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Abstract

The hierarchical linear model (HLM) is the primary tool of multilevel analysis, a set
of techniques for examining data with nested sources of variability. The concept of R2

from classical multiple regression analysis cannot be applied directly to HLMs without
certain undesirable results. However, multilevel analogues have been formulated. The
goal here is to demonstrate a SAS macro that will calculate estimates of these quantities
for a two-level HLM that has been fit with SAS’s linear mixed modeling procedure, PROC
MIXED.
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1. Introduction

1.1. Multilevel analysis

Multilevel analysis is a set of statistical techniques for examining data with sources of vari-
ability that are nested within one another. Data that possess such a structure arise frequently
in practice. The simplest and most common form is two-level data, in which “level-1 units”,
or “individuals”, are nested within “level-2 units”, or “groups”. Some typical examples of this
scheme include students nested within classes, employees nested within firms, and measure-
ments nested within subjects (in the case of longitudinal data).

Snijders and Bosker (1999) give two reasons why this type of data tends to appear. First, it is
often the case that there are relationships between level-1 and level-2 units that are worthy of
research. For instance, in the case of students nested within classes, two-level data on students’
achievement could reveal how it is affected by differences among their teachers. Secondly, two-
stage sampling is often more practical and efficient than simple random sampling. That is, in
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our previous example, randomly sampling individual students from the population would cost
far more in time and money than would randomly sampling students from a much smaller
random sample of classes.

1.2. Hierarchical linear models

Modeling two-level data requires a more general technique than classical multiple linear re-
gression analysis. This is because multiple linear regression includes an underlying assumption
of residuals that are independent and identically distributed. Such an assumption could eas-
ily be inappropriate in the two-level case since there is likely to be dependence among the
individuals that belong to a given group. For instance, it would be difficult to imagine that
the academic achievements of students in the same class were not somehow related to one
another.

The primary tool of multilevel analysis is the hierarchical linear model (HLM), which is
formulated as follows. Suppose that our data consist of N groups with nj individuals in group
j. Let Y be the response variable and let X1, . . . , Xp and Z1, . . . , Zq be not necessarily disjoint
lists of explanatory variables. These lists contain the fixed- and random-effects regressors,
respectively. They are treated differently by the model in that the regression coefficients for
the former list of regressors will be constants while those for the latter list will be random
variables. Nevertheless, the members of both lists are treated as random variables for the
purpose of defining R-squared measures.

In equation form, the model for the response of the i-th individual in the j-th group is

Yij =
p∑

k=0

βkXkij︸ ︷︷ ︸+
q∑

h=0

UhjZhij + Eij︸ ︷︷ ︸ .
Expectation Residual

Here we set X0ij = Z0ij = 1 for all i and j to account for the fixed and random intercepts, if
applicable.

It is allowed that some of the fixed-effects regressors X1, . . . , Xp take different values for
different individuals while others take the same value for every member of the same group.
That is, one may make use of variables that describe the individual (“level-1 variables”) as
well as variables that describe the group to which the individual belongs (“level-2 variables”).
The response variable Y and the random-effects regressors Z1, . . . , Zq, however, must always
be level-1 variables.

Additionally, we make the following assumptions:

� The fixed-effects regressor vectors Xij = (X1ij , . . . , Xpij) are identically distributed.

� The random effect vectors Uj = (U0j , . . . , Uqj)> are independent and identically
distributed as N(0,T).

� The random errors Eij are independent and identically distributed as N(0, σ2).

� The regressors Xkij and Zhij are independent of the random effects Uhj and errors Eij .
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� The random effects Uhj are independent of the random errors Eij .

These assumptions express, among other things, the idea that the responses of individuals in
the same group may not be independent of one another even though there is independence
among the groups. Whereas the residual of a multiple linear regression model would only
include the Eij term, it is this term along with the random effects summation that account
for the residual of a HLM. The residuals of every member of group j will depend upon the
same vector Uj of random effects, so there is dependence among these residuals. This is
meant to separate the variation accounted for by group membership from variation due to
other sources.

