc")
R> outfiles <- list(ABGR_BA = "rf_abgr.asc", PIPO_BA = "rf_pipo.asc",
+ PSME_BA = "rf_psme.asc", THPL_BA = "rf_thpl.asc",
+ Total_BA = "rf_totBA.asc")
R> AsciiGridImpute(rf, xfiles, outfiles, ancillaryData = y)

The R package sp by Pebesma and Bivand (2005) contains functions designed to read and
manipulate ASCII grid data and are used to plot part of the total image of example X- and
Y -variables (Figures 4 and 5).

R> library("sp")
R> canopy <- read.asciigrid("canopy.asc")[100:450, 400:700]
R> TrAsp <- read.asciigrid("trasp.asc")[100:450, 400:700]
R> par(mfcol = c(1, 2), plt = c(0.05, 0.95, 0.05, 0.85))
R> image(canopy, col = hcl(h = 140, l = seq(100, 0, -10)))
R> title("LiDAR mean canopy cover")
R> image(TrAsp, col = hcl(h = 140, l = seq(100, 0, -10)))
R> title("Transformed aspect")

R> totBA <- read.asciigrid("rf_totBA.asc")[100:450, 400:700]
R> psme <- read.asciigrid("rf_psme.asc")[100:450, 400:700]
R> par(mfcol = c(1, 2), plt = c(0.05, 0.95, 0.05, 0.85))
R> image(totBA, col = hcl(h = 140, l = seq(100, 0, -10)))

14 yaImpute: An R Package for kNN Imputation

Figure 5: Maps of the total basal area and one of four species. Note that any variable that
is known for the reference observations can be imputed.

R> title("Total basal area")
R> image(psme, col = hcl(h = 140, l = seq(100, 0, -10)))
R> title("Douglas fir basal area")

5. Summary

Package yaImpute was built to provide an integrated set of tools designed to meet specific
challenges in forestry. It provides alternative methods for finding neighbors, integrates a fast
search method, and introduces a novel and experimental application of randomForest. A
function for computing the error statistics suggested by Stage and Crookston (2007) is also
included. We anticipate that progress in this field will continue, particularly in the area of
discovering better X-variables and transformations improving the essential requirements for
applying these methods: that there be a relationship between the X- and Y -variables.

Acknowledgments

The authors wish to thank Dr. Albert R. Stage for his years of council and encouragement
on this and related projects.

References

Anderson E (1935). “The Irises of the Gaspe Peninsula.” Bulletin of the American Iris Society,
59, 25.

Arya S, Mount DM, Netanyahu NS, Silverman R, Wu A (1998). “An Optimal Algorithm for
Approximate Nearest Neighbor Searching.” Journal of the ACM, 45, 891–923.

Journal of Statistical Software 15

Breiman L (2001). “Random Forests.” Machine Learning, 45(1), 5–32.

Cheng SM, Lo KT (1996). “Fast Clustering Process for Vector Quantisation Codebook De-
sign.” Electronic Letters, 32(4), 311–312.

Crookston NL, Moeur M, Renner D (2002). Users Guide to the Most Similar Neigh-
bor Imputation Program Version 2. Gen. Tech. Rep. RMRS-GTR-96., US Department
of Agriculture, Forest Service, Rocky Mountain Research Station, Ogden, Utah. URL
http://www.fs.fed.us/rm/pubs/rmrs_gtr096.html.

Evans M, Hastings N, Peacock JB (1997). Statistical Distributions. John Wiley and Sons,
Inc., New York.

Finley AO, McRoberts RE (2008). “Efficient k -Nearest Neighbor Searches for Multi-Source
Forest Attribute Mapping.” Remote Sensing of Environment. In press.

Finley AO, McRoberts RE, Ek AR (2006). “Applying An Efficient k -Nearest Neighbor Search
to Forest Attribute Imputation.” Remote Sensing of Environment, 52(2), 130–135.

Franco-Lopez H, Ek AR, Bauer ME (2001). “Estimation and Mapping of Forest Stand Den-
sity, Volume, and Cover Type Using the k -Nearest Neighbor Method.” Remote Sensing of
Environment, 77, 251–274.

Friedman JH, Bentley JL, Finkel RA (1977). “An Algorithm for Finding Best Matches in
Logarithmic Expected Time.” ACM Transactions on Mathematical Software, 3(3), 209–
226.

