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Abstract

We present a new R software package lawstat that contains statistical tests and pro-
cedures that are utilized in various litigations on securities law, antitrust law, equal em-
ployment and discrimination as well as in public policy and biostatistics. Along with the
well known tests such as the Bartels test, runs test, tests of homogeneity of several sample
proportions, the Brunner-Munzel tests, the Lorenz curve, the Cochran-Mantel-Haenszel
test and others, the package contains new distribution-free robust tests for symmetry,
robust tests for normality that are more sensitive to heavy-tailed departures, measures
of relative variability, Levene-type tests against trends in variances etc. All implemented
tests and methods are illustrated by simulations and real-life examples from legal cases,
economics and biostatistics. Although the package is called lawstat, it presents imple-
mentation and discussion of statistical procedures and tests that are also employed in a
variety of other applications, e.g., biostatistics, environmental studies, social sciences and
others, in other words, all applications utilizing statistical data analysis. Hence, name of
the package should not be considered as a restriction to legal statistics. The package will
be useful to applied statisticians and “quantitatively alert practitioners” of other subjects
as well as an asset in teaching statistical courses.

Keywords: goodness-of-fit tests, robust measures of location and scale, tests for symmetry,
tests for randomness, tests for homogeneity of proportions, tests for equality of variances.

1. Introduction

Rapid developments in information technology have led to the fact that the nature of many
legal cases, especially on antitrust law, securities law, equal employment, intellectual property
and product liability, became very statistically oriented. This, in turn, implies an increasing
demand for statisticians to serve as expert witnesses and, thus, a need for flexible, reliable and
user-friendly software that provides modern tests and procedures in statistical science. More
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importantly, the same statistical tests and procedures can be used with the same success in le-
gal settings, biostatistics, finance, environmental studies and many other fields requiring data
analysis. Unfortunately in many cases there is a minor or no interaction between practitioners
of statistics in law, e.g., professional consultants, and applied statisticians working in other
fields, which creates a gap between up-to-date findings and advances in theoretical statistics
and methods used by practitioners in legal contexts. Hence, the goal of this package and
illustrating it paper is not only to develop a free and publicly available software routines
for statistical methods utilized in legal settings but more broadly, try to link similar statistical
issues and problems arisen in a variety of cross-disciplinary research: from legal statistics to
atmospheric sciences. Although the package is called lawstat, it presents implementation and
discussion of statistical procedures and tests that are also employed in a broad range of other
applications, e.g., biostatistics, environmental studies, social sciences and others, in other
words, all applications utilizing statistical data analysis. Hence, name of the package should
not be considered as a restriction to legal statistics. The package and illustrating it paper
are intended for applied statisticians and “quantitatively alert practitioners” of law and other
subjects as well as an asset in teaching applied statistical courses. Remarkably that since cre-
ation of the package lawstat in October 2006, most questions were received from researchers in
medicine, epidemiology and genetics, with occasional feedback from practitioners in law and
finance. In other words, the package is meant to be a tool for practical data analysis while the
current paper can be considered as an extended manual for this tool. If one is interested in
advanced discussion on statistics in the courtroom, use and misuse of statistical methodology
in large areas of the law, legal doctrines and different standards of proof, we suggest to consult
a number of specialized books on this subject, for example, “Statistical Reasoning in Law and
Public Policy” by Gastwirth (1988), “Statistics for Lawyers” by Finkelstein and Levin (1990),
“Prove It with Figures: Empirical Methods in Law and Litigation” by Zeisel and Kaye (1997),
“Statistical Science in the Courtroom” by Gastwirth (2000), “Science In The Law: Standards,
Statistics, and Research Issues” by Faigman, Kaye, Saks, and Saunders (2002).

We start from a short historical excurse on creating the package. The name and development
of an R package lawstat (for more details on R see R Development Core Team 2007) is moti-
vated by participation of J. L. Gastwirth and Y. R. Gel as statistical experts in a security law
case on profit sharing allegation of an Investment Firm (IF). In most of the “profit sharing”
cases, customers were alleged to have shared their profit by giving the broker or IF increased
commission business on the day of the IPO or 1–2 days before or later. The analysis per-
formed by the regulator relied on statistical procedures and tests, assuming that the observed
data under consideration are independent and/or normally distributed. For example, the
regulator compared the daily commissions on the IPO days to those on non-IPO days using
the Wilcoxon test for equality of two means and found a statistically significant difference
(the z-score of 2.37 yielding the p value of 0.02). However, the Wilcoxon test is applicable
only under assumption that the observed data are uncorrelated. The effect of dependence
on many non-parametric and goodness-of-fit tests is well known in statistical literature for
long time, see, for example, Wolff, Thomas, and Gastwirth (1967); Serfling (1968); Gastwirth
and Rubin (1975); Moore (1982); Keller-McNulty and McNulty (1987); El-Shaarawi and
Damsleth (1988), but still is frequently overlooked in practical data analysis. We show that
the commissions on IPO and Non-IPO days exhibit temporal (or serial) correlation, which
leads to the inflation of the original p value. After taking into account temporal dependence
among commission data, we obtained a much higher p value of 0.09, which contradicts with
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the claim of a regulator. The second example refers to the violation of the assumption of
normality. We can compare the hypothetical profit (HP), i.e., stock’s opening price minus the
price when the shares are resold, and the ratio of commissions to HP (C/HP). If there were
some profit sharing agreement between a broker and a client, correlation between HP and
C/HP is likely to stay around 0 or be positive. The Pearson correlation coefficient between
HP and C/HP yields non-significant result of −0.088 with the p value of 0.569. However,
both the HP and C/HP data are not normally distributed and, thus, the Pearson coefficient
is not an appropriate measure of correlation. If we apply the Spearman distribution-free
coefficient, we obtain a highly statistically significant negative correlation of −0.88 with a
p values less than 0.0001. Negative Spearman’s ρ implies that on days customers made most
money, commissions formed a consistently lower percentage than on other IPO days (Gel,
Miao, and Gastwirth 2005). Hence, the statistical findings are inconsistent with the profit
sharing accusation.

