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Abstract

Unidimensional item response theory (IRT) models are useful when each item is de-
signed to measure some facet of a unified latent trait. In practical applications, items are
not necessarily measuring the same underlying trait, and hence the more general multi-
unidimensional model should be considered. This paper provides the requisite information
and description of software that implements the Gibbs sampler for such models with two
item parameters and a normal ogive form. The software developed is written in the MAT-
LAB package IRTmu2no. The package is flexible enough to allow a user the choice to
simulate binary response data with multiple dimensions, set the number of total or burn-
in iterations, specify starting values or prior distributions for model parameters, check
convergence of the Markov chain, as well as obtain Bayesian fit statistics. Illustrative
examples are provided to demonstrate and validate the use of the software package.

Keywords: multi-unidimensional IRT, two-parameter normal ogive models, MCMC, Gibbs
sampling, Gelman-Rubin R, Bayesian DIC, posterior predictive model checks, MATLAB.

1. Introduction

Modeling the interaction between persons and items at the item level for binary or polytomous
response data, item response theory (IRT) is a popular approach for solving various measure-
ment problems, and has been found useful in a wide variety of applications in education and
psychology (e.g., Embretson and Reise 2000; Kolen and Brennan 1995; Lord 1980; Wainer
et al. 2000) as well as in other fields (e.g., Bafumi et al. 2005; Bezruckzo 2005; Chang and
Reeve 2005; Feske et al. 2007; Imbens 2000; Sinharay and Stern 2002). For dichotomously
scored items, IRT relates the probabilistic 0/1 responses with the person’s latent trait(s), θi,
and the item’s characteristics, ξj , in a way that

P (y = 1) = f(θi, ξj),
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where f can be a probit or logit function. It is noted that in the IRT literature, the probit
model is generally referred to as the normal ogive model, and the logit model is referred to as
the logistic model. Common IRT models assume one θi parameter for each person, and are
referred to as the unidimensional models, signifying that each test item measures some facet of
the unified latent trait. It is necessary that a test assuming one dimension will not be affected
by other dimensions. However, psychological processes have constantly been found to be more
complex and an increasing number of measurements in education, psychology or other fields
assess a person on more than one latent trait, or require response processes with different
cognitive components. With regard to this, allowing separate inferences to be made about
persons for each distinct latent dimension being measured, multidimensional IRT models
have shown promise for dealing with such complexity in situations where multiple traits are
required in producing the manifest responses to an item (Reckase 1997). Often, however, a
test involves several latent traits and each item measures one of them. The multidimensional
model specific for this scenario is referred to as the so-called“multi-unidimensional IRT model”
(Sheng and Wikle 2007). In the literature, this model has been called the multidimensional
model with simple structure (McDonald 1999) or the between-items multidimensional model
(Adams et al. 1997). The shorter term “multi-unidimensional” is adopted in this paper to
account for the fact that the overall test involves multiple traits, whereas each subtest is
unidimensional. The multi-unidimensional model can be viewed as a special case of the
multidimensional model. Their difference lies in the consideration whether individual test
items measure one or multiple cognitive component(s), which is best understood from the
factor analytic perspective. Analogously, multidimensionality is assumed if one believes that
each test item has nonzero loadings on all factors extracted, and multi-unidimensionality
is considered when the factor solution achieves a simple structure (that is, each item has
nonzero loadings on only one of the factors). With respect to the latter, the latent dimensional
structure should be specified a priori based on theoretical considerations. In particular, one
has to decide on the number of latent traits the test is designed to measure and the specific
items involved in measuring each distinct trait.

In situations where a test consists of several subtests with each being unidimensional, if it is
a priori clear that all the latent traits being measured are highly correlated, a unidimensional
IRT model may be assumed for the overall test because each specific trait can be viewed
as some aspect of the unified latent dimension. On the other hand, if it is believed that
the traits are not correlated, one may fit a unidimensional model for each subtest, as the
subtests can be assumed to be independent from each other. These two approaches using
the unidimensional model are, however, restricted in situations where the latent dimensions
correlate in other ways. In many applications, prior information on the intertrait relation is
not readily available. It is hence difficult to decide whether a unidimensional model for the
overall test or for individual subtests is appropriate. The more general multi-unidimensional
model, applicable in situations where the latent traits have various levels of correlations,
should then be considered. Its advantage is further illustrated in a later section of this paper.

In IRT, parameter estimation offers the basis for its theoretical advantages, and hence has
been a major concern in the application of IRT models. As the influence of items and per-
sons on the responses is modeled by distinct sets of parameters, simultaneous estimation of
these parameters results in statistical complexities in the estimation task, which have made
estimation procedure a primary focus of psychometric research over decades (Birnbaum 1969;
Bock and Aitkin 1981; Molenaar 1995). With the enhanced computational technology, recent
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attention has been focused on a fully Bayesian approach using Markov chain Monte Carlo
(MCMC; e.g., Chib and Greenberg 1995) simulation techniques, which are extremely general
and flexible and have proved useful in practically all aspects of Bayesian inferences, such as
parameter estimation or model comparisons. One of the simplest MCMC algorithms is Gibbs
sampling (Casella and George 1992; Gelfand and Smith 1990; Geman and Geman 1984). The
method is straightforward to implement when each full conditional distribution associated
with a particular multivariate posterior distribution is a known distribution that is easy to
sample. Gibbs sampling has been applied to common unidimensional models (Albert 1992;
Johnson and Albert 1999) using the data augmentation idea of Tanner and Wong (1987).
Lee (1995) further extended the approach of Albert (1992) and developed the Gibbs sampling
procedure for the two-parameter normal ogive (2PNO) multi-unidimensional model, which
was found to be more flexible and efficient compared with the conventional unidimensional
model (Sheng and Wikle 2007). As a natural extension of the conventional 2PNO IRT model,
the 2PNO multi-unidimensional model generalizes the unidimensional model to be on the
multi-unidimensional structure. It is hence considered as the standard conceptualization of
multi-unidimensionality in IRT.

