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Abstract

Many techniques have been proposed for judging the significance of effects in un-
replicated 2F and 2*~P designs. However, relatively few methods have been proposed for
analyzing unreplicated designs with possible outliers. Outliers can be a major impediment
to valid interpretation of data from unreplicated designs. This paper presents SAS macros
which automate a manual method for detecting an outlier and performing an analysis of
data from an unreplicated 2* or 2¥~P design when an outlier is present. This method was
originally suggested by Cuthbert Daniel and is based on the normal or half normal plot of
effects. This automated version was shown in simulation studies to perform better than
other procedures proposed to do the same thing.
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1. Introduction

Motivated by the publication of books such as Statistics for Fxperimenters by Box, Hunter,
and Hunter (1978) and the development of user-friendly software, unreplicated 2k factorial and
2k=P fractional factorial experimental designs have become standard tools used in industry,
engineering, and other areas of research. These designs allow researchers to quickly identify
important factors and get to the heart of a research question. Application journals and
company documents contain ample examples of the use of these designs. Software such as
SAS ADX (SAS Institute. 2003), Minitab (Minitab Inc. 2007), Stat Graphics (StatPoint-Inc
2008), Design Ease (Stat-Ease 2008), JMP (JMP 2008), and NCSS (Hintze 2007) are typically
used to create the designs and analyze data after completion of the experiments. The most
often used run sizes in these experiments are 8, 16 or 32, and the vast majority of these
experiments are conducted by practitioners whose primary training is not in statistics.

In unreplicated 2 factorials and 2P fractional factorial designs, factorial main effects are
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calculated as the difference in the average response between the high and low coded levels of a
factor, and interaction effects are calculated as the difference in the average response between
the high and low values of products of coded factor levels. Symbolically the effects can be
written as £ = Y+ — y—, and the regression coefficients in the linear model are 5’ ) /2.
For these designs the model is saturated. There are as many coefficients in the model as
there are observations. Usually the hypothesis of effect sparsity must be assumed where only
a fraction of the effects in the model are believed to be active or non-zero. These designs
are very efficient in maximizing the amount of information obtained from n experiments, but
because there are zero degrees of freedom for error, the active effects in these models cannot
be identified using the normal theory t or F' statistics.

Alternate methods have been proposed in the literature for overcoming this problem. One of
the early methods proposed by Daniel (1959) was to make a half normal plot of the absolute
effects and qualitatively identify the active effects to be those which appear as outliers on
the plot. The rational for Daniel’s proposal was that if none of the effects are active, all the
calculated effects will be differences of averages of random errors and approximately normally
distributed due to the central limit theorem. Since his proposal there has been a plethora
of additional quantitative and graphical methods proposed for detecting the active effects in
unreplicated 2¥ and 2%~P designs. Refer to Hamada and Balakrishnan (1998) for a review
and comparison. Some of the more popular methods have been automated and incorporated
into the user-friendly software mentioned earlier.

When there is one or more outliers among the response for an unreplicated 2% or 277 de-
sign, there is an additional problem. All the estimated effects are biased, and the power of
automatic methods used to detect significant effects in unreplicated designs is compromised.
Daniel (1959) believed that outliers or bad values are a major hazard of unreplicated factorial
experiments. He said that they are more damaging than missing values because they are
not easily identifiable. Normally the presence of outliers can be detected when fitting the
general linear model y = X3 + € by examination of the residuals r =y — X 3 . However, for
unreplicated 2F factorials and 257 fractional factorials, the residuals are all zero. If there are
q outliers in an unreplicated 277 design, detecting the outliers and estimating all the effects
is equivalent to estimating ¢ + 2P parameters with only 277 data points.