As a result of the analysis performed for the security law case, we accumulated a substan-
tial collection of various statistical tests and procedures, e.g., robust tests for normality
and symmetry, robust graphical assessment of normality, the Bartels and runs randomness
tests and the Brunner-Munzel test for equality of two means (also known as the General-
ized Wilcoxon test), the Cochran-Mantel-Haenszel test for association among two categorical
variables in each stratum while adjusting for control variables, which eventually became the
R package lawstat. The original backbone collection of the R code presented in lawstat
is constantly enriched by other statistical methods and procedures from legal cases, bio-
statistics and public policy, e.g., the Levene-typed tests for homogeneity of variances, the
Levene directional tests against trends in volatility, the Lorenz curve, and others. Some of
those methods are known and accepted in statistical analysis while others constitute new
research ideas. The lawstat package is available from the Comprehensive R Archive Network
at http://CRAN.R-project.org/package=lawstat.

The paper is organized as follows. Each section is devoted to some statistical question and
a test or a procedure associated with this question; each implemented test or procedure is
illustrated by an application to a real-world data set. In particular, the Section 2 discusses
tests for normality based on a robust estimator of scale. Such tests can be particularly
useful if one is concerned with the impact of “very-low-probability-very-high-consequence
events”. Section 3 focuses on tests for homogeneity of variances in a few groups of observations.
Section 4 deals with the tests for symmetry about an unknown median. In Section 5 we discuss
tests for randomness that can be useful if a serial correlation among observations is suspected.
The paper is concluded by final remarks in Section 6.

2. Robust procedures for testing normality

Many statistical tests and methods are based on the assumption that the data follow a nor-
mal distribution. Violation of the normality assumption can lead to unreliable or incorrect
conclusions. A problem is known for a long time and there exists an extensive literature on
how to assess a normal distribution. There are two types of methods: graphical assessment
and quantitative goodness-of-fit tests. In the next subsections we discuss how various robust
estimators of location and scale can be used in goodness-of-fit procedures for normality.

http://CRAN.R-project.org/package=lawstat
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2.1. Robust quantile-quantile (RQQ) plots

One of the most popular graphical tests for normality is the quantile-quantile (QQ) plot.
The QQ plot displays the sample data quantiles vs. the expected quantiles from a normal
distribution. If the data are in fact normally distributed, the QQ plot shows a linear rela-
tionship between the observed and expected quantiles. To simplify “by eye” evaluation of
a linear relationship, many software packages allow to add the best fitted line to the QQ
plot, or so called quantile-quantile (QQ) line. The QQ line in base R (R Development Core
Team 2007) is the line connecting the first and third observed quartiles. QQ plots are very
popular exploratory technique that allows an immediate insight into how well the observed
data satisfy the normality assumption and potential causes of non-normality, e.g., outliers,
skewness, and short/long tails. However, it might not be easy to explain meaning of sample
quartiles and the choice of such a QQ line to a person who has little background in statis-
tics, which is frequently met in court hearings. Our approach is to standardize the observed
data by subtracting the measure of cental location and dividing by the measure of scale, and
then to produce a QQ plot. Hence, if the observed data are normally distributed then the
standardized data follow N(0, 1) and the sample quantiles should lie along the 45 degree line.
Standardization of observed data prior to producing a QQ plot appeared before in other sta-
tistical software packages, e.g., SPSS (SPSS Inc. 2006). However, our idea is to utilize robust
estimators of location and scale that are less sensitive to atypical observations rather than
classical sample mean and standard deviation employed in other software. In particular, we
use median as a measure of location and Hubert’s median absolute deviation from a sample
median (MAD) (Hall and Welsh 1985) or average absolute deviation from a sample median
(MAAD) (Gastwirth 1982) as a measure of scale. MAAD is used to evaluate the fairness of
tax assessments and defined by Jn = (C/n)

∑n
i=1 |Xi −M |, where C =

√
π/2, and {X}ni=1

are observations. We call such an approach a robust quantile-quantile (RQQ) plot (Gel et al.,
2005). Our results show that in many practical situations RQQ plots provide clearer insight
into the possible causes of non-normality than the usual QQ plots. The RQQ method is
implemented as a generic function rqq. The user can choose various standardization schemes,
i.e., mean or median as a location estimator and classical standard deviation, MAD or MAAD
as a scale estimator. There also exists a choice for different QQ lines, i.e., a 45 degree line
(the default option) or the QQ line adopted in base R which passes through the first and
third quartiles. The default choice is to standardize data by median and MAD and produce a
square RQQ plot. The function rqq has also an option to list all left- and right-tailed outliers
with a user-prespecified α-significance level (by default α = 0.05).

Remark. Note that the goal of the rqq function is to present a straightforward and easy-
to-run graphical analysis for normality. To simplify utilization of this function, a user can
choose to list which and how many observations fall outside of the expected 95% interval. In
no way, this option can be considered as an advanced procedure for outlier detection, e.g.,
addressing multiple comparison issues etc, and is meant only as a simple “quick-and-dirty”
graphical representation of potential outliers.

Let us illustrate the RQQ plot by assessing normality of a data set coming from the Zuni
legal case (Zuni 2002; Gastwirth 2006; James 2007). In 1998 two Public School Districts from
the state of New Mexico filed a lawsuit disputing the finance system for public schools. The
lawcase is known as Zuni Public School District No. 89 v. US Department of Education. The
two School Districts alleged the US Department of Education in misinterpreting the Federal
Impact Aid Program and claimed that there was a shortage of about USD 180 millions since
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1999 to educate Native American students due to incorrect calculation how the federal and
state funding is to be distributed among schools. In April 2007 the Supreme Court sided with
the federal government and the School Districts asked for a rehearing.