This paper provides a MATLAB (The MathWorks, Inc. 2007) package that implements Gibbs
sampling for the 2PNO multi-unidimensional IRT model with the option of specifying nonin-
formative or informative priors for item parameters. Section 2 reviews the model and briefly
describes the MCMC algorithm implemented in the package IRTmu2no. In Section 3, a brief
illustration is given of Bayesian model choice or checking techniques for testing the adequacy
of a model. The package IRTmu2no is introduced in Section 4, where a description is given
of common input and output variables. In Section 5, illustrative examples are provided to
demonstrate the use of the source code. Finally, a few summary remarks are given in Section 6.

It has to be noted that more complicated MCMC procedures have to be adopted for the
logistic form of IRT models (e.g., Patz and Junker 1999a,b). As Gibbs sampling is relatively
easier to implement, and the logistic and normal ogive forms of the IRT model are essentially
indistinguishable in model fit or parameter estimates given proper scaling (Birnbaum 1968;
Embretson and Reise 2000), MCMC procedures for logistic models are not considered in this
paper.

2. Model and MCMC algorithm

Multi-unidimensional models allow separate inferences to be made about a person for each
distinct dimension being measured by a test item while taking into consideration the relation-
ship between all latent traits measured by the overall test. Suppose a K-item test consists
of m subtests, each containing kv dichotomous (0-1) items, where v = 1, 2, . . . ,m. Let yvij
denote the ith person’s response to the jth item in the vth subtest, where i = 1, 2, . . . , n and
j = 1, 2, . . . , kv. With a probit link, the 2PNO multi-unidimensional model is defined as

P (yvij = 1|θvi, αvj , βvj) = Φ(αvjθvi − βvj) =

αvjθvi−βvj∫
−∞

1√
2π
e
−t2

2 dt (1)

(e.g., Lee 1995; Sheng and Wikle 2007), where θvi is a scalar person trait parameter in the vth
latent dimension, αvj is a positive scalar slope parameter representing the item discrimination,
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and βvj is a scalar intercept parameter that is related to the location in the vth dimension
where the item provides maximum information.
To implement Gibbs sampling to the model, an augmented continuous variable Z is intro-
duced so that Zvij ∼ N(ηvij , 1) (Albert 1992; Lee 1995; Tanner and Wong 1987), where
ηvij = αvjθvi − βvj . Denote each person’s latent traits measured by all test items as θi =
(θ1i, . . . , θmi)′, and specify a multivariate normal prior distribution for them so that θi ∼
Nm(0,P), where P is a covariance matrix with the variances being fixed at 1. It is noted
that the proper multivariate normal prior for θvi with their location and scale parameters
specified to be 0 and 1, respectively, ensures unique scaling and hence is essential in resolving
a particular identification problem for the model (see e.g. Lee 1995, for a description of the
problem). Further, it follows that the off-diagonal element of P is the correlation ρst between
θsi and θti, s 6= t. One may note that when ρst = 1 for all s, t, the model reduces to the
unidimensional 2PNO model, whose probability function is defined as

P (yij = 1|θi, αj , βj) = Φ(αjθi − βj), i = 1, . . . , n, j = 1, . . . ,K. (2)

In addition, when ρst = 0 for all s, t, the model is actually equivalent to fitting a 2PNO
unidimensional model for each subtest. Hence, the two approaches using the unidimensional
model can be viewed as special cases of the multi-unidimensional model. Moreover, intro-
duce an unconstrained covariance matrix Σ, where Σ = [σvv′ ]m×m, so that the constrained
covariance matrix P can be readily transformed from Σ using

ρst =
σst√
σssσtt

, s 6= t. (3)

A noninformative prior can be assumed for Σ so that p(Σ) ∝ |Σ|−
m+1

2 (Lee 1995).
Hence, with prior distributions assumed for ξvj , where ξvj = (αvj , βvj)′, the joint posterior
distribution of (θ, ξ, Z, Σ) is

p(θ, ξ,Z,Σ|y) ∝ f(y|Z)p(Z|θ, ξ)p(ξ)p(θ|P)p(Σ), (4)

where

f(y|Z) =
m∏
v=1

n∏
i=1

kv∏
j=1

p
yvij

vij (1− pvij)1−yvij (5)

is the likelihood function, with pvij being the probability function for the multi-unidimensional
model as defined in (1).
The implementation of the Gibbs sampling procedure thus involves four of the sampling
processes, namely, a sampling of the augmented Z parameters from

Zvij |• ∼
{

N(0,∞)(ηvij , 1), if yvij = 1
N(−∞,0)(ηvij , 1), if yvij = 0

; (6)

a sampling of person traits θ from

θi|• ∼ Nm((A′A + P)−1A′B, (A′A + P)−1), (7)

where

A =


α1 0 · · · 0
0 α2 · · · 0
...

... · · ·
...

0 0 . . . αm


K×m

and B =


Z1i + β1

Z2i + β2
...

Zmi + βm


K×1

,
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in which αv = (αv1, ..., αvkv)′, Zvi = (Zvi1, ..., Zvkv)′, βv = (βv1, ..., βvkv)′; a sampling of the
item parameters ξ from

ξvj |• ∼ N2((x′vxv)
−1x′vZvj , (x

′
vxv)

−1)I(αvj > 0), (8)

where xv = [θv,−1], assuming noninformative uniform priors αvj > 0 and βvj ∝ 1, or from

ξvj |• ∼ N2((x′vxv + Σ−1
ξv

)−1(x′vZvj + Σ−1
ξv
µξv), (x′vxv + Σ−1

ξv
)−1)I(αvj > 0), (9)

where µξv
= (µαv , µβv)′ and Σξv

=
(
σ2
αv

0
0 σ2

βv

)
, assuming conjugate normal priors αvj ∼

N(0,∞)(µαv , σ
2
αv

), βvj ∼ N(µβv , σ
2
βv

); and a sampling of the unconstrained covariance matrix
Σ from

Σ|• ∼W−1(S−1, n) (10)

(an inverse Wishart distribution), where S =
n∑
i=1

(Cθi)(Cθi)′, in which

C =



(
k1∏
j=1

α1j)1/k1 0 · · · 0

0 (
k2∏
j=1

α2j)1/k2 · · · 0

...
... · · ·

...

