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Abstract

One of the most widely used goodness-of-fit tests is the two-sided one sample Kolmogorov-
Smirnov (K-S) test which has been implemented by many computer statistical software
packages. To calculate a two-sided p value (evaluate the cumulative sampling distribution),
these packages use various methods including recursion formulae, limiting distributions,
and approximations of unknown accuracy developed over thirty years ago. Based on an
extensive literature search for the two-sided one sample K-S test, this paper identifies an
exact formula for sample sizes up to 31, six recursion formulae, and one matrix formula
that can be used to calculate a p value. To ensure accurate calculation by avoiding catas-
trophic cancelation and eliminating rounding error, each of these formulae is implemented
in rational arithmetic. For the six recursion formulae and the matrix formula, computa-
tional experience for sample sizes up to 500 shows that computational times are increasing
functions of both the sample size and the number of digits in the numerator and denomi-
nator integers of the rational number test statistic. The computational times of the seven
formulae vary immensely but the Durbin recursion formula is almost always the fastest.
Linear search is used to calculate the inverse of the cumulative sampling distribution (find
the confidence interval half-width) and tables of calculated half-widths are presented for
sample sizes up to 500. Using calculated half-widths as input, computational times for
the fastest formula, the Durbin recursion formula, are given for sample sizes up to two
thousand.

Keywords: K-S cumulative sampling distributions, K-S two-sided one sample probabilities,
K-S confidence bands, rational arithmetic.

1. Introduction

The Kolmogorov-Smirnov (K-S) family of tests is one of the most widely used goodness-of-

http://www.jstatsoft.org/


2 Evaluating The Two-Sided One Sample K-S Test Sampling Distribution

fit tests and is included in some form in many nonparametric statistics texts (Sprent and
Smeeton 2001; Gibbons and Chakraborti 2003; Conover 1999; Daniel 1990). These include
the one-sided one sample, two-sided one sample, one-sided two sample, and the two-sided
two sample tests. The K-S family of tests also include restricted range tests (comparing
distributions over a portion of their range) and ratio tests (the ratio of one distribution to
another).

For sample size n, the most common K-S test is the two-sided one sample test which uses the
maximum absolute distance Dn as the random variable where Dn is the distance between the
hypothesized continuous cumulative distribution F (x) and the empirical cumulative distribu-
tion Fn(x), Dn = sup−∞<x<∞ |Fn(x) − F (x)|. The distribution of Dn is independent of the
hypothesized continuous cumulative distribution so the sampling distribution of Dn can be
derived by using the uniform distribution on the interval [0, 1] as F (x). In a hypothesis testing
application, computing the test statistic d is relatively easier than evaluating the cumulative
sampling distribution to determine the p value, P [Dn ≥ d].

The cumulative sampling distribution for the two-sided one sample K-S test is a piecewise
polynomial that is different for each sample size n and the complexity rapidly grows with
increasing n so it has not been generated let alone used for n > 31 (Ruben and Gambino 1982;
Drew, Glen, and Leemis 2000). Consequently, the limiting distribution, various recursion
formulae, and various approximations have been used to evaluate the cumulative sampling
distribution. Many computer statistical software packages such as SPSS, STATISTICA, R,
Numerical Recipes, and IMSL include one or more K-S tests. Although a recursion formula
will theoretically determine the p value P [Dn ≥ d] for a particular value d of the test statistic,
the complexity of the formula is such that roundoff error and catastrophic cancelation can
greatly reduce the accuracy of the calculations. Since most procedures used today were
developed on pre-1978 computers where only machine precision was available, the accuracy of
their results is not known exactly. Consequently, recursion formulae have only been used to
generate tables for sample sizes of n ≤ 40 and various approximations of unknown accuracy
have been used for n > 40.

In addition to the two-sided one sample case (absolute difference between hypothesized and
empirical), the one-sided one sample (difference between hypothesized and empirical) cumu-
lative sampling distribution is also a complex series that can also be evaluated by recursion
formulae. Indeed, many computer statistical software packages that implement both the
two-sided and one-sided one sample K-S test use different methods to calculate the p val-
ues. Brown and Harvey (2007) have summarized how various computer statistical software
packages calculate the p values for the one sample K-S tests. Since they have investigated
the one-sided one sample case, this paper examines the two-sided one sample case. Following
their recommendation, rational arithmetic is used to eliminate all roundoff and catastrophic
cancelation error. The following sections review the two-sided one sample K-S cumulative
sampling distribution formulae, devise rational arithmetic implementations of each formula
using Mathematica 5 (Wolfram 2003), verify the validity of each implementation by deter-
mining if each implementation gets exactly the same p value over a broad range of examples,
compare the computational times needed for each implementation to determine the fastest
formula, develop an efficient method to calculate the half-width (the inverse of the cumulative
sampling distribution), and give computation times for the fastest formula.
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2. The exact formula

The cumulative sampling distribution for Dn is a piecewise polynomial whose complexity
grows with increasing sample size n. For example, the cumulative sampling distribution for
n = 5 with nine regions is shown below.
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In general, d3n/2e− 1 is the number of piecewise polynomials for 1/2n ≤ d < 1 where d3n/2e
is the smallest integer greater than or equal to 3n/2.

Ruben and Gambino (1982) computed the coefficients of the piecewise polynomials for n ≤ 10
and Drew, Glen, and Leemis (2000) using rational arithmetic in Maple (Maplesoft 2008)
computed them for n ≤ 31. The computer storage requirements are immense. For example,
for n = 31 there are 46 piecewise polynomials requiring more than 20 pages to print and the
file to store all the polynomials for sample sizes n ≤ 31 requires 678, 000 bytes of storage while
the storage for n = 31 alone is 91, 000 bytes.

Since all calculations in this paper are performed in Mathematica, the Maple program of
Drew, Glen, and Leemis (2000) was translated to Mathematica and is contained the file Ex-
actDistribution.nb. Although the Mathematica code is large (over 1.5 million bytes), it
is simply a list of rational arithmetic equations where d = t/n is used to find the correct
equation and that equation is then evaluated to give the p value. The intermediate output
for intermediateOutput ≥ 1 gives the input parameters t and n as well as the left tail
probability P (Dn < t/n) and the right tail probability P (Dn ≥ t/n).

The Mathematica code in file ExactKS2SidedOneSample.nb assigns the internal variable tRa-
tional the rational number value of the input variable tIn and also assigns the internal
variable sampleSize the truncated value of the input variable sampleSizeIn. The internal
variable x is then assigned the rational number value of tRational/sampleSize. Note that
internal variable x is the same as d = t/n used in the formulae above. To check the accuracy
of the Mathematica code in file ExactKS2SidedOneSample.nb, various p values for n ≤ 31
generated by the Mathematica code and the Maple code were compared and found to be
identical.
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Since the Mathematica code for the exact formula in file ExactKS2SidedOneSample.nb requires
a large amount of storage and can only be used for sample sizes less than or equal to thirty-one,
n ≤ 31, alternate formulae contained in the literature for calculating the p values of sample
sizes greater than n = 31 need to be investigated. An extensive literature search identified six
recursion formulae (by Kolmogorov, Tingey, Epanechnikov, Noe, Durbin, Pomeranz) and a
matrix formula (by Durbin) which can be used for sample sizes exceeding n = 31. In Sections 3
through 9, these seven formulae are presented, transformed for implementation, and coded
in Mathematica. Section 10 contains a summary of the Mathematica code implementing the
seven formulae and describes a program for n ≤ 31 that checks whether the seven formulae
generate the same p values as those produced by the exact formula. Due to the large size of file
ExactKS2SidedOneSample.nb, the Mathematica code for these seven formulae are contained
in another file, KS2SidedOneSampleRational.nb.

For four regions and all sample sizes n, Ruben and Gambino (1982) were able to derive the
simple formulae shown below. In the implementation of the six recursion formulae and the
matrix formula, the formulae below will be used in those regions because they are faster than
the recursion and matrix formulae. Thus, the recursion and matrix formulae will only be used
for 1 < t < n− 1.
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For sample size n = 3, the exact formula for 1/2 < t < 3 is shown below. To demonstrate
the equivalence of the recursion and matrix formulae to the exact formula, the exact formula
below will be derived for the Tingey, Epanechnikov, Durbin, and Durbin matrix formulae.
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3. The Kolmogorov recursion formula

A recursion formula was derived by Kolmogorov (1933) to compute the cumulative probability
P (Dn ≥ t/n) for integer t = 1, 2, . . . , n − 1. The Kolmogorov recursion formula can be
transformed into the recursion formula of Massey (1950) which is shown below using Tingey’s
notation (Tingey 1951).
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Rt,0(t) = 1

Rj,0(t) = 0 for j 6= t

Rj,k(t) = 0 for j ≤ 0 and j ≥ 2t
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3.1. Transforming the Kolmogorov recursion formula

For the first iteration with k = 0, the recursion formula can be simplified by noting that the
only non-zero term in the formula for Rj,k+1(t) = Rj,1(t) is when j = t because Rt,0(t) = 1
and Rj,0(t) = 0 for j 6= t. In other words, Rj,1(t) = Rj+1−µ,0(t)/µ! where j + 1 − µ = t or
µ = j+1− t. For the index µ = 0, 1, . . . , j, the subscript j+1−µ = t only when µ = j+1− t
which can occur only if j ≥ t− 1. If j < t− 1, the subscript j+ 1−µ = t means µ = j+ 1− t
but since j < t − 1, µ = j + 1 − t < 0 which is impossible because µ = 0, 1, . . . , j. So for
j < t − 1 or j ≤ t − 2, Rj,1(t) = 0. Thus, the recursion formula for Rj,k+1(t) reduces to the
following formulae for k = 0.

Rj,1(t) = 0 for j ≤ t− 2 and j ≥ 2t

Rj,1(t) =
1

(j + 1− t)!
for j = t− 1, t, . . . , 2t− 1

For k = 1, the formula for Rj,k+1(t) = Rj,2(t) must contain Rm,1(t) for m ≥ t − 1 or it is
zero. Since m = j + 1 − µ is largest when µ = 0, then m = j + 1 ≥ t − 1 for Rj,2(t) 6= 0
which yields j ≥ t− 2. Thus, for k = 1, Rj,k+1(t) = Rj,2(t) = 0 for j ≤ t− 3 and j ≥ 2t while
Rj,k+1(t) = Rj,2(t) 6= 0 for t− 2 ≤ j ≤ 2t− 1. Although this restricts the Rj,k+1(t) = Rj,2(t)
terms that need to be calculated (restricts the range of index j), care must be taken so that only
non-zero Rj+1−µ,k(t) = Rj+1−µ,1(t) terms are used in the calculations. Using m = j + 1− µ,
then Rm,1(t) = 0 for m ≤ t − 2 and m ≥ 2t while Rm,1(t) 6= 0 for t − 1 ≤ m ≤ 2t − 1.
This means the index µ must satisfy the inequality t− 1 ≤ m ≤ 2t− 1 which by substituting
m = j + 1− µ becomes t− 1 ≤ j + 1− µ ≤ 2t− 1. In addition, index µ must also satisfy the
summation index boundaries which are 0 ≤ µ ≤ j. Thus, µ must satisfy the following two
inequalities.

t− 1 ≤ j + 1− µ ≤ 2t− 1
0 ≤ µ ≤ j

Rearranging the first inequality yields

j + 2− 2t ≤ µ ≤ j + 2− t
0 ≤ µ ≤ j

Combining the two inequalities yields
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max{j + 2− 2t, 0} ≤ µ ≤ min{j + 2− t, j}.

In general, for k ≥ 1, the range for zero and non-zero Rj,k(t) and Rj,k+1(t) terms are shown
below.