There have been some methods proposed in the literature for detecting outliers and testing
the significance of effects in the presence of outliers in unreplicated designs. However, these
methods are relatively few in number compared to the number of methods proposed for
detecting significant effects in these designs. John (1978) proposed a method where some
terms in the model are assumed a priori to be negligible and are left out of the model.
Potential outliers are then identified in residual plots and their existence is confirmed by fitting
a model to the data that includes dummy variables that are indicators of the observations
suspected to be outliers. Carroll (1980) proposed using robust regression to analyze a factorial
with possible outliers, but to use his method some terms in the model must again be assumed
a priori to be negligible. Seheult and Tukey (1982) proposed using robust location estimates
to calculate factorial effects in the presence of outliers, but in unreplicated designs there is no
robust estimate of the higher order interactions. Therefore these model terms must essentially
be assumed negligible. These three methods will work only if the a priori assumption that
some effects are negligible is correct, and if the number of runs in the design is large.

When the number of runs in an unreplicated fractional factorial design is large, i.e., n =
2F=P > 16, such as 32, 64 etc., the design itself is fairly robust to outliers since each calculated
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effect is a difference of averages of 16 or more observations. In this case the factorial effects
will not be greatly biased by a few outliers and the active effects can usually be identified
using the normal or half normal plot of effects (or another method) and included in an initial
model. Then, outliers in the data can be identified by examining the residuals from the
initial model. Using this approach no effects need be assumed negligible a priori. However,
if n = 28" = 8 or 16 all of the calculated effects (active or not) are biased by at least +b/8
if there is at least one observation that is in error by the amount b. This makes it difficult to
determine what effects are active and should be included in the initial model. Therefore it is
difficult to detect outliers in the 8 or 16 run designs that are commonly used in practice.

A few additional methods have been proposed in the literature for recognizing the presence
outliers, without having to first identify an initial model. Daniel (1959) proposed to recognize
the presence of a single outlier from the pattern of points on the half normal plot of effects.
He showed that once the presence of a single outlier was recognized, the outlying observation
could be identified manually and a correction factor could be calculated from the data. Box
(1991) illustrated the use of the full normal plot to accomplish the same thing, and he showed
in detail how to identify the outlying observation and calculate the correction factor.

Daniel (1959) and Daniel (1960) also discussed methods to recognize the presence of two or
more outliers from the pattern of points on the half normal plot, however these ideas were
more subjective and would be more difficult to automate in computer code. Gatlin (2004)
wrote SAS code to automate Daniel’s proposed method of detecting a single outlier using the
full normal plot as illustrated by Box (1991). Box and Meyer (1987) proposed an automatic
iterative Bayesian method that is purported to detect outliers in unreplicated factorials and
simultaneously provide robust estimates of the effects. Torres (1993) proposed to recognize
the presence of an outlier when the large effects identified in the analysis of the response data
differed from the large effects identified in the analysis of the ranks of the response data.
Lawson and Gatlin (2006) reported the results of a simulation study to compare these three
methods.

Although the methods proposed by Box and Meyer (1987) and Torres (1993) theoretically will
work with more than one outlier, simulations by Lawson and Gatlin (2006) show that these
methods could not even detect a single moderate sized outlier consistently in a 16 run design.
In the simulations, Gatlin’s automated version of the Daniel-Box manual procedure was more
consistent in detecting a single outlier and in general showed a greater increase in the power
to detect significant effects in the presence of a single outlier. Although this method will not
work with multiple outliers, the chance of multiple outliers in an 8 or 16 run design is small.
Daniel (1959) estimated from his experience that the chance an individual observation is in
error is 0.01 to 0.1. Thus, the chance of more than one outlier in an 8 or 16 run designs very
small.

The software commonly used, in practical applications, for the design and analysis of data from
unreplicated 2F factorials and 257 fractional factorial experimental designs do not include
procedures for detecting outliers other than through residual analysis, and they do not issue a
warning to the user when the analysis could be compromised due to the presence of an outlier.
This could be a problem for 8 and 16 run designs that are commonly used in practice, and it
would be desirable to have an automated version of the Daniel-Box procedure in the packages
that are commonly used for these analyses. Fortunately, some of these packages such as SAS,
Minitab and JMP have macro languages that make it possible to add user written procedures.
This article presents a SAS macro that performs an automated version of Daniel’s procedure
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Figure 1: Normal probability plot of effects coefficients demonstrating a gap caused by an
outlier.

for detecting a single outlier and correcting a single outlier in an unreplicated 2* factorial or
2F=P fractional factorial design.