2. R-squared statistics for HLMs

2.1. Complications

As in all statistical analyses, it is desirable to have statistics that will help a researcher to
assess how well his/her HLM is performing. Multiple linear regression analysis has R2, the
proportional reduction in the single variance component of the model. Although it might be
tempting to apply this idea to each of the variance components in a HLM separately, Snijders
and Bosker (1994) warn that doing so can produce undesirable results.
The complications arise from the fact that variation in the response variable of a two-level
HLM is assumed to come from multiple sources, namely the two levels underlying the data.
Descriptions of the variability at each level require both the random effects covariance matrix
T and the error variance σ2, but estimates of these variance components do not necessarily
behave as one might expect. Indeed, the addition of an explanatory variable to a HLM can
simultaneously increase some of the variance components and decrease others. This means
that examining the individual components of variance separately by way of a traditional R2

can lead to surprising outcomes like negative values or values that decrease when a new
regressor is added to the model.
Instead, Snijders and Bosker (1994) suggest separate examinations of the levels of variance.
They show that the population values of the resulting measures possess the appealing prop-
erties that they are always nonnegative and that additional explanatory variables will never
cause them to decrease, assuming that the fixed-effects portion of the model is specified cor-
rectly. However, as of yet, no software directly computes these multilevel analogues of the
standard R2. Therefore, the goal here is the demonstration of a SAS (SAS Institute Inc. 2003)
macro that will calculate estimates of these quantities for a two-level HLM that has been fit
with SAS’s linear mixed modeling procedure, PROC MIXED.

2.2. Formulas

Although R2 is usually defined in the multiple linear regression setting as “explained propor-
tion of variance”, the approach of Snijders and Bosker (1994) employs the equivalent definition
of “proportional reduction in mean squared prediction error”. One wishes to predict an in-
dividual’s value Yij of Y at level 1 and a group’s mean value Y ·j = 1

nj

∑nj

i=1 Yij at level 2,
so it is possible to use this alternative definition to derive separate measures of proportional
reduction in mean squared prediction error for each level.
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Suppose that we have a HLM as described above, and make the following definitions:

� µZ is the expectation vector of the random-effects regressors.

� ΣB
Z is the between-group covariance matrix of the random-effects regressors.

� ΣW
Z is the within-group covariance matrix of the random-effects regressors.

� τ̃2 and σ̃2 are the variance components from the so-called “empty model”. This is the
model that contains a fixed and random intercept but no regressors. In equation form,
it is given by Yij = β̃0 + Ũ0j + Ẽij where the Ũ0j are independent and identically
distributed as N(0, τ̃2), the Ẽij are independent and identically distributed as N(0, σ̃2),
and all pairs of Ũ0j and Ẽij are independent.

� n is a representative group size.

The empty model described above is essentially the simplest model that still makes use of
group membership information. Therefore, it is utilized as the baseline from which the pro-
portional reduction in mean squared prediction error is computed.
First, considering level 1, Snijders and Bosker (1994) show that the mean squared prediction
error from predicting Yij using its expectation under the model of interest is

VAR

(
Yij −

p∑
k=0

βkXkij

)
= VAR

(
q∑

h=0

UhjZhij + Eij

)
= µ>ZTµZ + trace

[
T
(
ΣB
Z + ΣW

Z

)]
+ σ2

while that from using its expectation under the empty model is

VAR
(
Yij − β̃0

)
= VAR

(
Ũ0j + Ẽij

)
= τ̃2 + σ̃2.

Hence, the proportional reduction in mean squared prediction error at level 1, R2
1, is given by

R2
1 = 1−

µ>ZTµZ + trace
[
T
(
ΣB
Z + ΣW

Z

)]
+ σ2

τ̃2 + σ̃2
.

Next, considering level 2, Snijders and Bosker (1994) show that the mean squared prediction
error from predicting Y ·j using its expectation under the model of interest is

VAR

(
Y ·j −

p∑
k=0

βkXk·j

)
= VAR

(
q∑

h=0

UhjZh·j + E·j

)

= µ>ZTµZ + trace
[
T
(

ΣB
Z +

1
nj

ΣW
Z

)]
+
σ2

nj

while that from using its expectation under the empty model is

VAR
(
Y ·j − β̃0

)
= VAR

(
Ũ0j + Ẽ·j

)
= τ̃2 +

σ̃2

nj
.
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Since the group sizes need not all be the same, the representative group size n must be
used in their place in the above two expressions. Making these substitutions yields R2

2, the
proportional reduction in mean squared prediction error at level 2:

R2
2 = 1−

µ>ZTµZ + trace
[
T
(
ΣB
Z + 1

nΣW
Z

)]
+ σ2

n

τ̃2 + σ̃2

n

.