Rj,k(t) = 0 for j ≤ max{t− k − 1, 0} and j ≥ 2t
Rj,k(t) 6= 0 for max{t− k − 1, 0}+ 1 ≤ j ≤ 2t− 1

Rj,k+1(t) = 0 for j ≤ max{t− k − 2, 0} and j ≥ 2t
Rj,k+1(t) 6= 0 for max{t− k − 2, 0}+ 1 ≤ j ≤ 2t− 1

These results show that in the formula to calculate Rj,k+1(t), the index j must be restricted to
max{t−k−2, 0}+1 ≤ j ≤ 2t−1. To derive the restrictions for the index µ, note that Rm,k(t)
where m = j + 1 − µ must have the index in the range max{t − k − 1, 0} + 1 ≤ j ≤ 2t − 1.
Thus, µ must satisfy the following two inequalities.

max{t− k − 1, 0}+ 1 ≤ j + 1− µ ≤ 2t− 1
0 ≤ µ ≤ j

Rearranging the first inequality yields

j + 2− 2t ≤ µ ≤ j −max{t− k − 1, 0}
0 ≤ µ ≤ j

Combining the two inequalities yields

max{j + 2− 2t, 0} ≤ µ ≤ min{j −max{t− k − 1, 0}, j}.

These inequalities produce the following Kolmogorov recursion formula.
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min{j−max{t−k−1,0},j}∑
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For the Kolmogorov recursion formula, the user specifies an integer t and a sample size n.
Corresponding to k = 1, the values of Rj,1(t) for all j are initialized. Then corresponding
to k = 2, the values of Rj,2(t) for all j are computed using the values Rj,1(t) corresponding
to k = 1. Each succeeding iteration increases k by one and computes the Rj,k+1(t) for all
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Recursion Mathematica Recursion Mathematica
function function function function
variable variable variable variable

t tRational µ muIndex

n maxSampleSize Rj,k(t) oldRvector[[jIndex ]]

j jIndex Rj,k+1(t) newRvector[[jIndex ]]

k k P

(
Dn ≥

t

n

)
rightTailProbability

k + 1 sampleSize

Table 1: Kolmogorov recursion formula and Mathematica function variables.

j using the Rj,k(t) values computed in the previous iteration. The iterations stop when the
Rj,n(t) values have been computed for k = n. At this point, the cumulative probability

P (Dn ≥ t/n) = 1− n!
nn
Rt,n(t) can be computed. At the end of each iteration which produces

the Rj,k(t) values, the cumulative probability for a sample size of k when t < k can be

computed by P (Dk ≥ t/k) = 1− k!
kk
Rt,k(t).

3.2. Kolmogorov recursion formula and Mathematica function variables

Table 1 contains the relationship between the variables in the Kolmogorov recursion formula
above and the variables in the Mathematica function KolmogorovKS2SidedRTProbsRational
contained in Section 1 of the KS2SidedOneSampleRational.nb file. This function has four ar-
guments [tIn_, internalPrecision_, maxSampleSizeIn_, intermediateOutput_].
tRational is set equal to the truncated value of tIn and maxSampleSize is set equal to
the truncated value of maxSampleSizeIn so that the input values tIn and maxSampleSizeIn
are not changed by the function.

4. The Tingey recursion formula

A recursion formula for both integer and noninteger t, 1/2 < t < n, was derived by Tingey
(1951). Since it is not convenient in Mathematica to use negative indices, the Tingey recursion
formula is transformed to the form shown below that has no negative indices. Note that s = btc
is the largest integer less than or equal to t and j = 1, 2, . . . , 2s.

Rs+1,0(t) = 1

Rj,0(t) = 0 for j 6= s+ 1

Rj,k(t) = 0 for

{
j ≤ 0 and
j ≥ 2s+ 2
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Rj,k+1(t) =
[
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To simplify the Tingey recursion formula, define Wµ,j,k(t) as shown below.

Wµ,j,k(t) =



Rj+1−µ,k(t)
µ!

for

{
1 ≤ j ≤ 2s and
0 ≤ µ ≤ j − 1[

1− (s− t+ 1)j
]
R1,k(t)

j!
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1 ≤ j ≤ 2s
and µ = j

0 for
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1− 2(s− t+ 1)2s+1
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for


j = 2s+ 1,
µ = 2s+ 1,

and s < t− 1
2

For each Wµ,j,k(t) above, there is one R term and the first index of the R term can be written
as j+1−µ. This is even true for W0,2s+1,k(t) where j = 2s+1 and µ = 0 because in this case
j + 1− µ = 2s+ 1 + 1− 0 = 2s+ 2 so Rj+1−µ,k(t) = R2s+2,k(t) = 0 by definition. With this
observation, the definition of Wµ,j,k(t) can use j + 1− µ as the first index of each R term as
shown below. In addition, the condition s ≥ t − 1/2 in the next to last term can be written
as t− s ≤ 1/2 while the condition s < t− 1/2 in the last term can be written as t− s > 1/2.
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Wµ,j,k(t) =



Rj+1−µ,k(t)
µ!

for 1 ≤ j ≤ 2s and 0 ≤ µ ≤ j − 1

[
1− (s− t+ 1)j

]
Rj+1−µ,k(t)

j!
for 1 ≤ j ≤ 2s and µ = j

Rj+1−µ,k(t) = R2s+2,k(t) = 0 for j = 2s+ 1 and µ = 0

[1− (s+ 1− t)µ]Rj+1−µ,k(t)
µ!

for j = 2s+ 1 and 1 ≤ µ ≤ 2s

[
1− 2(s− t+ 1)2s+1 + (2s− 2t+ 1)2s+1

]
Rj+1−µ,k(t)

(2s+ 1)!

for j = 2s+ 1, µ = 2s+ 1, and t− s ≤ 1
2[

1− 2(s− t+ 1)2s+1
]
Rj+1−µ,k(t)

(2s+ 1)!
for j = 2s+ 1, µ = 2s+ 1, and t− s > 1

2

Note that all the coefficients of Rj+1−µ,k(t) must be positive except for the last two terms
which can be negative. Thus, unlike the Kolmogorov recursion formula, some of the Wµ,j,k(t)’s
as well as the Rj,k(t)’s can be negative.

Using the definition of Wµ,j,k(t) above, the Tingey recursion formula can now be written in a
much simpler form.

Rs+1,0(t) = 1

Rj,0(t) = 0 for j 6= s+ 1

Rj,k(t) = 0 for j ≤ 0, j ≥ 2s+ 2, and 0 ≤ k ≤ n

Rj,k+1(t) =
j∑

µ=0

Wµ,j,k(t) for 1 ≤ j ≤ 2s+ 1 and 0 ≤ k ≤ n− 1

P

(
Dn ≥

t

n

)
= 1− n!

nn
Rs+1,n(t) for 1

2 < t < n

To derive the non-zero terms in computing Rj,1(t) for k = 0, note that only Rs+1,0(t) 6= 0 so
the first index of the R term in Wµ,j,k(t) = Wµ,j,0(t) is j+ 1−µ and must be j+ 1−µ = s+ 1
for the corresponding R term to be non-zero. Solving j+ 1−µ = s+ 1 for µ yields µ = j− s.
The two inequalities that µ and j must satisfy are shown below.

0 ≤ µ ≤ j
1 ≤ j ≤ 2s+ 1

Substituting µ = j − s into the two inequalities yields

0 ≤ j − s ≤ j
1 ≤ j ≤ 2s+ 1



10 Evaluating The Two-Sided One Sample K-S Test Sampling Distribution

which can only be satisfied if j ≥ s. Thus, Wµ,j,0(t) = 0 for j ≤ max{s−1, 0} and Wµ,j,0(t) 6= 0
for max{s, 1} ≤ j ≤ 2s+ 1. The exact formulae for all Rj,1(t) can be derived and are shown
below. When j = 2s + 1, µ = j − s = s + 1 which produces the term Ws+1,2s+1,0(t) =
Wj−s,j,0(t).

Rj,1(t) = 0 for j ≤ max{s− 1, 0} and j ≥ 2s+ 2

Rj,1(t) = Wj−s,j,0(t) for max{s, 1} ≤ j ≤ 2s

Using formulae for Wµ,j,0(t) where Rs+1,0(t) = 1 yields the following formulae.

Rj,1(t) = 0 for j ≤ max{s− 1, 0} and j ≥ 2s+ 2

Rj,1(t) =
1

(j − s)!
for max{s, 1} ≤ j ≤ 2s

Rj,1(t) =
1− (s+ 1− t)2s+1

(2s+ 1)!
for j = 2s+ 1

In general, as k increases one more non-zero term is added so Rj,k(t) = 0 for j ≤ max{s−k, 0}
and j ≥ 2s+ 2 while Rj,k(t) 6= 0 for max{s+ 1−k, 1} ≤ j ≤ 2s+ 1. To calculate Rj,k+1(t) for
max{s− k, 1} ≤ j ≤ 2s+ 1, zero terms of Wµ,j,k(t) can be avoided if the range of µ satisfies
the two inequalities shown below.

max{s+ 1− k, 1} ≤ j + 1− µ ≤ 2s+ 1
0 ≤ µ ≤ j

Rearranging the first inequality yields

j − 2s ≤ µ ≤ j + 1−max{s+ 1− k, 1}
0 ≤ µ ≤ j

Combining the two inequalities yields

max{j − 2s, 0} ≤ µ ≤ min{j + 1−max{s+ 1− k, 1}, j}.

These inequalities produce the following Tingey recursion formula.

Rj,1(t) = 0 for j ≤ max{s− 1, 0} and j ≥ 2s+ 2

Rj,1(t) =
1

(j − s)!
for max{s, 1} ≤ j ≤ 2s

Rj,1(t) =
1− (s+ 1− t)2s+1

(2s+ 1)!
for j = 2s+ 1

Rj,k(t) = 0 for j ≤ 0, j ≥ 2s+ 2, and 0 ≤ k ≤ n

Rj,k+1(t) =
min{j+1−max{s+1−k,1},j}∑

µ=max{j−2s,0}
Wµ,j,k(t) for

{
max{s− k, 1} ≤ j ≤ 2s+ 1
and 1 ≤ k ≤ n− 1

P

(
Dn ≥

t

n

)
= 1− n!

nn
Rs+1,n(t) for 1

2 < t < n
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4.1. The Tingey recursion formula for small test statistic values

The Tingey recursion formula can be considerably simplified when 1/2 < t < 1. In this case,
s = 0 and s < t − 1/2 so the Tingey recursion formula given in the beginning of Section 4
reduces to the following form.

R0,0(t) = 1

Ri,0(t) = 0 for i 6= 0

Ri,k(t) = 0 for i 6= 0

R0,k+1(t) = [1− 2(−t+ 1)]R0,k(t) = (2t− 1)R0,k(t)

P

(
Dn ≥

t

n

)
= 1− n!

nn
R0,n(t) for 1

2 < t < 1

Since R0,0(t) = 1, then for k = 0

R0,1(t) = (2t− 1)R0,0(t) = 2t− 1.

Then for k = 1, the formula becomes

R0,2(t) = (2t− 1)R0,1(t) = (2t− 1)2 .

In general, the formula for R0,n(t) becomes

R0,n(t) = (2t− 1)R0,n−1(t) = (2t− 1)n .

Substituting into the right tail probability formula yields the following formula that is equiv-
alent to the formula in Section 2.