2. Daniel’s Method for Detecting an Outlier

Daniel’s original suggestion for detecting and correcting outliers in unreplicated factorials
consists of four steps. First, the presence of the outlier is recognized by a non-zero intercept
on the half normal plot of effects, or as Box explained, by a gap in the full normal plot
of regression coefficients. The second step is to identify the outlier by matching the signs
of the insignificant effects with the signs for the contrast coefficients for the factor levels
and interactions of each observation. The third step is to estimate the magnitude of the
discrepancy and correct the outlier. The fourth and final step is to reconstruct the half
normal or normal plot of effects calculated from the data with the outlier corrected.

As an example of recognizing the presence of an outlier on the Normal plot of effects, see
Figure 1. It was produced by the SAS automated design of experiments package, ADX, using
the data from the 2* experiment described by Box (1991). In the plot the ADX system
identifies main effects B and C' to be significant using Lenth (1989) method. However, in the
center of the plot, where the smaller effects in absolute value tend to fall along a straight line,
there is a vertical gap separating the positive and negative effects. As Box (1991) explained,
one aberrant observation would cause half the negligible effects to be biased high or positive
and half to be biased low or negative. Thus the gap in the center of the negligible effects on
the plot.

Gatlin (2004) created an automated version of Daniel-Box procedure for recognizing the
presence of an outlier on the Normal plot of effects. To do this, the method of recognizing a
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gap on the normal plot was quantified by testing the significance of a gap statistic

(Bs — Br)/PSE

G="=p 7 (1)

where BS is the smallest positive estimated regression coefficient and B 7, is the largest negative
estimated regression coefficient, PSE is Lenth (1989) pseudo standard error calculated from
the set of regression coefficients, and Zg and Z are the normal scores associated with the
(S)th and (L)th order statistics from a sample of size n — 1 taken from the standard normal
distribution. Two passes through the data were required to get an accurate test of G since
an outlier in the data not only creates a gap, (BS — BL), in the normal plot of effects, but also
inflates the PSE statistic.

By automating this procedure, its performance could be compared by simulation to other
methods of automatically detecting outliers and performing robust tests of the effects. Lawson
and Gatlin (2006) showed that this procedure was more powerful for detecting factorial effects
and interactions in the presence of outliers than Torres’ procedure based on analyzing the
ranks of the response data; and, except for the case where the outlier was small relative to
the size of the effects, it was more powerful than Box and Meyer’s Bayesian method.

SAS macros have been written that implement the automated Daniel-Box procedure, for
detecting outliers and preforming a robust test in the presence of an outlier. These macros
will be described in the next section and the final section will show examples of their use.

3. Description of the macros

This section briefly describes the SAS macros for automating Daniel’s method of detecting
an outlier and performing analysis of a 2¥7P design in the presence of an outlier.

e Jcalc

This macro calculates the regression coefficients and their absolute values, calculates
normal scores for the half normal plot, and determines the significance of individual
regression coefficients using the LGB test statistic (Lawson, Grimshaw, and Burt 1998).
There are four required inputs for this macro. The first is a SAS data set, x1, which
contains the saturated orthogonal X matrix including a column of 1’s as coefficients
for the intercept term (3y. The second is a SAS data set, y, that contains the column
vector of responses. The third is a macro variable, nobs, that contains the number of
observations or rows in the data sets x1 and y. The fourth is a macro variable, vname1,
which is a list variable containing names for each of the columns in x1. It is used for
labeling output and graphs. Macro %calc produces no printed output but rather creates
several SAS data sets that are used by the other macros.

e Jprinteff

This macro prints the variable labels in vnamel, the regression coefficients, the absolute
value of the regression coefficients, a yes-no indicator of whether each regression coeffi-
cient is significant at the v = 0.05 significance level, and overall LGB statistic and the
95th percentile of its reference distribution.
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e %hlfnplt

This macro produces a half normal plot of the absolute regression coefficients, including
the fitted line to the plot and an upper prediction limit line. The extreme points are
labeled with their names in the macro variable vnamel.