Here we analyze 89 measurements of revenue per pupil in each school district in New Mexico
and assess whether the revenue follows a normal distribution. The Zuni data on the number
of students and revenue per pupil in each school district are available in lawstat. We use the
following R code to produce the RQQ plot and choose to list all potential outliers that fall
outside of the expected standard normal z0.025 and z0.975 quantiles:

R> data("zuni")

R> rqq(zuni[,"Revenue"], scale = "J", line.it = TRUE,

+ outliers = TRUE, alpha = 0.025)

[1] left.tail.outliers <0 rows> (or 0-length row.names)
right.tail.outliers

1 4.790642
2 7.728014
3 8.273093
4 10.480665

Figure 1 presents the usual QQ plot (left) and the RQQ plot (right) standardized by median
and J (MAAD). Clearly there exist four very extreme outliers in the right tail. Besides those
four outliers, the usual QQ plot suggests that the Zuni revenue data are almost normally
distributed. In contrast, the RQQ plot also indicates substantial deviations from the 45
degree line in the left tail.
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Figure 1: QQ and RQQ plots of the revenue data from the Zuni case. (The RQQ plot is
standardized by median and J .)
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Figure 2: QQ and RQQ plots of the Zuni revenue data without the four largest outliers.
(The RQQ plot is standardized by median and J .)

Figure 2 shows the usual QQ and RQQ plots of the revenue data after deleting the four
extreme outliers. Now both QQ and RQQ plots present similar patterns and suggest that
even after trimming the outliers, the revenue data are not normally distributed. In particular,
there exist noticeable deviations from normality in both tails, i.e., the right tail is heavier and
the left tail is shorter than expected for normally distributed data. The findings are consistent
with the original results provided by the RQQ plot for the raw (untrimmed) revenue data
and supported by histograms of the raw and trimmed data (see Figure 3).

2.2. Directed test against heavy tailed alternatives

Though graphical methods for testing normality provide an immediate idea on how closely
the data of interest follow a normal distribution, frequently a quantitative estimate of such
a closeness is required. One of the most popular goodness-of-fit methods for normality is
the Shapiro-Wilk (SW) test. Though being a very powerful test that is applicable against
all types of alternatives, i.e., being an omnibus test, SW does not provide information on
specific causes of non-normality, i.e., outliers, skewness or heavy/short tails (D’Agostino and
Stephens 1986; Shapiro and Wilk 1965). However, in many practical situations, especially in
financial data modelling, a data analyst is particularly interested in detecting heavy tailed
deviations from normality and a more specialized or directed testing procedure is needed. We
propose two tests for normality that particularly focus on detecting heavy tailed alternatives.
In both tests we utilize the average absolute deviation from the sample median (MAAD). Let
X1, X2, . . . , Xn be a sample of independent and identically distributed random variables. Let
µ, ν and σ be the population mean, median and standard deviation respectively. Let X̄, M
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Figure 3: Histograms of the Zuni revenue data with and without the four largest outliers. A
normal density curve (black line) with the same mean and standard deviation is superimposed.

and sn be the corresponding sample estimates of µ, ν and σ. Then MAAD is defined as

Jn =
C

n

n∑
i=1

|Xi −M |, C =
√
π

2
, (1)

which is shown to be a consistent estimate of scale under the null hypothesis of normality
(Gastwirth 1982). The robust estimator J is implemented as j.maad.

Our first test statistic is based on the ratio of a classical estimate of a standard deviation s
and the robust estimator J , i.e.,

R =
sn
Jn
, (2)

The intuitive idea of such a test statistic is that under the null hypothesis of normality, the
ratio s/J should be close to 1. In contrast, for symmetric heavy tailed data, a less sensitive
to deviations in the tails estimator J should be less than s. Hence, the ratio s/J is to be
greater than 1. The test statistic R is asymptotically normally distributed if X ∼ N(µ, σ)
(Gel, Miao, and Gastwirth 2007), which implies the following one-sided rejection region

reject H0 : normality, if
√
n(R− 1)
σR

≥ zα, (3)

where zα is the upper α-percentile of a standard normal distribution.

The proposed new test (SJ) is essentially a directed test focusing on detecting heavy tails
and outliers and is not expected to have good power against skewed alternatives. The SJ test
has a similar idea as the Bonnet-Seier (BS) test (Bonett and Seier 2002) that is based on
the log-transformation of the Geary G-kurtosis. The Bonett-Seier test is implemented in the



8 lawstat: An R Package for Law, Public Policy and Biostatistics

R package moments as bonett.test; see Komsta and Novomestky (2007). The G-kurtosis
utilizes an absolute moment around a sample mean while our SJ test is based on a more
robust estimator J . As shown by Gel et al. (2007), the SJ test typically yields equal or
higher power then the SJ test; hence, the BS test is omitted from further power comparison.
The new SJ test is implemented as sj.test with an option to use approximation of critical
values by a t-distribution (by default) or to estimate the exact critical values from Monte
Carlo (MC) simulations. Number of MC simulations can be selected by a user. The authors
recommend to use the exact critical values for small sample sizes (≤ 30 observations). The
output of sj.test includes a standardized test statistic, the ratio s/J and a p value. Here is
the example of the SJ test applied to the Zuni revenue data. The critical values are calculated
using 1000 MC simulations.