P

(
Dn ≥

t

n

)
= 1− n!

nn
R0,n(t) = 1− n! (2t− 1)n

nn
for

1
2
< t < 1 (1)

4.2. The Tingey recursion formula for a sample size of three

For sample size n = 3 and region 1 < t ≤ 3/2, the following derivation shows that the Tingey
recursion formula reduces to the exact formula in Section 2.

s = btc = 1 s+ 1 = 2

R1,0(t) = 0 R2,0(t) = 1 R3,0(t) = 0

R1,1(t) = 1 R2,1(t) = 1 R3,1(t) =
1
2
− 1

2
(2− t)2

R1,2(t) = t R2,2(t) = 2− (2− t)2 R3,2(t) = −3
2
t3 + 6t2 − 13

2
t+ 2

R2,3(t) = −2t3 + 7t2 − 4t P

(
D3 ≥

t

3

)
= 1− 2

9
R2,3(t) =

4
9
t3 − 14

9
t2 +

8
9
t+ 1
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For sample size n = 3 and region 3/2 ≤ t < 2, the following derivation shows that the Tingey
recursion formula reduces to the exact formula in Section 2.

s = btc = 1 s+ 1 = 2

R1,0(t) = 0 R2,0(t) = 1 R3,0(t) = 0

R1,1(t) = 1 R2,1(t) = 1 R3,1(t) =
1
2
− 1

2
(2− t)2

R1,2(t) = t R2,2(t) = 2− (2− t)2 R3,2(t) = −1
6
t3 +

5
2
t− 5

2

R2,3(t) = −2
3
t3 + t2 + 5t− 9

2
P

(
D3 ≥

t

3

)
= 1− 2

9
R2,3(t) =

4
27
t3 − 2

9
t2 − 10

9
t+ 2

For sample size n = 3 and region 2 ≤ t < 3, the following derivation shows that the Tingey
recursion formula reduces to the exact formula in Section 2.

s = btc = 2 s+ 1 = 3

R1,0(t) = 0 R2,0(t) = 0 R3,0(t) = 1 R4,0(t) = 0 R5,0(t) = 0

R1,1(t) = 0 R2,1(t) = 1 R3,1(t) = 1 R4,1(t) =
1
2

R5,1(t) =
1
6
− 1

6
(3− t)3

R1,2(t) = 1 R2,2(t) = 2 R3,2(t) = 2 R4,2(t) =
4
3
t3 − 1

6
(3− t)3

R5,2(t) =
1
24

(
3t4 − 28t3 + 84t2 − 68t− 24

)
R3,3(t) =

9
2
− 1

3
(3− t)3

P

(
D3 ≥

t

3

)
= 1− 2

9
R3,3(t) =

2
27

(3− t)3 = 2
(

1− t

3

)3

4.3. Tingey recursion formula and Mathematica function variables

Table 2 contains the relationship between the variables in the recursion formula
above and the variables in the Mathematica function TingeyKS2SidedRTProbsRational
contained in Section 2 of the KS2SidedOneSampleRational.nb file. The function
TingeyKS2SidedRTProbsRational has four arguments [tIn_, internalPrecision_,
maxSampleSizeIn_, intermediateOutput_]. tRational is set equal to the truncated value
of tIn and maxSampleSize is set equal to the truncated value of maxSampleSizeIn so that
the input values tIn and maxSampleSizeIn are not changed by the function.

5. The Epanechnikov recursion formula

The following function is needed for the definition of the recursion formula.

λ(x) =


0 if x ≤ 0
x if 0 < x < 1
1 if x ≥ 1

The recursion formula below was derived by Epanechnikov (1969) and also by Steck (1971).



Journal of Statistical Software 13

Recursion Mathematica Recursion Mathematica
function function function function
variable variable variable variable

t tRational t− s tRationalMINUSs

n maxSampleSize
1
µ!

muFactorialInverse[[muIndex]]

s = btc s
1− (s− t+ 1)j

j!
coeffFORmuEQUALjIndex[[jIndex]]

j jIndex
1− 2(s− t+ 1)2s+1

(2s+ 1)!
coefftMINUSsOverHalf

k k
(2s− 2t+ 1)2s+1

(2s+ 1)!
coefftMINUSsLessHalf

k + 1 sampleSize Rj,k(t) oldRvector[[jIndex ]]

2s+ 1 maxDimension Rj,k+1(t) newRvector[[jIndex ]]

µ muIndex Wµ,j,k(t) term

2s− 2t+ 1 termSecond P

(
Dn ≥

t

n

)
rightTailProbability

Table 2: Tingey recursion formula and Mathematica function variables.

Qn(t) = 1

bi = λ

(
t+ i− 1

n

)
for i = 1, 2, . . . , n

ai = λ

(
i− t
n

)
for i = 1, 2, . . . , n

Qi(t) =
n∑

k=i+1

[λ(bi+1 − ak)]k−i

(k − i)!
(−1)k−i−1Qk(t) for i = n− 1, n− 2, . . . , 0

P

(
Dn ≥

t

n

)
= 1− n!Q0(t)

5.1. The Epanechnikov recursion formula for a sample size of three

For sample size n = 3 and region 1/2 < t < 1, the following derivation shows that the
Epanechnikov recursion formula reduces to the exact formula in Section 2.

b1 =
t

3
b2 =

t+ 1
3

b3 =
t+ 2

3
a1 =

1− t
3

a2 =
2− t

3
a3 =

3− t
3

Q3(t) = 1 Q2(t) =
2t− 1

3
Q1(t) =

(
2t− 1

3

)2

Q0(t) =
(

2t− 1
3

)3

P

(
D3 ≥

t

3

)
= 1− 6Q0(t) = 1− 6

(
2t− 1

3

)3

= 1− 2
9

(2t− 1)3
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For sample size n = 3 and region 1 < t ≤ 3/2, the following derivation shows that the
Epanechnikov recursion formula reduces to the exact formula in Section 2.

b1 =
t

3
b2 =

t+ 1
3

b3 = 1 a1 = 0 a2 =
2− t

3
a3 =

3− t
3

Q3(t) = 1 Q2(t) =
t

3
Q1(t) =

1
3
t− 2

9
Q0(t) = − 2

27
t3 +

7
27
t2 +

4
27
t

P

(
D3 ≥

t

3

)
= 1− 6Q0(t) =

4
9
t3 − 14

9
t2 +

8
9
t+ 1

For sample size n = 3 and region 3/2 ≤ t < 2, the following derivation shows that the
Epanechnikov recursion formula reduces to the exact formula in Section 2.

b1 =
t

3
b2 =

t+ 1
3

b3 = 1 a1 = 0 a2 =
2− t

3
a3 =

3− t
3

Q3(t) = 1 Q2(t) =
t

3
Q1(t) =

1
3
t− 2

9
Q0(t) =

1
162

(
−4t3 + 6t2 + 30t− 27

)
P

(
D3 ≥

t

3

)
= 1− 6Q0(t) =

4
27
t3 − 2

9
t2 − 10

9
t+ 2

For sample size n = 3 and region 2 ≤ t < 3, the following derivation shows that the Epanech-
nikov recursion formula reduces to the exact formula in Section 2.

b1 =
t

3
b2 = 1 b3 = 1 a1 = 0 a2 = 0 a3 =

3− t
3

Q3(t) = 1 Q2(t) =
t

3
Q1(t) =

t

3
+

1
2

(
t

3

)2

Q0(t) =
(
t

3

)2

−
(
t

3

)3

+
1
6

(
2t− 3

3

)3

P

(
D3 ≥

t

3

)
= 1− 6Q0(t) = 1− 6

((
t

3

)2

−
(
t

3

)3

+
1
6

(
2t− 3

3

)3
)

=
2
27

(3− t)3

5.2. Epanechnikov recursion formula and Mathematica function variables

Table 3 contains the relationship between the variables in the recursion formula above and
the variables in the Mathematica function EpanechnikovKS2SidedRTProbRational contained
in Section 3 of the KS2SidedOneSampleRational.nb file. The function
EpanechnikovKS2SidedRTProbRational has four arguments [tIn_, internalPrecision_,
sampleSizeIn_, intermediateOutput_]. t is set equal to the rational number value of tIn
and sampleSize is set equal to the truncated value of sampleSizeIn so that the input values
tIn and sampleSizeIn are not changed by the function.

6. The Noe recursion formula

The general recursion formula by Noe (1972) contains both the two-sided and the one-sided
K-S statistics as special cases. Let Z be any random variable with distribution function
P (Z ≤ z) = F (z), not necessarily continuous. Let Xn

1 ≤ Xn
2 ≤ · · · ≤ Xn

n be the order
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Recursion Mathematica Recursion Mathematica
function function function function
variable variable variable variable

t t ai a[[i]]

n sampleSize bi b[[i]]

n+ 1 sampleSizePlusOne Qi(t) Q[[i+1]]

i i (−1)k−i−1 SIGN

k k [λ(bi+1 − ak)]k−i termNumerator

i! FACT[[i]]
[λ(bi+1 − ak)]k−i

(k − i)!
(−1)k−i−1Qk(t) term

P

(
Dn ≥

t

n

)
rightTailProbability

Table 3: Epanechnikov recursion formula and Mathematica function variables.

statistics of a size n sample from F (z). Let {αj , βj ; j = 1, 2, · · · , n} be any numbers which are
called α-boundaries and the β-boundaries respectively. We are interested in the probability

Pn = P (αj < Xn
j ≤ βj |j = 1, 2, · · · , n). (2)

Such probabilities are related to the K-S statistics by defining

L = sup
z

√
n [Fn(z)− F (z)]ψL[F (z)], (3)

M = sup
z

√
n [F (z)− Fn(z)]ψM [F (z)], (4)

where Fn(z) is the empirical distribution function of the sample and ψL(x), ψM (x) are some
nonnegative weight functions. A two-sided statistic of the K-S type has the distribution
function P (L ≤ λ,M ≤ λ) which is of the form (2) for well chosen boundaries.

6.1. The two-sided K-S statistic

To derive the special case for the two-sided K-S statistic, the two weight functions are set
equal to one, ψL[F (z)] = ψM [F (z)] = 1. In addition, the α-boundaries and the β-boundaries
must be carefully defined. Since the distribution function F (z) is an increasing function,
Equation (2) can be written as

Pn = P
(
F (αj) < F (Xn

j ) ≤ F (βj)|j = 1, 2, · · · , n
)

(5)

or as
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Pn = P
(
F (αj)− Fn(Xn

j ) < F (Xn
j )− Fn(Xn

j ) ≤ F (βj)− Fn(Xn
j )|j = 1, 2, · · · , n

)
. (6)

The empirical distribution function Fn(z) at Xn
j is a step function that goes from (j − 1)/n

to j/n. To make the lower limit F (αj) − Fn(Xn
j ) in Equation (6) as small as possible,

set Fn(Xn
j ) = j/n and to make the upper limit F (βj) − Fn(Xn

j ) as large as possible, set
Fn(Xn

j ) = (j − 1)/n yielding

Pn = P

(
F (αj)−

j

n
< F (Xn

j )− Fn(Xn
j ) ≤ F (βj)−

(j − 1)
n
|j = 1, 2, · · · , n

)
. (7)

Since the K-S two-sided distribution function is also P (L ≤ λ,M ≤ λ), Equation (7) can be
used to redefine L and M from Equations (3) and (4). First, M ≤ λ corresponds to the right
side of the inequality with the weight function ψM [F (z)] = 1 which yields

M = sup
z

√
n [F (z)− Fn(z)] ≤ sup

z

√
n

[
F (βj)−

(j − 1)
n

]
= λ. (8)

Similarly for L,

L = sup
z

√
n [F (z)− Fn(z)] ≤ sup

z

√
n

[
j

n
− F (αj)

]
= λ. (9)

Since the inequality in both Equations (8) and (9) needs to be satisfied for all z (all j =
1, 2, · · · , n), then each F (αj) and F (βj) can be expressed in terms of λ yielding for L

F (αj) =
j

n
− λ√

n
(10)

and for M

F (βj) =
(j − 1)
n

+
λ√
n
. (11)

One of the requirements for the F (αj) and F (βj) is that F (αj) < F (βj). Using Equations
(10) and (11), this requirement becomes

λ >
1

2
√
n
. (12)

To transform to the test statistic notation d = t/n from the previous sections, note that

d =
t

n
=

λ√
n

or λ =
t√
n

which when substituted into Inequality (12) above yields t > 1/2 as

expected. Using t, Equation (10) becomes

F (αj) =
j

n
− t

n
=
j − t
n

(13)

and Equation (11) becomes
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F (βj) =
(j − 1)
n

+
t

n
=
j − 1 + t

n
. (14)

However, using the formulae above can yield F (αj) = (j − t)/n < 0 when t > j. Since F (αj)
is a distribution function, it cannot be negative and therefore when j − t < 0, it is set to
zeero. One way to do this is to set F (αj) to the maximum between (j − t)/n and zero. This
also means that F (α0) = 0.