0 0 · · · (
km∏
j=1

αmj)1/km


m×m

(see Lee 1995, for a detailed derivation of the full conditional distributions). From each
sampled Σ, the constrained covaraince matrix P can be obtained using (3). Hence, with
starting values θ(0), ξ(0), and P(0), observations (Z(`), θ(`), ξ(`), Σ(`), P(`)) can be drawn or
tranformed iteratively from (6), (7), (8), (10) and (3) (or from (6), (7), (9), (10) and (3)),
respectively.

This iterative process continues for a sufficient number of samples after the posterior distribu-
tions reach stationarity (a phase known as burn-in). The posterior means of all the samples
collected after the burn-in stage are considered as estimates of the true model parameters (ξ,
θ) and the hyperparameter (P). Similarly, their posterior standard deviations are used to
describe the statistical uncertainty. However, Monte Carlo standard errors cannot be calcu-
lated using the sample standard deviations because subsequent samples in each Markov chain
are autocorrelated (e.g., Patz and Junker 1999b). Among the standard methods for estimat-
ing them (Ripley 1987), batching is said to be a crude but effective method (Verdinelli and
Wasserman 1995) and hence is considered in this paper. Here, with a long chain of samples
being separated into contiguous batches of equal length, the Monte Carlo standard error for
each parameter is then estimated to be the standard deviation of these batch means. The
Monte Carlo standard error of the estimate is hence a ratio of the Monte Carlo standard error
and the square root of the number of batches. More sophisticated methods for estimating
standard errors can be found in Gelman and Rubin (1992).
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3. Bayesian model choice or checking

In Bayesian statistics, the adequacy of the fit of a given model is evaluated using several model
choice or checking techniques, among which, Bayesian deviance and posterior predictive model
checks are considered and briefly illustrated.

3.1. Bayesian deviance

The Bayesian deviance information criterion (DIC; Spiegelhalter et al. 1998) is based on the
posterior distribution of the deviance. This criterion is defined as DIC = D + pD, where
D = E(−2 logL(y|ϑ)) is the posterior expectation of the deviance (with L(y|ϑ) being the
model likelihood function, where ϑ denotes all model parameters) and pD = D−D(ϑ̄) is the
effective number of parameters (Carlin and Louis 2000). Further, D(ϑ̄) = −2 log(L(y|ϑ̄)),
where ϑ̄ is the posterior mean. To compute Bayesian DIC, MCMC samples of the parameters,
ϑ(1), . . . ,ϑ(G), can be drawn using the Gibbs sampler, then D = 1/G(−2 log

∏G
g=1 L(y|ϑ(g))).

Small values of the deviance suggest a better-fitting model. Generally, more complicated
models tend to provide better fit. Hence, penalizing for the number of parameters (pD)
makes DIC a more reasonable measure to use.

3.2. Posterior predictive model checks

The posterior predictive model checking (PPMC; Rubin 1984) method provides a popular
Bayesian model checking technique that is intuitively appealing, simple to implement, and
easy to interpret (Sinharay and Stern 2003). The basic idea is to draw replicated data yrep

from its posterior predictive distribution p(yrep |y) =
∫
p(yrep |ϑ)p(ϑ|y)dϑ, and compare them

to the observed data y. If the model fits, then replicated data generated under the model
should look similar to the observed data. A test statistic known as the discrepancy measure
T (y,ϑ) has to be chosen to define the discrepancy between the model and the data. For each
yrep drawn from the predictive distribution, the realized discrepancy T (y) = T (y,ϑ) can be
compared with the predictive discrepancy T (yrep) = T (yrep ,ϑ) by plotting the pairs on a
scatter plot. Alternatively, one can obtain a quantitative measure of lack of fit by calculating
the tail-area probability or the PPP value (Sinharay et al. 2006), P (T (yrep) ≥ T (y)|y) =∫
T (yrep)≥T (y) p(y

rep |ϑ)p(ϑ|y)dyrepdϑ.

To implement the method, one draws G samples from the posterior distribution of ϑ using
Gibbs sampling. Then for each simulated ϑ(g), a yrep(g) can be drawn from the predictive
distribution so there are G draws from the joint posterior distribution p(yrep ,ϑ|y). The
predictive test statistic T (yrep(g)) and the realized test statistic T (y) are computed and sub-
sequently compared to provide graphical and numerical evidence about model inadequacy.
Specifically, the proportion of the G simulated samples for which the replicated data could be
more extreme than the observed data, i.e., 1/G

∑G
g=1 I(T (yrep(g)) ≥ T (y)), provides an esti-

mate of the PPP value. Extreme PPP values (close to 0 or 1) indicate model misfit. It has to
be noted that although both are defined as tail-area probabilities, the PPP value has to be
differentiated from the traditional hypothesis-testing p value in that the posterior predictive
checking approach does not perform a hypothesis test (Gelman et al. 1996). The choice of
the discrepancy measure is critical in implementing this method. Sinharay et al. (2006), after
evaluating a number of discrepancy measures for assessing IRT models, concluded that the
odds ratio for measuring associations among item pairs, T (y) = ORij = n11n00

n01n10
, is powerful for
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detecting lack of fit when the model assumption is violated. Hence, this measure is adopted
as the test statistic for the PPMC method in this paper.