To use the three macros described above to make a half normal plot of the absolute
regression coeflicients, with the LGB fitted line and upper prediction limit, and to print
a table of the coefficients and significance indicators, call the three macros above in
sequence after creating the SAS data sets x1 and y.

e gap
This macro computes preliminary gap information from regression coefficients and ranks

stored in temporary files by macro %calc. This macro makes no printed output but
stores results in temporary files gap3a and gap3b.

e Youtlier

This macro accesses the temporary file effpldg containing the regression coefficients
created by %calc. It locates a potential outlier and calculates corrected response data
that is in turn stored in a temporary file.

e /testout(pass)

This macro tests significance of the gap statistic. If pass=1, it compares the gap statistic
to the 50th percentile of the reference distribution. If pass=2, it compares the gap
statistic to the 99th percentile of the reference distribution, as described in Lawson and
Gatlin (2006).

e Jpse
This macro calculates Lenth (1989) PSE statistic based on the regression coefficients
and associated statistics produced by %calc. The output is a SAS data set pse.

e ’gapmth

This macro calls the other macros to perform the automated Daniel-Box method of
locating and correcting outliers in unreplicated 16 run or 32 run 2* or 2P experiments.
Macros %calc, %printeff, 4hlfnplt, Ypse, %gap, houtlier, and Ytestout are called
in succession. If the gap statistic calculated with the initial PSE estimate exceeds
the 50th percentile of the reference distribution, it prints the initial outlier report and
through a second pass recalculates the gap statistic with the corrected data produced
by the macro %outlier. If the second pass gap statistic exceeds the 99th percentile of
the reference distribution, the second pass outlier report is printed along with a table
showing the corrected data. The macros %printeff, and %hlfnplt are called again to
print the a table of the regression coefficients calculated with the corrected data and
make a half normal plot of the absolute coefficients. The details are described in Lawson
and Gatlin (2006). Examples in the next section illustrate this.

4. Examples

This section presents some example data sets and illustrates the use of the macros.
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4.1. Example 1

The first example illustrates the use of the macro %gapmth to analyze the data from an
unreplicated 24 factorial experiment originally taken from Box and Meyer (1987) and analyzed
later by Box (1991) and Lawson and Gatlin (2006). The data are shown in Table 1. A normal
plot of the effects calculated with this data was shown in Figure 1.

Run A B C D Y

1 - - — — 4746
2 + - = — 4962
3 - 4+ = = 4313
4 + + - — 4631
5 - — + — 5147
6 + - + — 4849
7 - + + — 4934
8 + + + — 46.10
9 - — — + 46.76
0 + - — + 48.56
11 - + — + 4483
12 + + — + 4445
3 - - + + 5915
4 + - + + 5133
5 - + + + 47.02
6 + + + + 47.90

Table 1: Example from Box and Meyer (1987).

The SAS commands first create the saturated matrix of contrast coefficients. Next, are the
commands to read the response data, create the macro variables nobs and vnamel, and call
the macro %gapmth for analysis that are shown below.