F (αj) = max
[
j − t
n

, 0
]

(15)

Similarly, F (βj) = (j − 1 + t)/n > 1 when j − 1 + t > n or t > n − j + 1. Since F (βj) is a
distribution function, it cannot exceed one, so it is set equal to one when t > n− j + 1. One
way to do this is to set F (βj) to the minimum between (j − 1 + t)/n and one.

F (βj) = min
[
j − 1 + t

n
, 1
]

(16)

All the F (αj)’s and the F (βj)’s are combined into one list and sorted in non-decreasing order.
Let {F (γ1), F (γ2), · · · , F (γ2n−1), F (γ2n)} be the sorted list where the origin of each F (γj) (α-
boundary or β-boundary) is kept. Let F (α0) = F (β0) = F (γ0) = 0 and let F (αn+1) =
F (βn+1 = F (γ2n+1) = 1. Note that Noe (1972) actually sorts the combined list of αj ’s and
the βj ’s but since the distribution function F (z) is a non-decreasing function, this is equivalent
to sorting the distribution function where ties are broken by choosing the α-boundary.

Let g(m) for m = 0, 1, · · · , 2n be the number of α-boundaries in the sorted list {F (γ1), F (γ2),
· · · , F (γm)} where g(0) = 0 and g(2n) = n. Similarly, let h(m) − 1 be the number of β-
boundaries in the sorted list {F (γ1), F (γ2), · · · , F (γm−1)} where h(1) = 1 and h(2n + 1) =
n+ 1. Finally, let pm = F (γm)− F (γm−1) where p1 = F (γ1) since F (γ0) = 0.

Noe’s recursion relation for the K-S two-sided one sample statistic is shown below where
p0
m = 1 even if pm = 0 since by definition 00 = 1.

Q0(0) = 1

Qi(m) =
i∑

k=h(m)−1

(
i

k

)
Qk(m− 1)pi−km for

{
h(m+ 1)− 1 ≤ i ≤ g(m− 1)
and 1 ≤ m ≤ 2n

Qg(m−1)+1(m) = 0

P

(
Dn ≥

t

n

)
= 1−Qn(2n)

For each m, the recursion formula needs Qk(m − 1), h(m + 1) − 1, g(m − 1), and pm. The
last three quantities can be calculated for all 1 ≤ m ≤ 2n before the recursion begins to
calculate any Q values. To illustrate, Table 4 contains the necessary calculations for n = 10
and t = 3.4. Before the recursion starts, arrays of F (γm), h(m+ 1)− 1, g(m− 1), and pm are
created to be used during the actual recursion.

Since h(m + 1) − 1 ≤ g(m − 1), the summation for Qi(m) is never void. In particular for
m = 1, g(m − 1) = g(0) = 0 and h(m + 1) − 1 = h(2) − 1 ≤ g(m − 1) = g(0) = 0 or
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m F (γm) Origin g(m) h(m)− 1 h(m+ 1)− 1 g(m− 1) pm

1 0 F (α1) 1 0 0 0 0

2 0 F (α2) 2 0 0 1 0

3 0 F (α3) 3 0 0 2 0

4 0.06 F (α4) 4 0 0 3 0.06

5 0.16 F (α5) 5 0 0 4 0.1

6 0.26 F (α6) 6 0 0 5 0.1

7 0.34 F (β1) 6 0 1 6 0.08

8 0.36 F (α7) 7 1 1 6 0.02

9 0.44 F (β2) 7 1 2 7 0.08

10 0.46 F (α8) 8 2 2 7 0.02

11 0.54 F (β3) 8 2 3 8 0.08

12 0.56 F (α9) 9 3 3 8 0.02

13 0.64 F (β4) 9 3 4 9 0.08

14 0.66 F (α10) 10 4 4 9 0.02

15 0.74 F (β5) 10 4 5 10 0.08

16 0.84 F (β6) 10 5 6 10 0.1

17 0.94 F (β7) 10 6 7 10 0.1

18 1 F (β8) 10 7 8 10 0.06

19 1 F (β9) 10 8 9 10 0

20 1 F (β10) 10 9 10 10 0

Table 4: Noe’s recursion formula beginning values for n = 10 and t = 3.4.

h(2)− 1 = g(0) = 0. Thus, there is only one term in the summation for Q0(1) = Q0(0) = 1.
To accommodate Q0(m, ) in Mathematica, the index for the Q terms is simply increased by
one.

6.2. Noe recursion formula and Mathematica function variables

Table 5 contains the relationship between the variables in the recursion formula above and the
variables in the Mathematica function NoeKS2SidedRTProbRational contained in Section 4
of the KS2SidedOneSampleRational.nb file. The function NoeKS2SidedRTProbRational has
four arguments [tIn_, internalPrecision_, sampleSizeIn_, intermediateOutput_].
Internal variable tRational is set equal to the rational number value of tIn and sampleSize
is set equal to the truncated value of sampleSizeIn so that the input values tIn and
sampleSizeIn are not changed by the function.
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Recursion Mathematica Recursion Mathematica
function function function function
variable variable variable variable

t tRational F (γm) FgammaSUBmVector[[mIndex]]

n sampleSize h(m+ 1)− 1 hSUBmPlusOneMinusOneVector[[mIndex]]

i iIndex g(m− 1) gSUBmMinusOneVector[[mIndex]]

m mIndex pm pSUBmVector[[mIndex]]

k kIndex Qi(m− 1) oldQvector[[iIndex]]

2n twiceSampleSize Qi(m) newQvector[[iIndex]]

P

(
Dn ≥

t

n

)
rightTailProbability

Table 5: Noe recursion formula and Mathematica function variables.

7. The Durbin recursion formula

Durbin (1968, formulae 23 and 24) developed a difference equation and initial conditions from
which the recursion formula below can be derived. Durbin’s result is a generalization of the
difference equations from Massey (1950) and the generating function approach of Kemperman
(1961).

Q0(t) = 1

Qi(t) =
ii

i!
for 1 ≤ i ≤ btc

Qi(t) =
ii

i!
− 2t

bi−tc∑
j=0

(t+ j)j−1

j!
(i− t− j)i−j

(i− j)!
for bt+ 1c ≤ i ≤ b2tc

Qi(t) = −
b2tc∑
j=1

(−1)j
[

(2t− j)j

j!

]
Qi−j(t) for b2tc+ 1 ≤ i ≤ n

P

(
Dn ≥

t

n

)
= 1− n!

nn
Qn(t)

Similar to Tingey, Durbin’s recursion formula above reduces to Equation (1) for 1/2 < t < 1.
The Durbin recursion formula can also produce all the probabilities, P (Dm ≥ t/m) = 1 −
m!Qm(t)/mm, for every m = 1, 2, · · · , n where m ≥ t.

7.1. The Durbin recursion formula for small test statistic values

For all sample sizes n and region 1/2 < t < 1, the following derivation shows that the Durbin
recursion formula reduces to the exact formula in Section 2.
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btc = 0 bt+ 1c = 1 b2tc = 1

Q0(t) = 1 Q1(t) = 2t− 1 Q2(t) = (2t− 1)2 Q3(t) = (2t− 1)3

Qn(t) = (2t− 1)n P

(
Dn ≥

t

n

)
= 1− n!

nn
Qn(t) = 1− n!

nn
(2t− 1)n

7.2. The Durbin recursion formula for a sample size of three

For sample size n = 3 and region 1 < t ≤ 3/2, the following derivation shows that the Durbin
recursion formula reduces to the exact formula in Section 2.

btc = 1 bt+ 1c = 2 b2tc = 2 b2− tc = 0

Q0(t) = 1 Q1(t) = 1 Q2(t) = −t2 + 4t− 2 Q3(t) = −2t3 + 7t2 − 4t

P

(
D3 ≥

t

3

)
= 1− 2

9
Q3(t) =

4
9
t3 − 14

9
t2 +

8
9
t+ 1

For sample size n = 3 and region 3/2 ≤ t < 2, the following derivation shows that the Durbin
recursion formula reduces to the exact formula in Section 2.

btc = 1 bt+ 1c = 2 b2tc = 3 b2− tc = 0

Q0(t) = 1 Q1(t) = 1 Q2(t) = −t2 + 4t− 2 Q3(t) = −2
3
t3 + t2 + 5t− 9

2

P

(
D3 ≥

t

3

)
= 1− 2

9
Q3(t) =

4
27
t3 − 2

9
t2 − 10

9
t+ 2

For sample size n = 3 and region 2 ≤ t < 3, the following derivation shows that the Durbin
recursion formula reduces to the exact formula in Section 2.

btc = 2 bt+ 1c = 3 4 ≤ 2t < 6 b3− tc = 0 for 2 < t < 3

b3− tc = 1 for t = 2 Q0(t) = 1 Q1(t) = 1 Q2(t) = 2

Q3(t) =
9
2
− 1

3
(3− t)3 for 2 < t < 3 Q3(2) =

25
6

Since
9
2
− 1

3
(3− t)3 =

25
6

for t = 2, then Q3(t) =
9
2
− 1

3
(3− t)3 for 2 ≤ t < 3

P

(
D3 ≥

t

3

)
= 1− 2

9
Q3(t) =

2
27

(3− t)3

7.3. Durbin recursion formula and Mathematica function variables

Table 6 contains the relationship between the variables in the recursion formula
above and the variables in the Mathematica function DurbinKS2SidedRTProbRational
contained in Section 5 of the KS2SidedOneSampleRational.nb file. The function
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Recursion Mathematica Recursion Mathematica
function function function function
variable variable variable variable

t t b2tc Trunc2t

n sampleSize b2tc+ 1 Trunc2tPlusOne

i i i! FACT[[i]]

j j bi− tc iMINUStTrunc

2t tTwice (−1)j SIGN

btc tTrunc Qi(t) Q[[i]]

bt+ 1c tTruncPlusOne P

(
Dn ≥

t

n

)
rightTailProbability

Table 6: Durbin recursion formula and Mathematica function variables.

DurbinKS2SidedRTProbRational has four arguments [tIn_, internalPrecision_,
sampleSizeIn_, intermediateOutput_]. t is set equal to the rational number value of
tIn and sampleSize is set equal to the truncated value of sampleSizeIn so that the input
values tIn and sampleSizeIn are not changed by the function.