4. Package IRTmu2no

The package IRTmu2no contains two major user-callable routines. A function for generating
binary response data using the 2PNO multi-unidimensional IRT model titled, simmu2no,
and a function that implements MCMC to obtain posterior samples, estimates, convergence
statistics, or model choice/checking statistics, gsmu2no.

The function simmu2no has input arguments n, kv, r, and iparm for the number of respon-
dents, the number of items in each subtest, the actual population correlation matrix for person
latent traits, and user-specified item parameters, respectively. The optional iparm argument
allows the user the choice to input item parameters for the model, or randomly generate them
from uniform distributions so that αvj ∼ U(0, 2) and βvj ∼ U(−2, 2). The user can further
choose to store the simulated person (theta) and item (item) parameters.

With the required user-input binary response data (y) and the optional number of items in
each subtest (kv), the function gsmu2no initially reads in starting values for person and item
parameters (th0, item0) and the person hyperparameter (sigma0), or sets them to be θ(0)

vi = 0,
α

(0)
vj = 2, β(0)

vj = −Φ−1(
∑

i yvij/n)
√

5 (following Albert 1992) and P = I. It then implements
the Gibbs sampler for the 2PNO multi-unidimensional IRT model by iteratively drawing
random samples for the parameters from their respective full conditional distributions. The
prior distributions for the item parameters can be noninformative (flat = 1, default) or
informative (flat = 0). In the latter case, the user can specify any values of interest or use
the default values, namely, µαv = 0 and σ2

αv
= 1 for αvj (aprior), and µβv = 0 and σ2

βv
= 1

for βvj (gprior). It is noted that the prior location and scale parameters for αvj or βvj
can be set to be different across the m subtests. The algorithm continues until all the (kk)
samples are simulated, with the early burn-in samples (burnin) being discarded, where kk
and burnin can be 10, 000 and kk/2 (default) or any values of interest. It then computes the
posterior estimates, posterior standard deviations, and Monte Carlo standard errors of the
person (pparm), item (iparm) or intertrait correlation (rho) estimates. Posterior samples of
these parameters can also be stored (samples) for further analysis.

In addition to Monte Carlo standard errors, convergence can be evaluated using the Gelman-
Rubin R statistic (Gelman et al. 2004) for each model parameter. The usual practice is using
multiple Markov chains from different starting points. Alternatively, a single chain can be
divided into sub-chains so that convergence is assessed by comparing the between and within
sub-chain variance. Since a single chain is less wasteful in the number of iterations needed,
the latter approach is adopted to compute the R statistic (gr) with gsmu2no. The Bayesian
deviance estimates, including D, D(ϑ̄), pD and DIC, can be obtained (deviance) to measure
the relative fit of a model. Moreover, the PPMC method can be adopted using the odds ratio
as the discrepancy measure so that PPP values (ppmc) are obtained to evaluate model misfit.
Extreme PPP values can be further plotted using the function ppmcplt, in which the threshold
(crit) can be 0.01 (default) or any level of interest so that PPP values larger than 1−crit/2
are denoted using the right triangle sign and those smaller than crit/2 are denoted using the
left triangle sign. The functions’ input and output arguments are completely specified in the
m-files.
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5. Illustrative examples

To demonstrate the use of the IRTmu2no package, simulated and real data examples are pro-
vided in this section to illustrate item parameter recovery as well as model comparisons. The
code to reproduce the results of each example is provided in the m-file v28i10.m, which may
also serve as a guide for the user of the Gibbs sampler with the 2PNO multi-unidimensional
IRT model.

5.1. Parameter recovery

For parameter recovery, tests with two subtests were considered so that the first half measured
one latent trait and the second half measured another. Three 1000-by-18 (i.e., n = 1000,
m = 2, k1 = 9, k2 = 9, and K = 18) dichotomous data matrices were simulated from the
2PNO multi-unidimensional model where the actual correlation (ρ12) between the two distinct
traits (θ1i, θ2i) was set to be 0.2, 0.5, and 0.8, respectively. The item parameters were taken
from Li and Schafer (2005, p.11), which are shown in the first column of Tables 1, 2 and 3.
Gibbs sampling was subsequently implemented to recover model parameters assuming the
noninformative or informative prior distributions described previously. The posterior means
and standard deviations of item parameters (αv, βv) as well as the intertrait correlation
hyperparameter (ρ12), together with their Monte Carlo standard errors of estimates and
Gelman-Rubin R statistics were obtained and are displayed in the rest of the tables. The
overall estimation accuracy was also evaluated using the average square error between the
actual and estimated parameters, which is shown at the bottom of each table.

The Gelman-Rubin R statistic provides a numerical measure for assessing convergence for each
model parameter. With values close to 1, it is determined that in the implementations of the
Gibbs sampler, Markov chains reached stationarity with a run length of 10, 000 iterations and
a burn-in period of 5, 000 iterations. Convergence can also be monitored visually using time
series graphs of the simulated sequence, such as the trace plot, the running mean plot, and the
autocorrelation plot shown in Figure 1 for one item. The autocorrelations between successive
parameter draws became negligible at lags greater than 70. According to Geyer (1992), burn-
in for a single chain should not take longer than the number of iterations required to achieve
negligible autocorrelations. Indeed, the trace plot and the running mean plot both suggest
that 5, 000 iterations were long enough for the chains to converge.

The results summarized in the three tables indicate that the item parameters as well as
the intertrait correlation hyperparameter were estimated with enough accuracy, suggesting
that the multi-unidimensional IRT model performs well in various test situations where the
distinct latent dimensions have a low, medium or high correlation. In addition, the two sets of
posterior estimates, resulted from different prior distributions, differ only slightly from each
other, signifying that the posterior estimates are not sensitive to the choice of noninformative
or informative priors for the slope and intercept parameters. This point is further supported
by the small difference between the average square errors.