R> sj.test(zuni[,"Revenue"], crit.values = "empirical", N = 1000)

Test of Normality - SJ Test

data: zuni[, "Revenue"]
Standardized SJ Statistic = 27.4543, ratio of S to J = 1.774, p-value <
2.2e-16

The second test is a robust modification of the Jarque-Bera (JB) test for normality (Jarque
and Bera 1980; Bowman and Shenton 1975). In finance and econometrics, JB is the most
widely used test for detecting heavy tailed alternatives with a minor degree of skewness. The
original JB test statistic is a sum of squared sample measures of skewness and kurtosis

JB =
n

6
b1 +

n

24
(b2 − 3)2. (4)

Here
√
b1 = µ̂3/µ̂

3/2
2 is the sample skewness and b2 = µ̂4/µ̂2 is the sample kurtosis. The JB

test statistic is asymptotically χ2
2-distributed.

Since it is well known that the sample moments are even more sensitive to outliers than the
sample mean, we propose to utilize the robust estimator of scale J in the denominators of
skewness and kurtosis. Hence, we obtain the following new test statistic

RJB =
n

C1

(
µ̂3

J3
n

)2

+
n

C2

(
µ̂4

J4
n

− 3
)2

, (5)

where C1 and C2 are positive constants. Gel and Gastwirth (2008) show that the new RJB
test statistic follow an asymptotic χ2-distribution with two degrees of freedom and propose
to use the normalizing constants C1 = 6 and C2 = 64. Consequently, the one-sided rejection
region is

reject H0 : normality, if RJB ≥ χ2
1−α,2, (6)

where χ2
1−α,2 is the upper α-percentile of the χ2-distribution with 2 degrees of freedom.

Our studies indicate that the new RJB and the classical JB test statistics converge to the
asymptotic χ2

2-distribution very slowly. Hence, the exact (empirically calculated using the
Monte Carlo simulation) critical values are to be utilized for small and moderate sample
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sizes, which is also supported by the results of Poitras (2005) and Thadewald and Buning
(2006). The new test is implemented as rjb.test with an option for the robust Jarque-Bera
(RJB) or classical Jarque-Bera (JB) tests. The function rjb.test extends the code for the
classical Jarque-Bera test jarque.bera.test from the tseries in R (see Trapletti and Hornik
2007). The user also can choose to use either the χ2

2-approximated critical values (by default)
or the exact (Monte Carlo simulated) critical values with an optional number of simulations.
We suggest to use the empirical critical values for small and moderate sample sizes for both
JB and RJB tests. The rjb.test output contains the name of a chosen test, i.e., RJB or JB,
the test statistic and the corresponding p value. Below we illustrate application of rjb.test
to the Zuni revenue data.

R> rjb.test(zuni[,"Revenue"], crit.values = "empirical", N = 1000)

Robust Jarque Bera Test

data: zuni[, "Revenue"]
X-squared = 59035.41, df = 2, p-value < 2.2e-16

R> rjb.test(zuni[,"Revenue"], option = "JB", crit.values = "empirical",

+ N = 1000)

Jarque Bera Test

data: zuni[, "Revenue"]
X-squared = 1340.501, df = 2, p-value < 2.2e-16

Our findings indicate that all three tests, i.e., SJ, RJB and JB, agree that the raw Zuni
revenue data are not normally distributed, and yield highly statistically significant p values.
The most popular omnibus Shapiro-Wilk (SW) test shapiro.test provides a similar p value
of 1.149 · 10−15. If we apply all four tests to the revenue data without four extreme outliers,
then RJB, JB and SW agree in their conclusions and yield p values of 0.03, 0.02 and 0.02
respectively, while a p value of SJ is 0.25. The result is expected since the SJ test focuses
on symmetric deviations in the tails, while the trimmed revenue data are somewhat skewed.
The conclusions of RJB, JB and SW to reject normality of the trimmed revenue data confirm
findings of the RQQ plot and histograms in Figures 1 and 3 respectively.

Next we perform the power comparison study among the SJ, RJB, JB and SW tests applied to
normal inverse Gaussian (NIG) distributions (Atkinson 1982; Barndorff-Nielsen and Blaesild
1983). The flexible closed form of such distributions makes NIG very attractive for a variety
of applications and, in particular, for modelling heavy-tailed financial processes. For more
on applications of NIG distributions see, for example, Barndorff-Nielsen (1997), examples
from the R package fBasics (Wuertz 2007) and references therein. The NIG distribution is
completely determined by the four parameters (α, β, µ and δ ∈ R). The parameters can
be naturally interpreted in terms of a shape of the resulting probability density function,
and appropriate tuning of α, β, µ and δ can describe a wide range of continuous probability
distributions (see Figure 4 and Table 1). To simulate samples from a NIG distribution, we
utilize the R package fBasics.
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Figure 4: Plot of probability density functions of NIG distributions with various parameters
α, β, µ and δ, with the superimposed normal probability density curves with the same mean
and standard deviation.



Journal of Statistical Software 11

α = shape parameter, α ∈ R Mean = µ + βδ
γ

β = skewness parameter, 0 ≤ |β| ≤ α, β ∈ R Variance = δα2

γ3

µ = location parameter, µ ∈ R Skewness = 3β

α
√
δγ

δ = scale parameter, δ > 0, δ ∈ R Kurtosis =
3

(
1+ 4β2

α2

)
δγ

γ =
√
α2 − β2, γ ∈ R MX(z) = eµz+δ(γ−

√
α2−(β+z)2)

Table 1: Mean, variance, skewness, kurtosis and moment generating function of a normal
inverse Gaussian (NIG) distribution.