8. The Pomeranz recursion formula

The recursion formula below is derived from the recursion formula by Pomeranz (1973). In
addition to some small changes, the indices are changed by adding one to eliminate the zero
index that cannot be programmed in Mathematica. Note that by definition 00 = 1.

a1 = 0

a2 =
(

1
n

)
min{t− btc, dte − t}

a3 =
(

1
n

)
− a2

ai = ai−2 +
(

1
n

)
for i = 4, 5, . . . , 2n+ 1

a2n+2 = 1

v(1, 1) = 1

v(1, j) = 0 for j = 2, 3, . . . , n+ 1

v(i, j) = 0 for j = 1, 2, . . . , bnai − tc+ 1; i = 2, 3, . . . , 2n+ 2
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v(i, j) =
j∑

k=1

v(i− 1, k)[ai − ai−1]j−k

(j − k)!
for


j = bnai − tc+ 2, bnai − tc+ 3,

. . . , dnai + te
i = 2, 3, . . . , 2n+ 2

v(i, j) = 0 for


j = dnai + te+ 1, dnai + te+ 2,

. . . , n+ 1
i = 2, 3, . . . , 2n+ 2

P

(
Dn ≥

t

n

)
= 1− n!v(2n+ 2, n+ 1)

Considering all the v(i, j) for a particular i, there are at most dnai+ te− (bnai− tc+ 2) + 1 ≤
d2t− 1e non-zero v(i, j) values. Just storing the non-zero value of v(i, j) yields the following
recursion formula.

a1 = 0

a2 =
(

1
n

)
min{t− btc, dte − t}

a3 =
(

1
n

)
− a2

ai = ai−2 +
(

1
n

)
for i = 4, 5, . . . , 2n+ 1

a2n+2 = 1

v(1, 1) = 1

v(1, j) = 0 for j = 2, 3, . . . , n+ 1

v(i, j) =
min{j,dnai−1+te}∑

k=max{1,bnai−1−tc+2}

v(i− 1, k)[ai − ai−1]j−k

(j − k)!
for


j = bnai − tc+ 2,

. . . , dnai + te
i = 2, 3, . . . , 2n+ 2

P

(
Dn ≥

t

n

)
= 1− n!v(2n+ 2, n+ 1)

Pomeranz (1973) also observed that the differences ai − ai−1 take on at most four distinct
values over all i: 0, a2, 2a2, or 1/n− 2a2. This means that the term [ai − ai−1]j−k/(j − k)! is
repetitious and can be calculated separately to save time.

Like the Noe recursion formula, the Pomeranz recursion formula has no negative terms.

8.1. Pomeranz recursion formula and Mathematica function variables

Table 7 contains the relationship between the variables in the recursion formula above and the
variables in the Mathematica function PomeranzKS2SidedRTProbRational contained in Sec-
tion 6 of the KS2SidedOneSampleRational.nb file. This function has four arguments [tIn_,
internalPrecision_, sampleSizeIn_, intermediateOutput_]. t is set equal to the ratio-
nal number value of tIn and sampleSize is set equal to the truncated



Journal of Statistical Software 23

value of sampleSizeIn so that the input values tIn and sampleSizeIn are not changed by
the function. numberValuesaiMinusaiMinusOne represents the number of unique values of
ai − ai−1 which cannot exceed 4. The unique values are contained in the vector
differentValuesaiMinusaiMinusOneVector indexed by differentValuesIndex. For a par-
ticular ai − ai−1, its position in differentValuesaiMinusaiMinusOneVector is set equal to
valueIndex so ai − ai−1 = differentValuesaiMinusaiMinusOneVector[[valueIndex]].
To calculate v(i, j), each term v(i− 1, k)[ai− ai−1]j−k/(j− k)! inside the summation must be
evaluated. To facilitate the computation of each term, [ai − ai−1]j/(j)! is calculated for all
possible values and put in jMinuskTermMatrix[[valueIndex,j+1]].

For i from 2 through 2n+ 2, the algorithm proceeds by calculating the vector v(i, ·) for each
i using the vector v(i− 1, ·). Thus, only two vectors need to be stored, v(i− 1, ·) and v(i, ·).
Since there are at most d2t− 1e = twoTminusOneCeiling non-zero values in both v(i− 1, ·)
and v(i, ·), the two vectors vOldVector[[]] and vNewVector[[]] each with d2t−1e elements
are used to store the non-zero parts of v(i− 1, ·) and v(i, ·) respectively. Specifically, the first
value vOldVector[[1]] stores the value of v(i − 1, j) for j = vOldBeginIndex. In general,
the value of v(i − 1, j) is stored in vOldVector[[j-vOldBeginIndexMinusOne]]. Similarly,
the value of v(i, j) is stored in vNewVector[[j-vNewBeginIndexMinusOne]].

9. The Durbin matrix formula

Durbin (1973, formulae 2.4.3 and 2.4.4 on pages 10–11) develops a formula (DurbinMatrix)
that constructs a matrix H and then raises it to the power n, Hn. Let k = dte, δ = k − t,
p = 2k − 1, and

f(δ, p) =

{
0 if δ < 1/2
(2δ − 1)p if δ ≥ 1/2

Compute Hn using the matrix H with p rows and p columns shown below.

H =



1− δ 1 0 0 0 · · · 0
(1− δ2)/2! 1/1! 1 0 0 · · · 0
(1− δ3)/3! 1/2! 1/1! 1 0 · · · 0
(1− δ4)/4! 1/3! 1/2! 1/1! 1 · · · 0

...
...

...
...

...
. . .

...
1− δp−1

(p− 1)!
1

(p− 1)!
1

(p− 2)!
1

(p− 3)!
1

(p− 4)!
· · · 1

1− δp + f(δ, p)
p!

1− δp−1

(p− 1)!
1− δp−2

(p− 2)!
1− δp−3

(p− 3)!
1− δp−4

(p− 4)!
· · · 1− δ


.

If Hn(k, k) represents the (k, k)th element in Hn, then

P

(
Dn ≥

t

n

)
= 1− n!

nn
Hn(k, k).

The Durbin matrix formula can also produce all the probabilities, P (Dm ≥ t/m) = 1 −
m!Hm(k, k)/mm, for every m = 1, 2, · · · , n where m ≥ t. Using the formula above,



24 Evaluating The Two-Sided One Sample K-S Test Sampling Distribution

Recursion Mathematica Recursion Mathematica
function function function function
variable variable variable variable

t t ai aVector[[i]]

n sampleSize v(i− 1, j) vOldVector[[j]]

i i v(i, j) vNewVector[[j]]

j j n+ 1 sampleSizePlusOne

k k 2n+ 1 twoSampleSizePlusOne

btc tFloor 2n+ 2 twoSampleSizePlusTwo

dte tCeiling
1
n

oneOverSampleSize

i! FACT[[i+1]] d2t− 1e twoTminusOneCeiling

max{1, bnai−1 − tc+ 2} vOldBeginIndex

min{n+ 1, dnai−1 + te} vOldEndIndex

max{1, bnai − tc+ 2} vNewBeginIndex

min{n+ 1, dnai + te} vNewEndIndex

max{1, bnai−1 − tc+ 2} − 1 vOldBeginIndexMinusOne

max{1, bnai − tc+ 2} − 1 vNewBeginIndexMinusOne

max{1, bnai−1 − tc+ 2} kLowBound

min{j, dnai−1 + te} kHighBound

ai − ai−1 aiMinusaiMinusOneVector[[i]]

ai − ai−1 differentValuesaiMinusaiMinusOneVector[[valueIndex]]

0 differentValuesaiMinusaiMinusOneVector[[1]]

a2 differentValuesaiMinusaiMinusOneVector[[2]]

2a2 differentValuesaiMinusaiMinusOneVector[[3]]

1
n
− 2a2 differentValuesaiMinusaiMinusOneVector[[4]]

[ai − ai−1]j−k

(j − k)!
jMinuskTermMatrix[[valueIndex,j-k+1]]

P

(
Dn ≥

t

n

)
rightTailProbability

Table 7: Pomeranz recursion formula and Mathematica function variables.

Marsaglia, Tsang, and Wang (2003) developed a double precision C program that for sample
size n = 16, 000 and test statistic t = 171.9008 (d = t/n = 0.0107438) computes P (D16,000 ≤
0.0107438) = 0.95060023909487545. Since the actual value is P (D16,000 ≤ 0.0107438) =
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0.9506002390950460063 · · ·, the C program has only 11 digits of accuracy not the 13 to 15
digits claimed by the authors.

The result of the Durbin matrix formula for sample size n = 3 and region 2 ≤ t < 3 will
not be derived in the following subsections because of the complexity of the formula. For
example, matrix H has five rows and five columns while f(δ, p) has two values: f(δ, p) = 0

for
9
4
< t < 3 and f(δ, p) = (5− 2t)5 for 2 ≤ t ≤ 9

4
.

9.1. The Durbin matrix recursion formula for small test statistic values

For all sample sizes n and region 1/2 < t < 1, the following derivation shows that the Durbin
matrix recursion formula reduces to the exact formula in Section 2.

k = dte = 1 δ = k − t = 1− t p = 2k − 1 = 1 f(δ, p) = 0 1− 2δ = 2t− 1

H = [1− 2δ] = [2t− 1] H2 =
[
(2t− 1)2

]
H3 =

[
(1− 2δ)3

]
=
[
(2t− 1)3

]
Hn = [(1− 2δ)n] = [(2t− 1)n] P

(
Dn ≥

t

n

)
= 1− n!

nn
Hn(1, 1) = 1− n!

nn
(2t− 1)n

9.2. Diagonal elements in matrix H for a sample size of three

For sample size n = 3 and p = 3, define A, B, and C below.

A = 1− δ, B =
1
2

(
1− δ2

)
, C =

1− 2δp + f(δ, p)
p!

.

Then the matrix H for n = 3 and p = 3 is

H =

 A 1 0
B 1 1
C B A


and the diagonal elements for H3 are

H3(1, 1) = A3 + 2AB +B + C

H3(2, 2) = 2AB + 4B + C + 1

H3(3, 3) = A3 + 2AB +B + C

9.3. The Durbin matrix formula for a sample size of three

For sample size n = 3 and region 1 < t ≤ 3/2, the following derivation using the formulae in
Section 9.2 shows that the Durbin matrix formula reduces to the exact formula in Section 2.
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k = dte = 2 δ = 2− t p = 2k − 1 = 3 f(δ, p) = (2δ − 1)p = (3− 2t)3

A = t− 1 B =
1
2
− 1

2
(2− t)2 = −1

2
t3 + 2t− 3

2

C =
1
6
− 1

3
(2− t)3 +

1
6

(3− 2t)3 = −(t− 2)(t− 1)2

H3(2, 2) = 2AB + 4B + C + 1 = −2t3 + 7t2 − 4t

P

(
D3 ≥

t

3

)
= 1− 2

9
H3(2, 2) =

4
9
t3 − 14

9
t2 +

8
9
t+ 1

For sample size n = 3 and region 3/2 ≤ t < 2, the following derivation using the formulae in
Section 9.2 shows that the Durbin matrix formula reduces to the exact formula in Section 2.

k = dte = 2 δ = 2− t p = 2k − 1 = 3 f(δ, p) = 0

A = t− 1 B =
1
2
− 1

2
(2− t)2 = −1

2
t3 + 2t− 3

2

C =
1
6
− 1

3
(2− t)3 +

1
6

(3− 2t)3 = −(t− 2)(t− 1)2

H3(2, 2) = 2AB + 4B + C + 1 = −2
3
t3 + t2 + 5t− 9

2

P

(
D3 ≥

t

3

)
= 1− 2

9
H3(2, 2) =

4
27
t3 − 2

9
t2 − 10

9
t+ 2

9.4. Durbin matrix recursion formula and Mathematica function variables

Table 8 contains the relationship between the variables in the recursion formula above and
the variables in the Mathematica function DurbinMatrixKS2SidedRTProbRational contained
in Section 7 of the KS2SidedOneSampleRational.nb file. The function
DurbinMatrixKS2SidedRTProbRational has four arguments [tIn_, internalPrecision_,
sampleSizeIn_, intermediateOutput_]. t is set equal to the rational number value of tIn
and sampleSize is set equal to the truncated value of sampleSizeIn so that the input values
tIn and sampleSizeIn are not changed by the function.