5.2. Model comparison

To illustrate the use of the Bayesian model choice or checking techniques for evaluating the
relative fit of a model, three IRT models were considered in model comparisons, namely, the
multi-unidimensional model, the unidimensional model, and a constrained multi-unidimensional
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True
α1

0.621
1.190
0.778
1.627
1.056
1.411
0.482
0.963
0.700
α2

0.361
0.515
1.078
0.809
0.433
1.069
0.818
0.811
0.786
β1

0.390
−1.061

0.294
−0.760

1.533
0.873
0.878
1.174
0.912
β2

1.475
0.851
−0.678

0.396
1.545
0.381
0.845
−0.332
−0.293

ρ12

0.200

Noninformative priors
Estimate SD MCSE R

0.6991 0.0653 0.0028 1.011
1.5481 0.1502 0.0178 1.001
0.8598 0.0715 0.0036 1.009
1.6178 0.1725 0.0176 1.035
1.0243 0.1181 0.0065 1.017
1.2984 0.1239 0.0139 1.056
0.4112 0.0561 0.0021 1.007
1.0544 0.0993 0.0075 1.038
0.7013 0.0666 0.0016 1.003

0.4468 0.0813 0.0037 1.001
0.4779 0.0705 0.0027 1.008
1.0106 0.1097 0.0074 1.012
0.6866 0.0714 0.0030 1.017
0.2601 0.0740 0.0041 1.022
0.9326 0.0993 0.0062 1.032
0.8617 0.0971 0.0049 1.018
0.7444 0.0784 0.0031 1.008
0.7843 0.0805 0.0033 1.005

0.3210 0.0494 0.0023 1.007
−1.1342 0.1053 0.0120 1.006

0.3415 0.0545 0.0021 1.002
−0.7564 0.0913 0.0050 1.011

1.5679 0.1059 0.0055 1.017
0.7412 0.0756 0.0046 1.035
0.8669 0.0497 0.0012 1.000
1.1830 0.0867 0.0065 1.015
0.9024 0.0589 0.0024 1.003

1.4746 0.0690 0.0030 1.001
0.9314 0.0561 0.0023 1.008
−0.6284 0.0662 0.0043 1.015

0.4433 0.0498 0.0014 1.002
1.4600 0.0625 0.0032 1.028
0.3711 0.0574 0.0028 1.014
0.9050 0.0684 0.0033 1.011
−0.2846 0.0501 0.0020 1.010
−0.2158 0.0517 0.0017 1.002

0.1601 0.0428 0.0009 1.001
Average square error = 0.0085

Informative priors
Estimate SD MCSE R

0.6925 0.0667 0.0029 1.007
1.4759 0.1447 0.0151 1.097
0.8579 0.0725 0.0030 1.001
1.5802 0.1696 0.0150 1.023
0.9909 0.1104 0.0128 1.055
1.2588 0.1080 0.0077 1.011
0.4035 0.0588 0.0026 1.011
1.0494 0.1053 0.0073 1.040
0.6848 0.0708 0.0034 1.012

0.4469 0.0844 0.0032 1.008
0.4741 0.0682 0.0020 1.004
0.9883 0.1123 0.0103 1.056
0.6803 0.0734 0.0017 1.002
0.2495 0.0720 0.0032 1.019
0.9193 0.0890 0.0041 1.011
0.8551 0.0963 0.0063 1.010
0.7491 0.0730 0.0033 1.005
0.7892 0.0836 0.0043 1.017

0.3190 0.0485 0.0020 1.011
−1.1039 0.0979 0.0079 1.047

0.3399 0.0530 0.0023 1.009
−0.7543 0.0898 0.0070 1.027

1.5397 0.1046 0.0102 1.037
0.7201 0.0707 0.0040 1.015
0.8624 0.0507 0.0020 1.014
1.1815 0.0870 0.0053 1.029
0.8930 0.0577 0.0021 1.007

1.4743 0.0775 0.0022 1.004
0.9249 0.0546 0.0014 1.002
−0.6249 0.0671 0.0052 1.019

0.4415 0.0501 0.0018 1.000
1.4503 0.0631 0.0028 1.014
0.3644 0.0564 0.0029 1.001
0.8962 0.0683 0.0049 1.006
−0.2871 0.0497 0.0017 1.003
−0.2194 0.0517 0.0024 1.002

0.1634 0.0427 0.0013 1.005
Average square error = 0.0080

Table 1: Posterior estimate, standard deviation (SD), Monte Carlo standard error of the
estimate (MCSE) and Gelman-Rubin R statistic for αv, βv, and ρ12 when the true intertrait
correlation is 0.2 (chain length = 10, 000, burn-in = 5, 000).



10 A MATLAB Package for MCMC with a Multi-unidimensional IRT Model

True
α1

0.621
1.190
0.778
1.627
1.056
1.411
0.482
0.963
0.700
α2

0.361
0.515
1.078
0.809
0.433
1.069
0.818
0.811
0.786
β1

0.390
−1.061

0.294
−0.760

1.533
0.873
0.878
1.174
0.912
β2

1.475
0.851
−0.678

0.396
1.545
0.381
0.845
−0.332
−0.293

ρ12

0.500

Noninformative priors
Estimate SD MCSE R

0.5338 0.0560 0.0012 1.002
1.5487 0.1640 0.0157 1.015
0.8885 0.0743 0.0036 1.003
1.6462 0.1580 0.0171 1.093
1.3140 0.1705 0.0290 1.234
1.4317 0.1231 0.0076 1.011
0.5202 0.0622 0.0027 1.012
0.9577 0.0940 0.0080 1.029
0.6648 0.0680 0.0036 1.015