Gittins R (1985). Canonical Analysis: A Review with Applications in Ecology. Springer-
Verlag, New York.

Holmström H, Fransson JES (2003). “Combining Remotely Sensed Optical and Radar Data
in kNN-Estimation of Forest Variables.” Forest Science, 49(3), 409–418.

Hudak AT, Crookston NL, Evans JS, Falkowski MJ, Smith AMS, Gessler PE, Morgan P
(2006). “Regression Modeling and Mapping of Coniferous Forest Basal Area and Tree
Density from Discrete-Return Lidar and Multispectral Satellite Data.” Canadian Journal
of Remote Sensing, 32(2), 126–138.

Liaw LA, Wiener M (2002). “Classification and Regression by randomForest.” R News, 2(3),
18–22. URL http://CRAN.R-project.org/doc/Rnews/.

Marchini JL, Heaton C, Ripley BD (2007). “fastICA: FastICA Algorithms to Perform ICA
and Projection Pursuit.” R package version 1.1-9, URL http://CRAN.R-project.org/.

McRoberts RE, Nelson MD, Wendt DG (2002). “Stratified Estimation of Forest Area using
Satellite Imagery, Inventory Data, and theK-Nearest Neighbor Technique.” Remote Sensing
of Environment, 82, 457–468.

Moeur M, Stage AR (1995). “Most Similar Neighbor: An Improved Sampling Inference
Procedure for Natural Resources Planning.” Forest Science, 41(2), 337–359.

Mount DM (1998). “ANN Programming Manual.” Technical report, Department of Computer
Science, University of Maryland. URL http://citeseer.ist.psu.edu/333325.html.

http://www.fs.fed.us/rm/pubs/rmrs_gtr096.html
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/
http://citeseer.ist.psu.edu/333325.html

16 yaImpute: An R Package for kNN Imputation

Ohmann JL, Gregory MJ (2002). “Predictive Mapping of Forest Composition and Structure
with Direct Gradient Analysis and Nearest Neighbor Imputation in Coastal Oregon, USA.”
Canadian Journal of Forest Research, 32, 725–741.

Pebesma EJ, Bivand RS (2005). “Classes and Methods for Spatial Data in R.” R News, 5(2),
9–13. URL http://CRAN.R-project.org/doc/Rnews/.

Ra SW, Kim JK (1993). “A Fast Mean-Distance-Ordered Partial Codebook Search Algorithm
for Image Vector Quantization.” IEEE Tranactions on Circuits and Systems, 40(9), 576–
579.

Rao CR (1973). Linear Statistical Inference. John Wiley and Sons, Inc., New York.

R Development Core Team (2007). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//www.R-project.org/.

Sproull RF (1991). “Refinements to Nearest-Neighbor Searching in K-Dimensional Trees.”
Algorithmica, 6, 579–589.

Stage AR, Crookston NL (2007). “Partitioning Error Components for Accuracy-Assessment
of Near-Neighbor Methods of Imputation.” Forest Science, 53, 62–72.

Tomppo E (1990). “Designing a Satellite Image-Aided National Forest Survey in Finland.”
In “SNS/IUFRO Workshop on the Usability of Remote Sensing for Forest Inventory and
Planning,” pp. 43–47. Umea, Sweden.

Warren WG (1971). “Correlation or Regression: Bias or Precision.” Applied Statistics, 20(2),
148–164.

Affiliation:

Nicholas L. Crookston
USDA Forest Service
Rocky Mountain Research Station
1221 South Main Street
Moscow, Idaho 83843, United States of America
E-mail: ncrookston@fs.fed.us

Andrew O. Finley
Department of Forestry and Department of Geography
Michigan State University
East Lansing, Michigan 48824-1222, United States of America
E-mail: finleya@msu.edu

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/

Volume 23, Issue 10 Submitted: 2007-06-20
January 2008 Accepted: 2007-10-10

http://CRAN.R-project.org/doc/Rnews/
http://www.R-project.org/
http://www.R-project.org/
mailto:ncrookston@fs.fed.us
mailto:finleya@msu.edu
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Methods
	Measures of nearness
	Diagnostics
	Efficient nearest neighbor search

	Package contents
	Examples
	Iris data
	Forest inventory data

	Summary