10. Implementation considerations

Sections 2 through 9 developed eight different methods to calculate the two-sided one sample
K-S p value P (Dn ≥ d = t/n). As noted earlier, the six recursion formulae (Kolmogorov,
Tingey, Epanechnikov, Noe, Durbin, Pomeranz) and the matrix formula (DurbinMatrix) un-
like the Exact formula can be used for sample sizes exceeding n = 31. Table 9 contains a
summary of the Mathematica function name implementing each formula, the name of the file
containing the function, and its location in the file.

Each Mathematica function listed in Table 9 has a built-in intermediate output option that is
controlled by the value of the input variable intermediateOutput which can be used to show
how the function works and if necessary to facilitate debugging. No intermediate output is
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Recursion Mathematica Recursion Mathematica
function function function function
variable variable variable variable

t t δ = k − t delta

n sampleSize
1
i!

FACTinverse[[i]]

k = dte tCeil H(i, j) H[[i,j]]

p = 2k − 1 TwoCeilingTminusOne Hn(i, j) HpowerSampleSize[[i,j]]

P

(
Dn ≥

t

n

)
rightTailProbability

Table 8: Durbin matrix recursion formula and Mathematica function variables.

produced for intermediateOutput ≤ 0 while increasing amounts of intermediate output are
produced for larger values of intermediateOutput. The maximum amount of intermediate
output is produced for intermediateOutput ≥ 4.

Since all numbers in the Mathematica function for each formula are rational numbers, the
intermediate output gives two forms of most numbers: the internal rational number and a
decimal form of the number with internalPrecision significant decimal digits. Giving the
decimal equivalent of a rational number makes the intermediate output easier to interpret.

As an accuracy check for the eight different Mathematica functions (Exact, Kolmogorov,
Tingey, Epanechnikov, Noe, Durbin, Pomeranz, and DurbinMatrix), a Mathematica pro-
gram (function KS2SidedOneSampleFormulaeAccuracyCheck contained in Section 8 of the
KS2SidedOneSampleRational.nb file) was written to test whether they all get the same re-
sult. Because the Kolmogorov recursion formula is only applicable for integer t, it is not run
for non-integer t. For every test statistic t and sample size n tried, the right tail probability
was calculated for each of the eight Mathematica functions and the results compared. An
error message was written if any right tail probability was different from any other right tail
probability. The program was run on all test statistics t from 1 to n using an increment of
0.1 and for all sample sizes from n = 2 to n = 31. Since no errors were found, we are certain
that all eight Mathematica functions are correct.

The Noe, Pomeranz, and Durbin matrix formulae are the only formulae that contain all non-
negative terms and therefore are not subject to catastrophic cancelation. Using intermediate
results, the Kolmogorov, Tingey, Durbin, and Durbin matrix formulae can produce all the
probabilities, P (Dk ≥ t/k) for every k = 1, 2, · · · , n when t < k.

11. Timing the seven formulae

In order to determine which of the seven formulae (the six recursion formulae and the matrix
formula) is the fastest, a Mathematica function SevenFormulaeTiming contained in Section 9
of the KS2SidedOneSampleRational.nb file was developed to time all seven formula and
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Formula name Mathematica function name Listed in file section
Contained in file name

Exact ExactKS2SidedRTProbs 1
ExactKS2SidedOneSample.nb

Kolmogorov KolmogorovKS2SidedRTProbsRational 1
KS2SidedOneSampleRational.nb

Tingey TingeyKS2SidedRTProbsRational 2
KS2SidedOneSampleRational.nb

Epanechnikov EpanechnikovKS2SidedRTProbRational 3
KS2SidedOneSampleRational.nb

Noe NoeKS2SidedRTProbRational 4
KS2SidedOneSampleRational.nb

Durbin DurbinKS2SidedRTProbRational 5
KS2SidedOneSampleRational.nb

Pomeranz PomeranzKS2SidedRTProbRational 6
KS2SidedOneSampleRational.nb

DurbinMatrix DurbinMatrixKS2SidedRTProbRational 7
KS2SidedOneSampleRational.nb

Table 9: Mathematica function name and file name for the eight formulae.

create a spreadsheet file of the results that can be opened in Excel. For every sample size n
and test statistic t, the p value is calculated for each of the seven formulae and the computer
time needed by each formula is recorded. In addition, the seven p values are compared to
make sure they are all equal. If some are not equal, an error message is written.

Tables 10 and 11 contain computational experience for the seven formulae (six recursion
formulae and DurbinMatrix) where all timings were done on a Pentium IV running at 2.4 GHz.
Because the Kolmogorov recursion formula is only valid for integer t, the entries in these tables
for Kolmogorov are blank for non-integer test statistics t. Although Tingey’s recursion formula
reduces mathematically to the Kolmogorov recursion formula for integer t, the tables show
that the Kolmogorov recursion formula is always slightly faster than Tingey’s. This difference
in speed is due to the extra overhead incurred by the more general Tingey recursion formula.
The seven formulae, ranging from the fastest to the slowest computational times for values of
t from 30 to 40, are Durbin, Epanechnikov, Kolmogorov, Tingey, Durbin matrix, Pomeranz,
and Noe. The computation time for every formula increases as both the test statistic t and
sample size n increase. As the test statistic t increases, the computation time for the Durbin
matrix formula increases much faster than the six recursion formulae. Although the Durbin
matrix formula is slightly faster than the Durbin recursion formula for n = 500 and very
small values of t, the Durbin recursion formula is much faster in all other situations. Since it
is almost always the fastest formula, the rest of the paper uses the Durbin recursion formula
exclusively.
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Sample Recursion Time in seconds to compute P (Dn ≥ t/n) for t =
size n formula 4.9 5 9.9 10 14.9 15 19.9 20

50 Kolmogorov .078 .328 .703 1.250
Tingey .093 .110 .422 .406 .922 .875 1.562 1.516

Epanechnikov .047 .047 .078 .079 .093 .078 .110 .094
Noe .218 .172 .813 .625 1.609 1.234 2.250 1.797

Durbin .016 .016 .031 .031 .063 .031 .047 .031
Pomeranz .188 .125 .687 .407 1.437 .828 2.328 1.281

DurbinMatrix .047 .031 .532 .312 1.688 1.062 3.688 2.500
100 Kolmogorov .188 .781 1.813 3.328

Tingey .250 .266 1.062 .985 2.437 2.172 4.391 3.906
Epanechnikov .188 .187 .250 .235 .328 .281 .406 .344

Noe .578 .437 2.438 1.718 5.453 3.735 9.234 6.375
Durbin .047 .032 .109 .078 .156 .110 .203 .140

Pomeranz .469 .297 2.000 1.078 4.484 2.344 7.922 4.062
DurbinMatrix .093 .063 .969 .578 3.484 2.188 8.250 5.312

200 Kolmogorov .422 1.969 4.734 8.875
Tingey .625 .594 2.860 2.390 6.766 5.531 12.500 10.156

Epanechnikov .703 .672 .953 .828 1.219 1.000 1.469 1.218
Noe 1.719 1.156 7.735 4.672 18.484 10.891 33.203 19.578

Durbin .125 .078 .282 .187 .484 .313 .688 .468
Pomeranz 1.406 .719 6.390 3.094 15.219 7.109 28.391 13.062

DurbinMatrix .172 .094 1.922 1.094 7.218 4.313 17.844 10.953
300 Kolmogorov .719 3.609 8.938 16.937

Tingey 1.157 .984 5.453 4.266 13.343 10.188 25.219 19.015
Epanechnikov 1.610 1.500 2.062 1.828 2.641 2.218 3.235 2.640

Noe 3.829 2.266 17.234 9.469 41.047 22.109 74.563 40.125
Durbin .203 .141 .547 .359 .937 .610 1.359 .906

Pomeranz 2.828 1.328 13.704 6.078 33.609 14.375 62.328 26.469
DurbinMatrix .266 .156 3.281 1.875 12.282 7.218 30.782 18.625

400 Kolmogorov 1.094 5.672 14.250 27.281
Tingey 1.844 1.453 8.953 6.563 22.219 15.953 41.797 30.063

Epanechnikov 2.875 2.656 3.703 3.234 4.688 3.891 5.734 4.641
Noe 6.171 3.391 27.969 14.219 66.796 33.625 122.547 61.187

Durbin .328 .188 .890 .563 1.578 .984 2.282 1.437
Pomeranz 4.828 2.094 24.250 10.047 60.250 24.187 112.547 45.203

DurbinMatrix .343 .157 4.125 2.281 15.984 9.063 40.578 23.859
500 Kolmogorov 1.484 8.141 20.781 40.344

Tingey 2.687 1.938 13.453 9.281 33.750 22.938 64.000 43.796
Epanechnikov 4.516 4.140 5.875 5.094 7.516 6.203 9.203 7.406

Noe 11.422 5.766 52.218 24.813 123.312 59.094 224.766 106.156
Durbin .484 .266 1.344 .812 2.391 1.437 3.485 2.156

Pomeranz 7.672 3.156 39.391 15.656 98.875 38.203 186.219 72.375
DurbinMatrix .454 .203 5.485 2.968 21.672 12.157 56.000 32.328

Table 10: Computational times for all formulae using rational arithmetic, I. (All timings on
a Pentium IV running at 2.4 GHz.)
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Sample Recursion Time in seconds to compute P (Dn ≥ t/n) for t =
size n formula 24.9 25 29.9 30 34.9 35 39.9 40

50 Kolmogorov 1.906 2.688 3.547 4.469
Tingey 2.422 2.265 3.360 3.156 4.359 4.094 5.453 5.141

Epanechnikov .125 .093 .110 .093 .110 .094 .093 .078
Noe 2.485 2.172 2.375 2.109 2.187 1.938 1.953 1.734

Durbin .031 .032 .031 .031 .016 .015 .016 .000
Pomeranz 3.172 1.734 3.938 2.156 4.578 2.484 5.000 2.703

DurbinMatrix 6.812 4.766 11.234 8.156 17.375 12.938 25.672 19.953
100 Kolmogorov 5.312 7.672 10.500 13.844

Tingey 6.891 6.125 9.984 8.797 13.687 11.969 17.719 15.687
Epanechnikov .469 .390 .532 .453 .594 .468 .641 .500

Noe 13.485 9.390 17.719 12.641 21.578 15.843 24.594 18.781
Durbin .250 .172 .266 .187 .266 .188 .265 .203

Pomeranz 12.094 6.141 16.796 8.360 21.890 10.797 27.032 13.296
DurbinMatrix 15.875 10.531 26.907 18.000 41.656 28.297 60.687 42.657

200 Kolmogorov 15.000 22.734 30.641 41.484
Tingey 20.235 16.515 29.938 24.234 41.719 33.625 55.500 45.109

Epanechnikov 1.781 1.438 2.078 1.672 2.375 1.891 2.719 2.125
Noe 51.125 30.344 72.609 43.484 96.641 58.328 122.859 74.969

Durbin .891 .625 1.125 .750 1.297 .891 1.484 1.031
Pomeranz 44.844 20.375 65.484 29.188 89.156 39.656 116.204 51.718

DurbinMatrix 36.234 22.938 63.078 40.031 100.703 64.313 150.453 98.062
300 Kolmogorov 28.469 42.625 60.406 81.875