0.3992 0.0710 0.0037 1.016
0.5049 0.0629 0.0025 1.009
1.0407 0.1018 0.0082 1.027
0.8830 0.0821 0.0029 1.008
0.4893 0.0883 0.0050 1.022
0.9864 0.0935 0.0068 1.008
0.7804 0.0799 0.0039 1.015
0.8136 0.0772 0.0042 1.020
0.8622 0.0815 0.0025 1.001

0.3116 0.0472 0.0017 1.002
−1.3245 0.1222 0.0107 1.021

0.3163 0.0546 0.0027 1.012
−0.8266 0.0942 0.0074 1.052

1.7951 0.1658 0.0275 1.240
0.7578 0.0808 0.0032 1.006
0.9159 0.0549 0.0019 1.010
1.2053 0.0790 0.0063 1.036
0.9378 0.0574 0.0025 1.018

1.4202 0.0633 0.0033 1.013
0.7933 0.0514 0.0016 1.008
−0.6516 0.0667 0.0040 1.009

0.4066 0.0567 0.0024 1.007
1.6080 0.0826 0.0034 1.009
0.3709 0.0588 0.0027 1.004
0.8122 0.0614 0.0032 1.014
−0.3540 0.0534 0.0016 1.000
−0.3579 0.0533 0.0015 1.002

0.5071 0.0363 0.0014 1.011
Average square error = 0.0115

Informative priors
Estimate SD MCSE R

0.5306 0.0558 0.0016 1.005
1.5150 0.1620 0.0185 1.038
0.8801 0.0757 0.0041 1.007
1.5997 0.1566 0.0197 1.123
1.2438 0.1364 0.0150 1.059
1.4305 0.1342 0.0102 1.025
0.5206 0.0615 0.0022 1.004
0.9347 0.0898 0.0062 1.038
0.6687 0.0667 0.0040 1.016

0.3912 0.0726 0.0030 0.999
0.4976 0.0611 0.0023 1.004
1.0429 0.0968 0.0041 1.011
0.8704 0.0821 0.0041 1.016
0.4758 0.0829 0.0045 1.001
0.9768 0.0889 0.0049 1.008
0.7751 0.0799 0.0042 1.028
0.8197 0.0784 0.0037 1.022
0.8477 0.0825 0.0047 1.017

0.3033 0.0452 0.0012 1.005
−1.3217 0.1255 0.0134 1.032

0.3056 0.0541 0.0027 1.019
−0.8345 0.0941 0.0097 1.061

1.7188 0.1331 0.0141 1.050
0.7439 0.0825 0.0054 1.024
0.9080 0.0542 0.0021 1.006
1.1772 0.0751 0.0046 1.033
0.9322 0.0595 0.0035 1.020

1.4072 0.0635 0.0030 1.002
0.7867 0.0502 0.0026 1.010
−0.6590 0.0658 0.0026 1.004

0.3957 0.0551 0.0025 1.009
1.5896 0.0789 0.0043 1.017
0.3631 0.0569 0.0025 1.010
0.8031 0.0596 0.0030 1.017
−0.3593 0.0529 0.0023 1.009
−0.3635 0.0529 0.0026 1.005

0.5096 0.0360 0.0019 1.006
Average square error = 0.0092

Table 2: Posterior estimate, standard deviation (SD), Monte Carlo standard error of the
estimate (MCSE) and Gelman-Rubin R statistic for αv, βv, and ρ12 when the true intertrait
correlation is 0.5 (chain length = 10, 000, burn-in = 5, 000).
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True
α1

0.621
1.190
0.778
1.627
1.056
1.411
0.482
0.963
0.700
α2

0.361
0.515
1.078
0.809
0.433
1.069
0.818
0.811
0.786
β1

0.390
−1.061

0.294
−0.760

1.533
0.873
0.878
1.174
0.912
β2

1.475
0.851
−0.678

0.396
1.545
0.381
0.845
−0.332
−0.293

ρ12

0.800

Noninformative priors
Estimate SD MCSE R

0.6709 0.0630 0.0025 1.002
1.1436 0.1045 0.0078 1.031
0.7918 0.0658 0.0022 1.004
2.0085 0.2334 0.0297 1.031
1.3649 0.1446 0.0165 1.073
1.3799 0.1233 0.0102 1.028
0.5271 0.0613 0.0032 1.016
1.0194 0.0876 0.0046 1.003
0.6432 0.0648 0.0013 1.000

0.3180 0.0674 0.0036 1.007
0.4071 0.0570 0.0021 1.001
1.2643 0.1252 0.0098 1.053
0.7838 0.0672 0.0020 1.006
0.4327 0.0772 0.0043 1.014
1.1157 0.0980 0.0062 1.013
0.9498 0.0880 0.0044 1.010
0.8708 0.0778 0.0035 1.005
0.8810 0.0784 0.0036 1.008

0.3968 0.0479 0.0011 1.001
−1.0121 0.0805 0.0044 1.007

0.2945 0.0505 0.0024 1.008
−0.8590 0.1147 0.0106 1.009

1.7961 0.1346 0.0148 1.078
0.9102 0.0825 0.0056 1.007
0.8460 0.0535 0.0014 1.002
1.1675 0.0737 0.0037 1.003
0.8136 0.0545 0.0016 1.000

1.4382 0.0628 0.0031 1.010
0.7391 0.0491 0.0016 1.003
−0.7489 0.0772 0.0047 1.023

0.3360 0.0507 0.0015 1.003
1.5866 0.0737 0.0044 1.022
0.3161 0.0591 0.0030 1.011
0.8988 0.0678 0.0034 1.010
−0.4663 0.0553 0.0018 1.003
−0.2833 0.0531 0.0025 1.004