NIG(α, β, µ, δ) Mean Var
√
b1 b2 Size Percentage of Rejections

n RJB JB SJ SW
Case 1: α = 1 30 0.559 0.497 0.577 0.454

β = 0 0 1 0 3 50 0.776 0.707 0.794 0.650
µ = 0 70 0.857 0.809 0.888 0.773
δ = 1 100 0.936 0.903 0.961 0.885

Case 2: α = 1 30 0.756 0.742 0.715 0.741
β = 0.5 0 1.540 1.612 6.928 50 0.923 0.907 0.890 0.914

µ = −0.577 70 0.979 0.976 0.971 0.975
δ = 1 100 0.995 0.991 0.985 0.994

Case 3: α = 1 30 0.722 0.658 0.753 0.627
β = 0 0 0.500 0 6 50 0.901 0.853 0.926 0.834
µ = 0 70 0.962 0.932 0.976 0.927
δ = 0.5 100 0.981 0.975 0.989 0.979

Case 4: α = 1.04 30 0.731 0.661 0.773 0.631
β = 0.1 0 0.488 0.401 6.010 50 0.899 0.851 0.925 0.823

µ = −0.048 70 0.965 0.931 0.976 0.922
δ = 0.5 100 0.991 0.975 0.998 0.981

Case 5 : α = 1 30 0.679 0.665 0.657 0.644
β = 0.4 0.836 1.299 1.253 5.368 50 0.873 0.854 0.862 0.849
µ = 0.4 70 0.941 0.921 0.937 0.924
δ = 1 100 0.988 0.983 0.984 0.986

Case 6: α = 1 30 0.721 0.75 0.617 0.779
β = 0.6 0.800 3.906 1.423 4.575 50 0.906 0.914 0.806 0.929
µ = −0.7 70 0.967 0.971 0.903 0.975
δ = 2 100 0.993 0.994 0.965 0.996

Table 2: The power comparison of the RJB, JB, SJ and SW tests for α = 0.05 and 1000
Monte Carlo simulations. The exact critical values are utilized for RJB, JB and SJ. Measures
of skewness and kurtosis are denoted as

√
b1 and b2 respectively.

The results in Table 2 show that for symmetric or slightly skewed heavy tailed alternatives
(Cases 1, 3 and 4), the best performance for all samples is provided by the SJ test. The next
best result is yielded by the RJB test which is followed by the JB and SW tests. If the degree
of skewness increases and also there exist heavy-tailed deviations (Cases 2 and 5), then the
RJB test provides the best results for all sample sizes. In case 2, JB and SW perform similarly
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while SJ is shown to be the least powerful. In case 5 that is less skewed than the case 2, SJ
and JB provide similar performance and are followed by the SW test. With higher increase
of skewness (Case 6), the SW test becomes the most powerful and is followed by JB, RJB
and finally SJ.

Our conclusion is that for symmetric or slightly skewed alternatives with heavy tails, the
SJ test is preferred. For moderately skewed heavy-tailed deviations, the RJB test becomes
the most preferable test. If the degree of skewness increases, the most powerful procedure is
the SW test. Note that the RJB test typically outperforms the JB test in detection of all
symmetric or moderately skewed heavy tailed alternatives that are of particular importance
for applications in finance and econometrics. Overall, in many practical situations it makes
sense to apply a few goodness-of-fit tests and see how close the obtained findings are; if there
are any doubts on a specific cause of non-normality, graphical methods such as QQ or RQQ
plots can be of substantial help for applied data analysis.

3. Levene’s family of tests for equality of variances

In a variety of applications, a data analyst needs to assess whether variances of different
samples are equal. For example, it is more desirable to use a lab with equipment that provides
the least variability during calibration experiments; volatilities of various stocks need to be
compared to manage investment risks; among a number of qualifying tests, an instructor might
wish to choose the exam providing the highest spread of the results for further classification
purposes.

The problem of assessing homogeneity of variances has a long history and there exists a
substantial number of related procedures. Many such tests rely on the assumption of normality
and are not robust to its violation. In 1960, Prof. Howard Levene proposed a new approach
for testing equality of variances which is essentially the F test computed on the absolute
deviations of observations from the group mean. Levene’s approach is shown to be a powerful
and robust to non-normality test and quickly became a very popular tool for assessing equality
of variances in various applications, e.g., clinical trials, astronomy, marine pollution, business,
auditing and law cases.

Consider k random samples xi1, xi2, . . . , xini from the i-th population with unknown mean
µi, variance σ2

i and distribution function F (·), i = 1, 2, . . . , k. The null hypothesis is that all
group variances are equal

H0 : σ2
1 = σ2

2 = . . . = σ2
k,

vs. the alternative hypothesis

H1 : σ2
i 6= σ2

j , for at least one i 6= j.

Levene (1960) considered various monotonic smooth transformations G(·) of absolute dif-
ferences between each observations and the corresponding sample group mean, i.e., dij =
|xij − x̄i.|, i = 1, 2, . . . , k, j = 1, 2, . . . , ni. Here x̄i. denotes the sample mean in the ith
group. For example, G can be square, log, square-root or identity functions. Choosing finally
G(·) to be an identity function and treating dij as independent normally distributed random
variables, Levene applied the classical F test to dij , which leads to the test statistic
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L =
N − k
k − 1

∑k
i=1(d̄i. − d̄..)2∑k

i=1

∑ni
j=1(dij − d̄i.)2

,

d̄i. =
nj∑
j=1

dij/nj , d̄.. =
k∑
i=1

nj∑
j=1

dij/N. (7)

The F test is applicable to independent and normally distributed observations. Clearly, dij
are not N(µi, σ2

i ) and correlation among dij in the same ith group is shown to be of order
1/n2

i . However, Levene’s test statistic is revealed to be robust to these violations.

Levene’s test is implemented as levene.test. The user can choose various estimators of a
group center, i.e., a sample mean suggested in the original work of Levene (1960) (the default
option); a sample median proposed by Brown and Forsythe (1974), which is also known
as a modified Levene’s test; or a trimmed sample mean with a user prespecified α-level of
trimming. The function levene.test is modified from the response posted by Brian Ripley
to the R-help mailing list. A similar function for Levene’s test is included in the R package car
(Fox 2002). However, Levene’s function in car enables to use only the classical Levene test
with group centers being a sample mean. Such Levene’s test can yield an incorrect size of the
test for skewed distributions (Miller 1968; Carroll and Schneider 1985). Hence, the modified
Brown-Forsythe-Levene test based on a sample median or robustly trimmed Levene test are
frequently preferred. Our levene.test allows to utilize all three options for a group center
estimate. If the trimmed mean is selected, the authors suggest to use a heavily trimmed
estimator with α = 0.25 applied to both tails (Gastwirth, Gel, and Miao 2008). The output
includes a value of Levene’s test statistic and a corresponding p value.