Tingey 41.125 31.532 61.328 46.922 86.500 65.390 115.953 88.625
Epanechnikov 3.907 3.156 4.594 3.640 5.328 4.157 6.078 4.734

Noe 117.625 64.532 169.203 91.562 229.328 125.157 296.343 163.391
Durbin 1.813 1.203 2.281 1.516 2.750 1.812 3.219 2.156

Pomeranz 102.078 43.063 150.172 62.531 208.391 86.406 276.344 115.359
DurbinMatrix 63.015 39.969 112.188 71.171 181.391 116.047 276.812 178.250

400 Kolmogorov 46.500 70.187 99.485 136.547
Tingey 69.656 50.531 104.485 75.468 147 106.641 199.375 145.468

Epanechnikov 6.953 5.547 8.203 6.375 9.484 7.344 10.859 8.344
Noe 195.094 97.391 284.312 142.657 390.640 196.735 511.406 259.594

Durbin 3.094 1.969 3.890 2.485 4.703 3.062 5.578 3.641
Pomeranz 185.703 74.313 274.812 108.828 382.469 151.844 510.766 203.203

DurbinMatrix 86.516 51.266 154.609 95.125 247.984 152.360 379.797 237.156
500 Kolmogorov 69.391 105.218 149.938 207.156

Tingey 107.532 74.265 161.703 111.766 228.703 158.735 311.156 217.953
Epanechnikov 11.188 8.859 13.219 10.312 15.375 11.844 17.703 13.547

Noe 356.187 168.422 518.047 246.485 708.625 339.296 927.094 446.797
Durbin 4.734 2.969 5.969 3.766 7.265 4.610 8.671 5.547

Pomeranz 309.844 120.234 460.906 177.266 645.844 249.093 867.969 336.156
DurbinMatrix 117.203 70.234 212.016 127.734 346.953 211.516 536.656 331.953

Table 11: Computational times for all formulae using rational arithmetic, II. (All timings on
a Pentium IV running at 2.4 GHz.)
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12. Calculating the two-sided half-width

In addition to calculating the p value for hypothesis testing, the two-sided one sample K-
S cumulative sampling distribution can be used to construct a two-sided confidence band
around the empirical distribution Fn(x). The half-width of a two-sided confidence band with
confidence coefficient 1− α and sample size n is the value of the test statistic d that satisfies
P (Dn ≥ d) = α. Determining a half-width d for a particular sample size n and confidence
coefficient 1− α means evaluating the inverse of the cumulative sampling distribution which
can only be done by search techniques such as binary search. Unlike the p value, a half-width
d cannot in practice be determined exactly because the search technique may not converge
to the exact value. For example, binary search with starting values of 0 and 1 would never
find d = 1/3 and would iterate forever. Thus, search techniques are designed to stop when a
specified accuracy is reached. Let d(n, α, ρ) represent the half-width rounded to ρ significant
digits for sample size n and confidence coefficient 1−α. Note that half-width d(n, α, ρ) is also
the hypothesis testing critical value for an α level of significance.

Computationally finding the half-width (critical value) d(n, α, ρ) is a three step process:
(1) use an approximation to find an initial value close to d(n, α, ρ), (2) use this initial value
to find upper and lower bounds on d(n, α, ρ), and (3) use a search procedure to narrow the
distance between the lower and upper bounds until both the lower and upper bounds are the
same to ρ significant digits. The first step uses the K-S one-sided one sample approximation
of Maag and Dicaire (1971) with a probability of α/2 (a confidence coefficient of 1− α/2) to
find the initial value. Specifically, the approximation α/2 ' exp

(
− [6nd+ 1]2 /18n

)
is solved

for d yielding d '
√
− ln(α/2)/2n − 1/6n. The second step gradually increases the distance

away from the initial value until both a lower and an upper bound on the actual value is
found. Step three then uses linear interpolation (linear search) to find a new bound. The
resulting linear search algorithm is shown below.

K-S two-sided half-width algorithm using linear search

Step 1 (Find initial half-width): Using the one-sided approximation, calculate the
initial half-width dApprox =

√
− ln(α/2)/2n − 1/6n. Truncate the value of

dApprox to ρ significant digits and go to Step 2.

Step 2 (Determine if initial half-width is a lower or upper bound): Compute
p = P [Dn ≥ dApprox ]. If p > α, then dApprox is a lower bound, set dL =
dApprox , set pL = p, and go to Step 3. Otherwise, dApprox is an upper bound,
set dU = dApprox , set pU = p, and go to Step 6.

Step 3 (Determine an upper bound): Convert dL to a numerator integer dNumL

and a denominator integer dDenL where dDenL is a power of ten so that dL =
dNumL/dDenL. If the number of significant digits does not exceed six, ρ ≤ 6, set
increment inc = 1/10. Otherwise ρ > 6 and set the increment inc = 10ρ−7. Go
to Step 4.

Step 4 (Construct and test a possible upper bound): Set inc = inc ∗ 10, set
dTryNum = dNumL + inc, and set dTryDen = dDenL. If dTryNum ≥ dTryDen,
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set pU = 0, set dNumU = dNumL, set dDenU = dNumL which yields the upper
bound dU = 1, and then go to Step 9. Otherwise, dTryNum < dTryDen and
calculate p = P [Dn ≥ dTryNum/dTryDen]. If p > α, then a new lower bound has
been found and go to Step 5. Otherwise, the initial upper bound has been found,
set dNumU = dTryNum, set dDenU = dTryDen, set pU = p, and go to Step 9.

Step 5 (New lower bound): Set dNumL = dTryNum, dDenL = dTryDen, and pL =
p. Go to Step 4.

Step 6 (Determine a lower bound): Convert dU to a numerator integer dNumU

and a denominator integer dDenU where dDenU is a power of ten so that dU =
dNumU/dDenU . If the number of significant digits does not exceed four, ρ ≤ 6,
set increment inc = 1/10. Otherwise ρ > 6 and set the increment inc = 10ρ−7.
Go to Step 7.

Step 7 (Construct and test a possible lower bound): Set inc = inc ∗ 10,
set dTryNum = dNumU − inc, and set dTryDen = dDenU . If inc < 10ρ−1, set
dDenU = dDenU ∗ 10, set dNumU = dNumU ∗ 10, set dTryDen = dTryDen ∗ 10,
set dTryNum = dTryNum ∗ 10, and set inc = inc ∗ 10. If dTryNum ≤ 0,
set pL = 1, set dNumL = 0, set dDenL = dTryDen which yields the lower
bound dL = 0, and then go to Step 9. Otherwise, dTryNum > 0 and calcu-
late p = P [Dn ≥ dTryNum/dTryDen]. If p < α, then a new upper bound has
been found and go to Step 8. Otherwise, the initial lower bound has been found,
set dNumL = dTryNum, set dDenL = dTryDen, set pL = p, and go to Step 9.

Step 8 (New upper bound): Set dNumU = dTryNum, dDenU = dTryDen, and
pU = p. Go to Step 7.

Step 9 (Linear search iteration): If dNumU − dNumL ≤ 1, go to Step 12. Using
linear interpolation, set dTryNum = bdNumL+(dNumU−dNumL)×(pL−α)/(pL−
pU )c and dTryDen = dDenU . If dTryNum ≥ dNumU , set dTryNum = dNumU−1.
If dTryNum ≤ dNumL, set dTryNum = dNumL + 1. Calculate p = P [Dn ≥
dTryNum/dTryDen]. If p > α, then a new lower bound has been found and go to
Step 10. Otherwise, a new upper bound has been found and go to Step 11.

Step 10 (Linear search new lower bound): Set dNumL = dTryNum, dDenL =
dTryDen, pL = p, and go to Step 9.

Step 11 (Linear search new upper bound): Set dNumU = dTryNum, dDenU =
dTryDen, pU = p, and go to Step 9.

Step 12 (Determine whether to use lower or upper bound): Calculate p =
P [Dn ≥ (dNumL × 10 + 5)/(dDenL × 10)]. If p < α, then use the lower bound by
setting dNumF = dNumL, dDenF = dDenL, and dF = dNumL/dDenL, and then
going to Step 13. Otherwise, use the upper bound by setting dNumF = dNumU ,
dDenF = dDenU , dF = dNumU/dDenU , and then going to Step 13.

Step 13 (Half-width found): Terminate the algorithm with the half-width dF =
dNumF /dDenF .
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Linear Linear
search Mathematica Search Mathematica

algorithm function algorithm function
variable variable variable variable

α alpha, alphaIn dL =
dNumL

dDenL
dLowLimitNumerator

dLowLimitDenominator
n sampleSize, sampleSizeIn dNumU dHighLimitNumerator

ρ numberDigitsPrecision dDenU dHighLimitDenominator

dApprox dOneSide dU =
dNumU

dDenU
dHighLimitNumerator

dHighLimitDenominator

p alphaOutput inc dNumeratorIncrement

α/2 oneHalfAlpha dTryNum dTryNumerator

pL dLowLimitAlpha dTryDen dTryDenominator

pU dHighLimitAlpha dNumF dNumeratorFinal

dNumL dLowLimitNumerator dDenF dDenominatorFinal

dDenL dLowLimitDenominator dF dFinal

Table 12: Linear search algorithm and Mathematica function variables.

Table 12 contains the relationship between the variables in the linear search algorithm listed
above and the Mathematica function KS2SidedHalfWidthByLinearSearch contained in Sec-
tion 10 of the KS2SidedOneSampleRational.nb file.

The Mathematica function KS2SidedHalfWidthsToFile contained in Section 11 of the
KS2SidedOneSampleRational.nb file finds half-widths using linear search with the Durbin
formula and writes these half-widths to a comma delimited file for input into Excel and a text
file that can be used as the input into timing programs. The text file contains half-widths
where every digit in a half-width is output separately so the half-width can be reconstructed to
any desired accuracy. These text files will be used as input files to produce the computational
experience in Section 14.

Tables 13 and 14 contain the half-widths to six digits of precision (ρ = 6) for
α = 0.2, 0.1, 0.05, 0.02, 0.01, 0.001 and representative sample sizes from n = 2 through n = 500.

13. Test statistic complexity

The test statistics d = t/n used in Tables 10 and 11 are simple rational numbers with at most
six integer digits in both the numerator and denominator. A natural question to ask is how
does increasing the number of digits in the test statistic’s numerator and denominator effect
the computation time.