0.7804 0.0286 0.0016 1.026
Average square error = 0.0130

Informative priors
Estimate SD MCSE R

0.6677 0.0611 0.0033 1.013
1.1193 0.1013 0.0056 1.003
0.7880 0.0663 0.0018 1.006
1.8873 0.1797 0.0271 1.219
1.3409 0.1410 0.0153 1.067
1.3695 0.1178 0.0108 1.079
0.5249 0.0606 0.0028 1.014
1.0187 0.0941 0.0056 1.003
0.6362 0.0650 0.0033 1.000

0.3125 0.0693 0.0037 1.017
0.4066 0.0548 0.0020 1.005
1.2456 0.1248 0.0141 1.083
0.7770 0.0699 0.0030 1.003
0.4229 0.0770 0.0038 1.006
1.1131 0.0939 0.0073 1.018
0.9299 0.0816 0.0059 1.005
0.8558 0.0777 0.0032 1.008
0.8651 0.0732 0.0049 1.022

0.3926 0.0496 0.0021 1.012
−1.0059 0.0781 0.0052 1.014

0.2906 0.0508 0.0024 1.014
−0.8310 0.1021 0.0075 1.039

1.7673 0.1338 0.0155 1.094
0.9018 0.0845 0.0079 1.074
0.8388 0.0527 0.0030 1.020
1.1644 0.0811 0.0043 1.007
0.8076 0.0552 0.0031 1.014

1.4285 0.0631 0.0025 1.007
0.7369 0.0488 0.0014 1.003
−0.7461 0.0770 0.0065 1.053

0.3291 0.0515 0.0015 1.005
1.5721 0.0709 0.0035 1.007
0.3127 0.0580 0.0026 1.014
0.8851 0.0648 0.0031 1.008
−0.4712 0.0561 0.0022 1.011
−0.2850 0.0513 0.0018 1.003

0.7885 0.0297 0.0015 1.005
Average square error = 0.0097

Table 3: Posterior estimate, standard deviation (SD), Monte Carlo standard error of the
estimate (MCSE) and Gelman-Rubin R statistic for αv, βv, and ρ12 when the true intertrait
correlation is 0.8 (chain length = 10, 000, burn-in = 5, 000).
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Figure 1: Trace plots (upper), running mean plots (middle), and autocorrelation plots (lower)
of 10, 000 draws of αv and βv for an item in one implementation.

model where θi ∼ Nm(0, I) (note that this model is equivalent to fitting the unidimensional
model separately for each subtest because the latent traits are assumed to be uncorrelated,
and hence it is denoted using“unidimensional model (2)” in the following discussion). As illus-
trated in Section 2, the latter two models can be viewed as special cases of the former where the
latent traits have a perfect or a zero correlation. Three 1000-by-30 dichotomous data matrices
were simulated from the 2PNO multi-unidimensional IRT model so that 15 items measured
θ1 and another 15 items measured θ2 with their intertrait correlation ρ12 being 0, 0.5, and
1, respectively. It is noted that although a 0 or 1 correlation is rarely observed in practice,
it was considered here to illustrate extreme situations where the unidimensional model for
the overall test or that for individual subtests would not be adequate. To generate the data
matrices, item parameters were randomly drawn from the uniform distributions described in
Section 4. The Gibbs sampler assuming noninformative priors for the item parameters was
subsequently implemented so that 10, 000 samples were simulated with the first 5, 000 set
to be burn-in. The Gelman-Rubin R statistics suggest that the chains converged to their
stationary distributions within 10, 000 iterations. Hence, the Bayesian deviance estimates,
including D, D(ϑ̄), pD and DIC, were obtained from each implementation and are displayed
in Table 4. It is clear from the table that after accounting for model complexity, the Bayesian
DIC (column 5) estimates pointed to the more general multi-unidimensional model, even in
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ρ12=0
unidimensional model
unidimensional model (2)
multi-unidimensional model

D D(ϑ̄) pD DIC

27794.3066 26873.0312 921.2753 28715.5819
22706.8202 20924.6603 1782.1598 24488.9800
22695.5202 20924.2061 1771.3141 24466.8343

ρ12=.5
unidimensional model
unidimensional model (2)
multi-unidimensional model

24472.8049 23541.7085 931.0964 25403.9013
21772.1656 20048.5712 1723.5945 23495.7601
21784.4596 20120.6616 1663.7980 23448.2576

ρ12=1
unidimensional model
unidimensional model (2)
multi-unidimensional model

24122.5643 23161.4451 961.1192 25083.6835
24089.3970 22389.2960 1700.1010 25789.4979
24004.6142 22927.7444 1076.8698 25081.4839

Table 4: Bayesian deviance estimates for multi-unidimensional (ρ12 = 0, ρ12 = 0.5) or unidi-
mensional (ρ12 = 1) data fitted with the three IRT models.

situations where the test measured one common latent trait (ρ12 = 1) or two completely
different traits (ρ12 = 0). It has to be noted that when data were clearly unidimensional, the
difference between the DIC estimates for the unidimensional and the multi-unidimensional
models was rather trivial. Thus, one may argue that these two models were essentially similar
given that the small difference might not make a practical significance.

PPMC was also implemented to obtain PPP values for the three IRT models where odds ratios
were used as the discrepancy measure. Graphical representations of extreme PPP values are
shown in Figure 2, where the upper diagonal is left blank for each plot due to symmetry.
Here, with a threshold of 0.01, the plots indicate that the multi-unidimensional model had
consistently fewer number of extreme predicted odds ratios and hence provided a description
no worse, if not better than the other two models in all the three situations considered. On
the other hand, the larger number of extreme PPP values clearly suggest the lack of fit of the
unidimensinal model when ρ12 = 0 (see Figure 2(a)), and that of the unidimensional model
(2) when ρ12 = 1 (see Figure 2(h)), which is consistent with the previous result using DIC.
Interestingly, when ρ12 = 0.5, the unidimensional model (2) outperformed the unidimensional
model (see Table 4 and Figures 2(d), 2(e)), suggesting that although fitting the unidimensional
model to individual subtests is not the best approach, it tends to be more appropriate than
fitting the unidimensional model to the overall test when the latent traits are believed to be
moderately correlated.