Frequently a particular pattern in group variances is suspected, e.g., a monotonic increasing
or decreasing trend. Hence, the test hypothesis takes the form

H1 : σ2
1 ≤ σ2

2 ≤ . . . ≤ σ2
k, increasing trend

H1 : σ2
1 ≥ σ2

2 ≥ . . . ≥ σ2
k, decreasing trend.

Assign all observations in group i a score wi, i = 1, . . . , k. Now regress dij on wi and consider
the regression slope

β̂ =
∑k
i=1 ni(wi − w̄)(d̄i. − d̄..)∑k

i=1 ni(wi − w̄)2
, w̄ =

k∑
i=1

wi.

Under the null hypothesis, β̂ = 0 and the new Levene-type trend statistic follows a t-
distribution with (N − 1) degrees of freedom, i.e., β̂/s.e.(β̂) ∼ tN−1.

Various scores can be chosen to reflect the monotonic increasing or decreasing behavior of
group variances, e.g., linear trend wi = i, non-linear trends wi = i2 or wi = ln(i), in a similar
way as proposed by Neuhauser and Hothorn (2000). If no information is known about the
most appropriate scores, the authors suggest to use the linear scores of wi = i. Gel and
Gastwirth (2008) show that linear scores yield satisfactory performance even for detection in
non-linear trends in variances.

Levene’s trend test is implemented as a function ltrend.test with the same set of options
for group center estimators, i.e., a sample mean, median or α-trimmed mean (the trimming
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Figure 5: The Merck trade volume data from July 1997 to February 2004.

α of 0.25 is the default choice). In addition, the user can pre-specify the scores wi to be
utilized in the testing procedure using the option score. The default choice is to use the
linear scores that are computed from a factor variable group; in this case, a user does not
need to provide an additional input to score. The output includes Levene’s trend statistic
and the corresponding p value.

We illustrate application of Levene’s and Levene’s trend test by analyzing temporal volatility
of Merck’s monthly trade volume data. Merck & Co., Inc. (Merck) is a global pharmaceutical
company that discovers, develops, manufactures and markets a range of products to improve
human and animal health. It is now one of the top 7 largest pharmaceutical companies in the
world both by capital and revenue.

The time series plot of Merck’s trade volume monthly data from July 1997 to February 2004
is shown in Figure 5. The data consists of 80 observations. We divide the data into four
temporal periods and apply Levene’s and Levene’s trend tests with a group center being a
25% trimmed mean. Here mrk.vol is the Merck trading volume and temp.period is a group
variables consisting of 4 factors, i.e., 4 temporal periods. The scores are not specified and the
default option for linear scores is utilized.

R> levene.test(mrk.vol, temp.period, option = "trim.mean",

+ trim.alpha = 0.25)

Modified Robust Levene-type test based on the absolute deviations from
the trimmed mean
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Test (·)2 BF trim0.25

Levene’s 0.0004 0.0252 0.0081
LTrend 4.486e-05 0.0038 0.0011

Table 3: Levene’s and Levene’s trend tests with the linear scores 1, 2, 3 for the Merck volume
data from July 1997 to February 2004.

data: mrk.vol
Test Statistic = 4.2227, p-value = 0.008129

R> ltrend.test(mrk.vol, temp.period, option = "trim.mean",

+ trim.alpha = 0.25)

ltrend test based on the modified Levene-type procedure using the
group trimmed means

data: mrk.vol
Test Statistic = 313656.8, p-value = 0.001092

The summary of Levene’s and Levene’s trend tests with three options for a group center
estimate are presented in Table 3. All tests support the alternative hypothesis of unequal
variances. Remarkably, all three p values yielded by various versions of Levene’s trend test
are noticeably smaller than p values of Levene’s tests. These findings indicate that there
very likely exists a monotonic increase in volatility of Merck’s trading volume, which is also
supported by the Figure 5.

Remark. An important issue is how legitimate is to use Levene’s and Levene’s trend tests
for the Merck volume example, since both tests assume that the data under consideration
are independent, while the volume data can be serially correlated in time. Hence, we need to
investigate dependence structure for the Merck data. Figure 6 presents plots of sample auto-
correlations (acf) for each considered time segment. Except of the period between November,
2000 and June, 2002, which shows a somewhat significant correlation at lag 3, there exists no
evidence of correlation among the data. To verify our findings, we also run the Box-Pierce
(BP) test for all the four periods up to the tenth lag; for discussion on the Box-Pierce test see
Cromwell, Walter, and Terraza (1994). The BP tests fails to reject the null hypothesis of the
Merck volume data being uncorrelated in time, for all test runs. In particular, for somewhat
questionable correlation at lag 3 for the period November, 2000–June, 2002, the BP test yields
a p value of 0.09. Thus, we can conclude that for this particular set of the data, employment
of Levene’s and Levene’s trend tests is legitimate. Note that with an increase of a sample
size, the dependence structure is to be re-investigated.

4. Tests for symmetry about an unknown median

Suppose that we get a sample of independent observations X1, X2 . . . , Xn from a continuous
distribution F with the probability density function f , unknown mean µ, median ν and
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Figure 6: The plots of sample autocorrelation functions for four considered periods: July,
1997–February, 1999, March, 1999–October, 2000, November, 2000–June, 2002, and July,
2002–February, 2004.

standard deviation σ. Our target is to test whether F is symmetric about ν. Hence, the test
hypothesis is given by

H0 : f(ν − x) = f(ν + x)
HA : f(ν − x) 6= f(ν + x).