Let the complexity of a rational number be measured by the number of digits in its numerator
and denominator integers. To understand how the complexity of the test statistic d and the
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Sample Half-width d(n, α, ρ = 6)
size n α = 0.2 α = 0.1 α = 0.05 α = 0.02 α = 0.01 α = 0.001

2 .683772 .776393 .841886 .900000 .929289 .977639
3 .564810 .636045 .707598 .784557 .829002 .920630
4 .492653 .565216 .623939 .688870 .734238 .850465
5 .446973 .509449 .563275 .627180 .668531 .781369
6 .410354 .467993 .519262 .577407 .616607 .724791
7 .381452 .436068 .483424 .538440 .575812 .679305
8 .358286 .409622 .454267 .506543 .541793 .640979
9 .339071 .387463 .430011 .479596 .513317 .608464

10 .322568 .368662 .409246 .456624 .488932 .580417
11 .308257 .352419 .391224 .436703 .467702 .555878
12 .295734 .338149 .375430 .419178 .449045 .534217
13 .284662 .325487 .361432 .403621 .432473 .514899
14 .274770 .314168 .348901 .389695 .417616 .497534
15 .265849 .303970 .337596 .377127 .404199 .481818
16 .257746 .294717 .327333 .365709 .392007 .467505
17 .250350 .286266 .317963 .355275 .380862 .454398
18 .243564 .278508 .309360 .345693 .370622 .442338
19 .237309 .271354 .301425 .336852 .361170 .431192
20 .231519 .264731 .294075 .328661 .352411 .420851
21 .226137 .258574 .287242 .321044 .344263 .411222
22 .221116 .252832 .280869 .313936 .336659 .402227
23 .216419 .247459 .274904 .307283 .329540 .393800
24 .212012 .242417 .269307 .301039 .322857 .385883
25 .207866 .237674 .264041 .295163 .316567 .378427
26 .203957 .233202 .259075 .289621 .310633 .371388
27 .200262 .228974 .254380 .284381 .305022 .364729
28 .196763 .224971 .249934 .279417 .299707 .358418
29 .193443 .221172 .245715 .274706 .294661 .352424
30 .190287 .217560 .241703 .270227 .289864 .346722
31 .187282 .214122 .237884 .265962 .285295 .341290
32 .184416 .210842 .234241 .261893 .280936 .336106
33 .181679 .207710 .230761 .258007 .276772 .331152
34 .179061 .204714 .227434 .254290 .272789 .326411
35 .176555 .201846 .224247 .250730 .268974 .321870
36 .174151 .199095 .221191 .247316 .265315 .317513
37 .171844 .196455 .218257 .244038 .261803 .313329
38 .169627 .193918 .215438 .240889 .258427 .309307
39 .167494 .191477 .212727 .237858 .255179 .305437
40 .165440 .189127 .210115 .234940 .252051 .301709
41 .163461 .186862 .207598 .232128 .249036 .298115
42 .161552 .184677 .205170 .229414 .246127 .294646
43 .159708 .182567 .202826 .226794 .243319 .291296
44 .157927 .180529 .200561 .224262 .240604 .288059
45 .156204 .178557 .198370 .221814 .237979 .284927
46 .154537 .176650 .196250 .219445 .235439 .281896
47 .152923 .174802 .194197 .217150 .232978 .278960
48 .151358 .173012 .192208 .214926 .230594 .276114
49 .149841 .171276 .190278 .212769 .228281 .273353
50 .148369 .169592 .188406 .210677 .226037 .270675

Table 13: Half-width d(n, α, ρ = 6) to six significant digits for n = 2 to n = 50.
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Sample Half-width d(n, α, ρ = 6)
size n α = 0.2 α = 0.1 α = 0.05 α = 0.02 α = 0.01 α = 0.001

60 .135708 .155103 .172305 .192675 .206731 .247614
70 .125833 .143804 .159747 .178632 .191668 .229607
80 .117850 .134671 .149596 .167280 .179490 .215041
90 .111223 .127089 .141169 .157855 .169379 .202942

100 .105605 .120663 .134028 .149868 .160809 .192684
110 .100765 .115127 .127874 .142985 .153424 .183843
120 .0965371 .110291 .122500 .136974 .146974 .176119
130 .0928023 .106019 .117753 .131665 .141276 .169296
140 .0894716 .102210 .113520 .126930 .136195 .163210
150 .0864769 .0987857 .109714 .122673 .131627 .157738
160 .0837651 .0956848 .106268 .118818 .127491 .152783
170 .0812944 .0928596 .103129 .115307 .123723 .148268
180 .0790308 .0902715 .100253 .112090 .120271 .144132
190 .0769471 .0878890 .0976054 .109129 .117093 .140325
200 .0750204 .0856863 .0951578 .106391 .114155 .136804
210 .0732321 .0836418 .0928860 .103850 .111429 .133537
220 .0715662 .0817373 .0907699 .101483 .108889 .130493
230 .0700095 .0799577 .0887925 .0992717 .106515 .127649
240 .0685504 .0782898 .0869393 .0971989 .104291 .124983
250 .0671792 .0767223 .0851977 .0952510 .102200 .122478
260 .0658873 .0752456 .0835570 .0934160 .100231 .120118
270 .0646675 .0738513 .0820078 .0916833 .0983719 .117889
280 .0635131 .0725319 .0805419 .0900438 .0966124 .115781
290 .0624187 .0712809 .0791521 .0884894 .0949443 .113781
300 .0613790 .0700927 .0778320 .0870129 .0933599 .111883
310 .0603899 .0689621 .0765759 .0856081 .0918524 .110076
320 .0594471 .0678847 .0753789 .0842694 .0904158 .108354
330 .0585473 .0668563 .0742365 .0829917 .0890446 .106710
340 .0576873 .0658735 .0731445 .0817705 .0877342 .105140
350 .0568642 .0649328 .0720995 .0806018 .0864800 .103636
360 .0560754 .0640314 .0710981 .0794819 .0852782 .102196
370 .0553187 .0631666 .0701374 .0784075 .0841252 .100814
380 .0545918 .0623360 .0692147 .0773755 .0830178 .0994867
390 .0538930 .0615374 .0683276 .0763834 .0819532 .0982106
400 .0532204 .0607688 .0674737 .0754285 .0809285 .0969824
410 .0525724 .0600284 .0666512 .0745087 .0799414 .0957992
420 .0519476 .0593144 .0658581 .0736217 .0789896 .0946584
430 .0513446 .0586254 .0650927 .0727658 .0780711 .0935574
440 .0507622 .0579599 .0643534 .0719390 .0771839 .0924940
450 .0501992 .0573166 .0636388 .0711399 .0763264 .0914662
460 .0496545 .0566943 .0629476 .0703669 .0754968 .0904719
470 .0491273 .0560918 .0622784 .0696185 .0746938 .0895093
480 .0486165 .0555083 .0616302 .0688936 .0739159 .0885769
490 .0481214 .0549426 .0610018 .0681909 .0731618 .0876731
500 .0476412 .0543938 .0603923 .0675093 .0724304 .0867964

Table 14: Half-width d(n, α, ρ = 6) to six significant digits for n = 60 to n = 500.
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Sample Attributes Input test statistic d
size n of P (Dn ≥ d) 3/100 31/1000 311/10000 3111/100000

200 No. of numerator digits 441 581 730 930

No. of denominator digits 441 581 730 930

p value to 5 decimal digits 0.99144 0.98758 0.98713 0.98709

Time in seconds to compute 0.11 0.156 0.203 0.265

1, 000 No. of numerator digits 2973 2975 3700 4700

No. of denominator digits 2973 2975 3701 4700

p value to 5 decimal digits 0.32269 0.28581 0.28229 0.28194

Time in seconds to compute 14.531 15.609 27.36 43.25

2, 000 No. of numerator digits 6566 6568 7966 9408

No. of denominator digits 6567 6569 7967 9410

p value to 5 decimal digits 0.053546 0.041923 0.040891 0.040789

Time in seconds to compute 201.969 209.579 371.578 573.047

Table 15: p values using the Durbin recursion formula. (All timings on a Pentium IV running
at 2.4 GHz.)

sample size n affect the complexity of the p value, consider the following three examples.
P (D4 ≥ 3/10) = 1927/2500 has 4 digits in both the numerator and denominator integers.
P (D4 ≥ 31/100) = 9240701/12500000 has 7 digits in the numerator integer and 8 digits in the
denominator integer. P (D6 ≥ 3/10) = 2247811/4050000 has 7 digits in both the numerator
and denominator integers. These three examples suggest that the complexity of the p value
increases as the complexity of the test statistic increases and as the sample size increases.
Table 15 shows that both the complexity of the p value and the time in seconds to compute
the p value, increases with the complexity of the test statistic d and the sample size n.

14. Computational times using the half-widths

Using selected half-widths from Tables 13 and 14, Table 16 contains the Durbin computational
times so a time for ρ = 3 significant digits can be easily compared to the corresponding time
for ρ = 6. As expected from the results in Section 13, the computational times for half-widths
with ρ = 6 significant digits are greater than those for ρ = 3. The computational times in
Table 16 were produced by the Mathematica function TimingToFileByAlphaRationalDurbin
contained in Section 12 of the KS2SidedOneSampleRational.nb file.

15. Summary and conclusions

Eight different formulae (the exact, Kolmogorov, Tingey, Epanechnikov, Noe, Durbin, Pomer-
anz, and Durbin matrix) for calculating the two-sided one sample K-S p value were identified.
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Sample Digits of
size precision Time in seconds for Durbin to calculate P [Dn ≥ d(n, α, ρ)]
n ρ α = 0.02 α = 0.1 α = 0.05 α = 0.02 α = 0.01 α = 0.001

50 3 0.031 0.016 0.047 0.047 0.047 0.062

6 0.047 0.047 0.062 0.063 0.062 0.063

100 3 0.109 0.125 0.141 0.125 0.172 0.203

6 0.172 0.234 0.250 0.266 0.296 0.344

200 3 0.328 0.734 0.828 0.735 0.797 0.984

6 1.110 1.343 1.500 1.453 1.313 1.844

300 3 1.609 2.032 2.187 2.000 2.938 2.609

6 2.719 4.016 3.390 5.235 5.734 5.828

400 3 3.359 3.985 2.187 5.235 5.718 5.297

6 6.766 7.969 9.562 9.125 9.891 14.125

500 3 4.391 5.219 6.000 4.921 7.547 9.453

6 11.093 13.594 15.938 18.359 17.594 23.594

1, 000 3 30.094 21.203 41.485 47.515 52.969 41.093

6 71.781 82.125 97.391 98.141 153.234 192.016

2, 000 3 256.235 315.328 359.906 416.062 457.422 344.390

6 574.828 1017.270 1110.080 677.265 1387.490 1668.440

Table 16: Time In seconds for Durbin to calculate P [Dn ≥ d(n, α, ρ)]. (All timings on a
Pentium IV running at 2.4 GHz.)

Since the exact formula has a different piecewise polynomial for each sample size and the
number of terms in the piecewise polynomial grows rapidly with the sample size, the piece-
wise polynomial has only been generated for sample sizes n ≤ 31. Of the remaining seven
formulae, the Kolmogorov, Tingey, Epanechnikov, Noe, Durbin, and Pomeranz formulae are
complex recursion formulae while the Durbin matrix formula is a matrix formula. Because
of the complexity of these seven formulae which were all derived prior to 1973, it has been
impossible to calculate p values exactly. Given the advances in computing power and com-
putational software in the past thirty years, it is time to devise techniques to accurately
calculate the two-sided one sample K-S p values and determine which of the seven formulae is
most efficient. Since rational arithmetic allows the exact evaluation of each formula, all seven
formulae were implemented in rational arithmetic using Mathematica and the correctness of
the code verified by comparing various p values generated by all eight formulae.

For the six recursion formulae and the Durbin matrix formula, the analysis of computational
times revealed that the Durbin recursion formula is almost always the fastest. Using the
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Durbin recursion formula, a linear search technique to determine the two-sided half-width to
a specified number of digits of precision ρ was developed. Using the half-widths as input, the
computational time needed by the Durbin recursion formula was found for various sample
sizes n ≤ 2, 000, p values α, and digits of precision ρ. Computational time increases with
increasing sample size n, decreasing p value α, and increasing digits of precision ρ.
One direction for future research is to use the methodology in this paper to systematically
evaluate other K-S sampling distributions. A logical candidate for such an in-depth analysis is
the commonly used two-sample K-S sampling distributions (difference between two empirical
distributions) for equal and unequal sample sizes. Other K-S tests such as restricted-range
tests (two distributions compared over a portion of their range) and ratio tests (the ratio of
one distribution to another) have not been implemented in commercial software because of
the difficulty in calculating p values due to the complexity of the formulae. In order for these
tests to be implemented in commercial software and become available to the general user,
research using the methodology developed in this paper is a necessary first step.
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