*Create the design matrix of contrast coefficients for a 274 design;
data xmatrix16;
do x4=-1 to 1 by 2;
do x3=-1 to 1 by 2;
do x2=-1 to 1 by 2;
do x1=-1 to 1 by 2;
I=1; A=x1; B=x2; C=x3; D=x4;
AB=A*B; AC=AxC; AD=AxD; BC=B*C; BD=B*D; CD=Cx*D;
ABC=A*B*C; ABD=A*BxD; ACD=A*C+*D; BCD=B*C*D; ABCD=A*B*CxD;
output;
end;
end;
end;
end;
drop x1-x4;
run;



8 Analysis of Unreplicated 2F and 2F~P Designs

*Read in the response data for 274 design;

data boxmey;

input y QQ;

datalines;

47.46 49.62 43.13 46.31 51.47 48.49 49.34 46.10 46.76 48.56 44.83 44.45
59.15 51.33 47.02 47.90

*Defines the nobs and vnamel macro variables needed by the macro;
%let nobs=16;

%let vnamel={'I' 'A' 'B' 'C' 'D'

"AB' 'AC' 'AD' 'BC' 'BD' 'CD'

"ABC' 'ABD' 'ACD' 'BCD' 'ABCD'};

*Invokes the macro;

data y; set boxmey;

data x1; set xmatrix16;

hgapmth

The first output is an analysis of the effects assuming no outliers. In the table below, it can
be seen that no significant effects are found in the first pass through the data using the LGB
statistic. A half normal plot was also produced, but it is not shown here.

Effect Report

Half
Label Effect Abs(Effect) Sig(at 0.05)
A -0.4 0.4 no
B -2.11 2.11 no
C 1.855 1.855 no
D 0.505 0.505 no
AB 0.455 0.455 no
AC -1.245 1.245 no
AD -0.29 0.29 no
BC -0.4 0.4 no
BD -0.59 0.59 no
CD 0.745 0.745 no
ABC 0.6 0.6 no
ABD 0.36 0.36 no
ACD 0.2 0.2 no
BCD -0.79 0.79 no
ABCD 0.76 0.76 no
Lawson, Grimshaw & Burt Rn Statistic= 1

95th percentile of Rn= 1.201

The next two sections of output are printed by the macro %gapmth. First is the result of the
testing the significance of the gap statistic G = (s — 1)/ PSE)/(Zs — Z1,) during the first
pass through the data. This report was printed because the gap statistic exceeded the 50th
percentile of its reference distribution.
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Initial Outlier Report from test at 50th Percentile

Gap PSE Stand-Gap Critical Value Significance
0.49 0.885 3.35323 1.788 yes

Next is the report of testing the significance of the gap statistic in the second pass through
the data. This report and all further reports are only printed when the gap statistic exceeds
the 99th percentile of its reference distribution.

Final Outlier Report from test at 99th Percentile

Gap PSE Stand-Gap Critical Value Significance
0.49 0.225 13.1894 5.1 yes

The next report is the corrected data report. Here it can be seen that observation 13 was
identified as an outlier, and the correction factor of 6.4 was subtracted from this observation
to get the corrected value of 52.75.

Corrected Data Report

Response Corrected Response Detect Outlier
47.46 47.46 no
49.62 49.62 no
43.13 43.13 no
46.31 46.31 no
51.47 51.47 no
48.49 48.49 no
49.34 49.34 no
46.1 46.1 no
46.76 46.76 no
48.56 48.56 no
44 .83 44.83 no
44 .45 44 .45 no
59.15 52.75 yes
51.33 51.33 no
47.02 47.02 no
47.9 47.9 no

The final page of output is the analysis of the effects computed from the data with the
corrected observation. In this table it can be seen that the LGB statistic discovers contrasts
B, C, and the AC interaction significant after correcting the data. Recall the AC interaction
was not discovered in Figure 1 before the outlier was identified and corrected. Figure 2, shows
a graphical representation of the results in the table below.

Effect Report
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Half
Label Effect Abs(Effect) Sig(at 0.05)
A 0 0 no
B -1.71 1.71 yes
C 1.455 1.455 yes
D 0.105 0.105 no
AB 0.055 0.055 no
AC -0.845 0.845 yes
AD 0.11 0.11 no
BC 0 0 no
BD -0.19 0.19 no
CD 0.345 0.345 no
ABC 0.2 0.2 no
ABD -0.04 0.04 no
ACD 0.6 0.6 no
BCD -0.39 0.39 no
ABCD 0.36 0.36 no

Lawson, Grimshaw & Burt Rn Statistic=1.626
95th percentile of Rn= 1.201

Half Normal Plot of Effects
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code — — Ulinmit ® ® ® ahs(effects) line

Figure 2: Half normal plot of regression coefficients after correcting data.
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4.2. Example 2

The second example illustrates the use of the macro J%gapmth to analyze data from an eight
run fractional factorial experiment with an outlier. The data from this experiment is shown
in Table 2.