There exists a substantial number of papers discussing how to test symmetry if the median
ν is given (see Einmahl and McKeague (2003); Annaert, Brys, and Ceuster (2005), for a
review). If a median ν is unknown, the testing problem becomes much more complicated and
still remains an active area of research in statistics.

In this paper, we discuss implementation of three recent tests for symmetry about the unknown
median ν. The first procedure, proposed by Cabilio and Masaro (1996), is based on the test
statistic

C =
X̄ −M
sn

,

where X̄, M and sn are the sample mean, median and standard deviation respectively. The
statistic

√
nC is asymptotically normally distributed. However, the asymptotic variance of

C depends on the underlying distribution F that is generally unknown. Cabilio and Masaro
(1996) propose to utilize the asymptotic variance of 0.5708 that is derived for F being a
standard normal distribution, and argue that the effect of misspecification is relatively minor
for most practical purposes.
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Mira (1999) suggests an alternative test statistic based on the Bonferroni measure of skewness
γ1, i.e.,

γ1 = 2(X̄ −M).

The asymptotic distribution of
√
nγ1 is also normal and depends on F . Mira (1999) adopted

the same approach of approximating an asymptotic variance of
√
nγ1 by an asymptotic vari-

ance under assumption of F being a standard normal distribution.

Miao, Gel, and Gastwirth (2006) modify the Cabilio-Masaro procedure and propose a test
statistic

T =
X̄ −M
Jn

, Jn =
C

n

n∑
i=1

|Xi −M |, C =
√
π

2
.

Similarly to statistics
√
nC and

√
nγ1,

√
nT is normally distributed as n → ∞ and the

asymptotic variance of
√
nT also depends on a generally unknown F . Based on a study of the

size of the test, Miao et al. (2006) conclude that approximation of a true asymptotic variance
by an asymptotic variance of T under X ∼ N(0, 1) is feasible for practical purposes and the
impact of misspecification is relatively minor (Miao et al. 2006).

All three tests are implemented as a function symmetry.test with a choice for the Cabilio-
Masaro test, the Mira test and the T test denoted as MGG. The MGG procedure is the
default option.

Here is the example on testing symmetry of the prediction errors of 48-hour ahead MM5
forecasts of surface temperature, measured at 96 different locations in the US Pacific North-
west on January 3, 2000. Data have been kindly provided by the research group of Professor
Clifford Mass in the Department of Atmospheric Sciences at the University of Washington.
The prediction error, or “bias”, is the difference between the forecasted and observed surface
temperature. MM5 is the fifth-generation Pennsylvania State University and National Center
for Atmospheric Research Mesoscale Model. The data are available from lawstat as bias. If
it turns out that the distribution of the forecasting errors is skewed, it will imply that the
predicted surface temperature is consistently over/underestimated.

R> data("bias")

R> symmetry.test(bias)

Test of Symmetry - MGG Test

data: bias
Test Statistic = 1.3779, p-value = 0.1682

R> symmetry.test(bias, option = "cabilio.masaro")

Test of Symmetry - Cabilio-Masaro Test

data: bias
Test Statistic = 1.2898, p-value = 0.1971

R> symmetry.test(bias, option = "mira")
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Figure 7: The histogram of the surface temperature error forecasts.

Test of Symmetry - Mira Test

data: bias
Test Statistic = 1.3209, p-value = 0.1865

Here all three tests fail to reject the null hypothesis for symmetry, which coincides with
findings of the histogram plot for the bias data (see Figure 7). Thus, we can conclude that
the forecasting errors are symmetric.

The Table 4 presents a small power comparison study of the three tests for symmetry applied
to NIG distributions with various degrees of skewness. For more extensive simulation study
see Miao et al. (2006). Our findings indicate that for the distributions considered, the MGG
test statistic is generally preferred for all cases and sample sizes; however, none of the tests
have power against alternative 3.

5. Tests for randomness

The assumption that the observed data form a random sample is the key condition for validity
of a variety of statistical procedures, from classical regression analysis to non-parametric tests.
In fact, one of the main assumptions of the least squares (LS) method in linear regression is
randomness (uncorrelatedness) of the residuals. If the data are normally distributed, there
exists a number of powerful tests based on sample autocorrelation functions (acf), e.g., the
portmanteau class of tests. However, if the underlying distribution is not normal, the acf
based tests may be substantially affected by deviations from normality (Bartels 1977). The
alternative is to use the non-parametric (distribution-free) tests for randomness.
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NIG(α, β, µ, δ) Mean Var
√
b1 b2 Size Percentage of Rejections

n MGG Mira’s CM
Case 1: α = 1.14 30 0.103 0.044 0.040

β = 0.2 0 0.919 0.497 3.002 50 0.153 0.089 0.091
µ = −0.178 70 0.181 0.109 0.110

δ = 1 100 0.245 0.152 0.146
Case 2 α = 1 30 0.445 0.190 0.241

β = 0.5 0 1.540 1.612 6.928 50 0.642 0.412 0.461
µ = −0.577 70 0.785 0.593 0.637

δ = 1 100 0.903 0.792 0.817
Case 3 α = 1.04 30 0.103 0.023 0.031

β = 0.1 0 0.488 0.401 6.010 50 0.134 0.047 0.052
µ = −0.048 70 0.155 0.062 0.068
δ = 0.5 100 0.149 0.066 0.069

Case 4 α = 1 30 0.182 0.055 0.076
β = 0.25 0 0.551 1.078 7.746 50 0.245 0.093 0.108
µ = −0.129 70 0.316 0.144 0.170
δ = 0.5 100 0.439 0.204 0.243

Table 4: The power comparison of the Mira, Cabilio-Masaro and MGG tests of symmetry for
α = 0.05 and 1000 Monte Carlo simulations. Measures of skewness and kurtosis are denoted
as
√
b1 and b2 respectively.