Consistent with findings from Sheng and Wikle (2007), the model comparison results based on
the Bayesian deviance and PPMC criteria suggest that the multi-unidimensional IRT model
is applicable in a wider range of test situations where the unidimensional model for the overall
test or for individual subtests is not appropriate, and is even robust to the true process being
unidimensional. Hence, allowing separate inferences made about a person’s multiple traits
while modeling their underlying structure, the multi-unidimensional model provides a better
and more flexible way to represent test data not realized in the conventional IRT model.
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(a) unidimensional model (b) unidimensional model (2) (c) multi-unidimensional model

(ρ12 = 0)

(d) unidimensional model (e) unidimensional model (2) (f) multi-unidimensional model

(ρ12 = 0.5)

(g) unidimensional model (h) unidimensional model (2) (i) multi-unidimensional model

(ρ12 = 1)

Figure 2: Plots of PPP values for odds ratios for multi-unidimensional (ρ12 = 0, ρ12 = 0.5) or
unidimensional (ρ12 = 1) data fitted with the three IRT models. (Triangles represent extreme
PPP values, where values smaller than 0.005 are denoted using left triangle signs and values
larger than 0.995 are denoted using right triangle signs.)

5.3. Empirical example

A subset of the College Basic Academic Subjects Examination (CBASE; Osterlind 1997) En-
glish data was further used to illustrate the Bayesian approach for model choice or model
checking. The data contains binary responses of 1, 200 independent college students to a
total of 41 English multiple-choice items. The English test is further organized into levels
of increasing specificity by two subtests, namely, writing and reading, so that 16 items are
in one subtest and 25 are in the other. One may note that the nature of the test limits the
candidate models to be either unidimensional or multi-unidimensional. Model comparison is
consequently necessary for establishing the model that provides a relatively better represen-
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unidimensional model
unidimensional model (2)

multi-unidimensional model

D D(ϑ̄) pD DIC

53973.9122 52915.7493 1058.1630 55032.0752
53500.2910 51748.5462 1751.7448 55252.0358
53486.5558 52068.6752 1417.8806 54904.4363

Table 5: Bayesian deviance estimates for the three IRT models with the CBASE data.

tation of the data. The three IRT models described in the previous section were then each
fit to the CBASE data using Gibbs sampling with a run length of 10, 000 iterations and a
burn-in period of 5, 000, which was sufficient for the chains to converge. The results with
Bayesian deviance and PPMC, displayed in Table 5 and Figure 3, respectively, suggest that
with a smaller Bayesian DIC value and fewer number of extreme PPP values for odds ratios,
the multi-unidimensional model provided a relatively better description of the data, even af-
ter taking into consideration model complexity. In addition, the unidimesnional model had
a clearly better fit to the data than the unidimensional model (2), indicating that the two
latent traits should have a correlation greater than 0.5. Hence, the actual latent structure for
the CBASE data is closer to multi-unidimensional with the two subtests being moderately to
highly correlated, and a unified English trait is not sufficient in describing the specific trait
levels necessary for the “writing” and “reading” subtests.

6. Discussion

With functions for generating dichotomous response data from and implementing the Gibbs
sampler for the 2PNO multi-unidimensional IRT model, IRTmu2no allows the user the choice
to set the number of total or burn-in samples, specify starting values or prior distributions for
model parameters, check convergence of the Markov chain, as well as obtain Bayesian model
choice or model checking statistics. The package leaves it to the user to choose between
noninformative and informative priors for the item parameters. In addition, the user can
choose to set the location and scale parameters for the conjugate normal priors of αvj and βvj
to reflect different prior beliefs on their distributions. For example, if there is a strong prior
opinion that the item intercepts should be centered around 0, a smaller σ2

βv
can be specified

in the gsmu2no function such that gprior=[zeros(m,1),0.5*ones(m,1)]. If, however, this
prior opinion concerns with the item intercepts in the first subtest, not the entire test, the
input argument becomes gprior=[zeros(m,1),[0.5; ones(m-1,1)]]. This way, different
prior distributions can be specified for αvj or βvj across the m subtests.

One should note that during an implementation of the Gibbs sampler, if a Markov chain does
not converge within a run length of certain iterations, additional iterations can be obtained
by invoking the gsmu2no function with starting values th0, item0, and sigma0 set to be their
respective posterior samples drawn on the last iteration of the Markov chain (see Sheng 2008,
for a demonstration of such procedure).

The illustrative examples provided in Section 5 deal with two subtests for simplicity. For tests
with three or more subtests, IRTmu2no can be used in a similar fashion with possibly increased
complexity and consequently a longer computing time. In addition, Bayesian deviance and
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(a) unidimensional model (b) unidimensional model (2)

(c) multi-unidimensional model

Figure 3: Plots of PPP values for odds ratios for the CBASE data fitted with the three
IRT models. (Triangles represent extreme PPP values, where values smaller than 0.005 are
denoted using left triangle signs and values larger than 0.995 are denoted using right triangle
signs.)

PPMC are adopted in this paper to evaluate the goodness-of-fit of a candidate model. One
may also want to consider Bayes factors, which provide more reliable and powerful results for
model comparisons in the Bayesian framework. However, they are difficult to calculate due
to the difficulty in exact analytic evaluation of the marginal density of the data (Kass and
Raftery 1995) and hence are not considered in the paper. In addition, this paper adopts the
Gelman-Rubin R statistic to assess convergence numerically. Its multivariate extension, the
Brooks-Gelman multivariate potential scale reduction factor (Brooks and Gelman 1998), may
be considered as well.
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