Obs A B C D E F AF y
1 — — — + + + — 129
2 + - — — — 4+ + 160l
3 - 4+ — — 4+ — 4+ 1359
4 + + — + - — — 1461
5 — — 4+ + — — + 1338
6 + — 4+ — 4+ — — 1486
7T - 4+ + - — + — 1330
8 + + + + + + + 1470

Table 2: 263 fractional factorial with defining relation I = ABD = ACE = BCF =
BCDE = ACDF = ABEF = DEF.

The SAS commands below create the saturated matrix of contrast coefficients and read in the
response data. This is a resolution III design and the saturated set of contrasts is composed
of the six main effects and one interaction contrast. In the commands to create the contrast
matrix, one interaction AF' is created to represent the last contrast in the saturated set since
it is not confounded with any main effect. In the macro variable vnamel this contrast was
given the name ’>AF+BE+CD’ since these three two factor interactions are confounded.

*test outlier in 8 run design;
Data xmatrix8;
do x3= -1 to 1 by 2;
do x2 = -1 to 1 by 2;
do x1 = -1 to 1 by 2;
I=1; A=x1; B=x2; C=x3; D=AxB; E= Ax*C; F= B*C; AF=Ax*F;
output;
end;
end;
end;
drop x1 x2 x3;
data ff;
input y @Q;
datalines;
1.299 1.601 1.359 1.461 1.338 1.486 1.330 1.470
data y; set ff;
data x1; set xmatrix8;
%let nobs=8;
%let vnamel={'I' 'A' 'B' 'C' 'D' 'E' 'F' 'AF+BE+CD'};
%gapmth
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Below is the output created by %gapmth. Here it can be seen that in the analysis of the raw
data, none of the contrasts were found to be significant using the LGB statistic. However,
an outlier was detected at observation 2, and after this outlier is corrected, main effect A is
found to be significant. Figure 3 shows a graphical representation of the results from the final
table.

Effect Report

Half
Label Effect Abs(Effect) Sig(at 0.05)
A 0.0865 0.0865 no
B -0.013 0.013 no
C -0.012 0.012 no
D -0.026 0.026 no
E -0.015 0.0145 no
F 0.007 0.007 no
AF+BE+CD 0.024 0.024 no

Lawson, Grimshaw & Burt Rn Statistic=1.526
95th percentile of Rn= 1.534

Initial Outlier Report from test at 50th Percentile

Gap PSE Stand-Gap Critical Value Significance
0.019 0.0206 2.61015 1.788 yes

Final Outlier Report from test at 99th Percentile

Gap PSE Stand-Gap Critical Value Significance
0.019 0.0056 9.57057 5.1 yes

Corrected Data Report

Response Corrected Response Detect Outlier
1.299 1.299 no
1.601 1.508 yes
1.359 1.359 no
1.461 1.461 no
1.338 1.338 no
1.486 1.486 no
1.33 1.33 no
1.47 1.47 no
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Effect Report

Half
Label Effect Abs(Effect) Sig(at 0.05)
A 0.0749 0.0749 yes
B -0.001 0.0014 no
C -37E-5 0.0004 no
D -0.014 0.0144 no
E -0.003 0.0029 no
F -0.005 0.0046 no
AF+BE+CD 0.0124 0.0124 no

Lawson, Grimshaw & Burt Rn Statistic=2.437
95th percentile of Rn= 1.534

Half Normal Plot of Effects

fAbsolute
Effects
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code — — Ulimit ® % & ahs(effects) line

Figure 3: Half normal plot of regression coefficients after correcting data.