Bartels (1982) proposed a test statistic based on von Neumann’s ratio (RVN)

RVN =
T−1∑
i=1

(Ri −Ri+1)2/
T∑
i=1

(Ri − R̄)2, (8)

where Ri is the rank of the i-th observation in a sample X1, . . . , XT . The asymptotic range of
the test statistic (8) is between zero and four and the expected value is two (under the null hy-
pothesis of randomness), which is similar to the Durbin-Watson (DW) test statistic (Cromwell
et al. 1994). The Durbin-Watson test is available as dwtest in the R package lmtest (Zeileis
and Hothorn 2002). As shown by Bartels (1982), the rank-based statistic

√
TRVN asymp-

totically follows a normal distribution and is more powerful than the distribution-free runs
test proposed by Wald and Wolfovitz (1943). Note that by construction the test statistic (8)
concerns the first order serial correlation among the data, i.e., whether the two consecutive
observations are dependent, and is not intended for detecting higher order correlations among
the data points. The Bartels test is implemented as bartels.test. The output contains the
Standardized Bartels statistic that follows N(0, 1), the RVN statistic (8) and a corresponding
p value. The user can choose to test against positive correlation (the test statistic (8) is close
to 0 and the Standardized Bartels statistic is far in the left tail of N(0, 1)), against negative
correlation (the statistic (8) is close to 4 and its standardized version is far in the right tail
of N(0, 1)) or against general existence of correlation (the default option).

Along with the Bartels test, we implement the the Wald-Wolfowitz runs test (Wald and
Wolfovitz 1943; Cromwell et al. 1994). The runs test is also available from the R package
tseries (see Trapletti and Hornik 2007). However, the input to runs.test in tseries is a
a dichotomous factor where factoring is arbitrarily defined by a user. In contrast, in our



20 lawstat: An R Package for Law, Public Policy and Biostatistics

case the input is a numerical vector which is later factored into two groups in such a way
that each group contains observations either above or below a sample median. A run is a
consecutive sequence of observations that are all above (or below) the reference line (median).
The number of observations in each run defines the length of a run. One can compare how
many runs are observed vs. the expected number of runs. If there are two many runs, then
a negative serial correlation is likely to present. If there are too few runs, the data are likely
to exhibit a positive correlation. The standardized runs test statistic asymptotically follows
N(0, 1). Similarly to the Bartels test, the runs test focuses only on the first order serial
correlation, i.e., linear dependence among neighboring observations. The function runs.test
enables to choose either a two-sided alternative (the default option) or a specific testing against
positive (negative) correlation, i.e., left (right) tailed alternatives respectively. Choosing an
option plot.it, the user can also visualize runs as a sequence of A and B, where A and B
corresponds to observations above or below median respectively.

Let us illustrate application of the Bartels and runs tests to the forecasting errors of 48-
hour ahead MM5 forecasts of surface temperature, measured at 96 different locations in the
US Pacific Northwest on January 3, 2000. The errors, sometimes referred as “bias”, are
differences between the predicted and observed surface temperature and are available from
lawstat as data(bias). It is important to check that forecasting errors are uncorrelated, since
if forecasting errors turn out to be correlated, it implies that the employed numerical weather
prediction (NWP) model does not filter well all the available information and future weather
forecasts are hence biased and inaccurate.

R> data("bias")

R> runs.test(bias, plot.it = TRUE)

Runs Test - Two sided

data: bias
Standardized Runs Statistic = -0.8208, p-value = 0.4117

R> bartels.test(bias)

Bartels Test - Two sided

Bartels Test - Two sided

data: bias
Standardized Bartels Statistic = -1.1188, RVN Ratio = 1.772, p-value =
0.2632

As we see from the output of both tests and Figure 8, the null hypothesis of randomness
is not rejected and there is no noticeable indication of a first order serial correlation in the
surface temperature prediction errors, which is a good sign that MM5 weather forecasting
procedures perform reasonably well. If we plot the sample autocorrelation (acf) functions
(see Figure 8), we notice that all acf are insignificant except of an acf at the third lag. Since
both the Bartels and runs test do focus only on detecting first order serial correlations, we
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Figure 8: The plots of the runs and sample autocorrelation functions of the surface temper-
ature error forecasts.

may suspect that our data are still linearly dependent, i.e., observations at three lags apart
are correlated. Let us run the Box-Pierce (BP) test for the third lag. The Box-Pierce test
belongs to the class of non-distribution-free portmanteau tests and needs an assumption of
normality for observations (Cromwell et al. 1994). On the other hand, the advantage of the
BP test is that it allows to test for higher order serial correlations. The BP test does not
reject the null hypothesis of residuals being uncorrelated at the third lag. Hence, we can
conclude that the errors of surface temperature forecasts are in fact uncorrelated.

R> Box.test(bias, lag = 3)
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Box-Pierce test

data: bias
X-squared = 5.5634, df = 3, p-value = 0.1349

6. Conclusion

This paper discusses implementation in R of some newly developed and already well known
non-parametric and goodness-of-fit tests and procedures that are utilized in litigations, envi-
ronmental studies and biostatistics. Besides of the methods discussed in the paper, lawstat
contains such procedures as the Brunner-Munzel test, which is also known as the generalized
Wilcoxon test (Brunner and Munzel, 2000); the Cochran-Mantel-Haenszel test (Agresti 2002;
Gastwirth 1984; Hall, Woolson, Clarke, and Jones 1999); the Lorenz curve, the coefficient of
dispersion and the Gini index (Gastwirth 1988; Bonett and Seier 2008), as well as a number
of illustrative data sets from law cases, environmental and archeological studies. We plan to
constantly update lawstat with new statistical methods and tests.
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