4.3. Example 3

The third example shows the use of the macro %gapmth to analyze the data from Davies (1971)
2% experiment to study the effects of concentrations of components of a nutrient medium on
the yield of Penicillium chrysogenum grown in a surface culture. The data was reanalyzed
by Daniel (1976) who identified an outlier in the 16th run. Daniel used y=yield — 130 as the

13
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response and concentrated on the first 16 experiments where factor £/ was held constant at
its low level. The data from these first 16 experiments are shown in Table 3.

Run A B C D Y

1 - — — - 12
2 + - - - -16
3 - 4+ - - -1
4 4+ + - - =21
5 — — + — 5
6 + — + - 32
7 — 4+ + - 70
8 + + + - 42
9 - — — 4+ 18
10 + — — + -22
11 - + - + 16
12 + + - + =35
13 - — + + 70
4 + - + + 3
15 — + + + 8
16 + + + + -—12

Table 3: First 16 runs from Davies 2° on penicillin.

The SAS commands to read the data and define the macro variables nobs and vnamel are
shown below. The saturated matrix of contrast coefficients xmatrix16 is the same as that
created for Example 1.

*Davies 275 on Penicillin with E = - ;
%let nobs=16;

%let vnamel={'I' 'A' 'B' 'C' 'D'

'"AB' 'AC' 'AD' 'BC' 'BD' 'CD'

"ABC' 'ABD' 'ACD' 'BCD' 'ABCD'};

data Daviestp;

input y QQ;

datalines;

12 -16 -1 -21 55 32 70 42 18 -22 16 -35 70 34 85 -12
data y; set Daviestp;

data x1; set xmatrixl16;

hgapmth

The last two tables of the output are shown below. An outlier was detected at observation 16.
This is the same observation Daniel (1976) determined to be a bad value after an insightful
examination of the data. After correcting for the outlier, main effects A and C were found
to be significant along with interactions AD and BC. The interactions were not found to be
significant in the first pass through the data when the outlier was ignored, and the outlier
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is not obvious from a plot of the residuals versus predicted or a normal plot of the residuals
from a model involving the main effects and all two factor interactions (the default model fit
by SAS ADX).

Corrected Data Report

Response Corrected Response Detect Outlier
12 12 no
-16 -16 no
-1 -1 no
-21 -21 no
55 55 no
32 32 no
70 70 no
42 42 no
18 18 no
-22 -22 no
16 16 no
-35 -35 no
70 70 no
34 34 no
85 85 no
-12 23.5 yes

Effect Report

Half
Label Effect Abs(Effect) Sig(at 0.05)
A -17.97 17.969 yes
B -0.219 0.2188 no
C 28.781 28.781 yes
D 1.0313 1.0313 no
AB -2.094 2.0938 no
AC -0.594 0.5938 no
AD -5.594 5.5938 yes
BC 3.9063 3.9063 yes
BD -1.094 1.0938 no
CD 0.6563 0.6563 no
ABC -1.719 1.7188 no
ABD -2.469 2.4688 no
ACD -0.219 0.2188 no
BCD -1.469 1.4688 no
ABCD -0.094 0.0938 no

Lawson, Grimshaw & Burt Rn Statistic=3.108
95th percentile of Rn= 1.201
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5. Conclusions

8 run and 16 run unreplicated 2* and 2*~P designs are widely used in research where the data
is normally analyzed by user-friendly software packages. These packages include methods
for detecting significant effects, but they do not include methods for detecting outliers or
performing an analysis of the data in the presence of outliers. A single outlier can seriously
reduce the power of detecting significant effects in an unreplicated design. The SAS macros
illustrated in this paper automate the Daniel-Box method of analyzing an unreplicated 2¥ and
2F=P design with a single outlier. This method has been shown to be effective in simulation
studies and is recommended whenever an experimenter may suspect an outlier.
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