Estimates of the parts of the formulas for R2
1 and R2

2 are relatively easy to obtain. Those of
T, σ2, τ̃2, and σ̃2, come directly from the modeling procedure. The vector µZ is estimated
by the vector of sample means of the variables Z0, . . . , Zq. As recommended by Snijders and
Bosker (1994), the representative group size is taken to be either a user-supplied value or the
harmonic mean of the group sizes, namely

N∑N
j=1

1
nj

.

To obtain an estimate of ΣB
Z , we replace the observed values zhij of each random-effects

regressor Zh with the corresponding group mean zh·j and compute the sample covariance
matrix. Finally, for an estimate of ΣW

Z , we replace the observed values zhij with the group-
centered versions zhij − zh·j and compute the sample covariance matrix.

3. Computation using the macro HLMRSQ

3.1. Implementation

The SAS macro for computing the R-squared measures is called HLMRSQ and is included with
this article in the file hlmrsq.sas. It is meant to take as input several data sets that PROC
MIXED can produce while fitting a model, an optional WHERE expression for subsetting the
modeling data, and an optional value for the representative group size n. It then extracts
the necessary information about the model, uses this information to compute estimates of
the pieces of the formulas discussed earlier, calculates the explained proportion of variance
estimates for both levels, and displays the results.

This setup means that a modeler would follow the basic procedure outlined below which is
elaborated upon in the next section.

1. Write the PROC MIXED step for fitting the desired model as usual.

2. Modify this step so that it will produce the output that the macro requires as input.

3. Run the modified PROC MIXED step.

4. Invoke the macro.

More specific information about the arguments to the macro is given in Table 1.

The macro is able to handle several of the options and statements that are available to
modelers in PROC MIXED. For instance, the macro will automatically use the same estimation
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Argument Description Usage
CovParms The name given to the CovParms= data

set in the ODS OUTPUT statement
Required

GMatrix The name given to the G= data set in
the ODS OUTPUT statement

Required

ModelInfo The name given to the ModelInfo= data
set in the ODS OUTPUT statement

Required

SolutionF The name given to the SolutionF= data
set in the ODS OUTPUT statement

Required

WhereExpr The expression used in the WHERE state-
ment to subset the modeling data

Optional; should be enclosed in the
%nrstr() function

RepSize The value for the representative group
size

Optional; defaults to the harmonic
mean of the group sizes if omitted

Table 1: Arguments for the macro HLMRSQ.

method for fitting the empty model that the modeler used for the original model. It will
also accommodate any of the shorthand specifications of effects that can be used in either the
MODEL or RANDOM statements of PROC MIXED. Any variables that are designated as classification
variables in the CLASS statement will also be treated appropriately by the macro.

The macro will also determine if a BY statement was used in the original PROC MIXED step
in order to simultaneously fit multiple models. This situation could arise if, for example, the
modeler had fit the same two-level model to each third-level unit of a three-level data set. In
this case, the macro will calculate and output the two R-squared estimates for each subset
determined by the distinct combinations of levels of the BY variables.

Beyond that, the macro will determine if the input model was fit off of weighted data with
the WEIGHT statement and will adjust for the weight variable in its computations. Finally,
as mentioned earlier, the macro can account for any subsetting of the modeling data that
was accomplished via a WHERE statement if the modeler supplies the WHERE expression as an
argument to the macro.

3.2. Example

We will work through the use of the macro with an example. For the sake of reproducibility,
a two-level HLM was simulated in SAS using code that is provided with this article in the file
v32c02.sas. The resulting data set is called hlmdata, and it contains the following variables:
the response variable Yij, the grouping variable Groupnumber that identifies the group to
which each individual belongs, a continuous level-2 explanatory variable X1ij, continuous
level-1 explanatory variables X2ij and X3ij, and a binary level-1 explanatory variable X4ij.

The first step in using the macro is constructing the PROC MIXED step as usual. This will
normally consist of a specification of the fixed- and random-effects regressors and the grouping
variable as well as any additional options. If, in our example, one were interested in fitting a
two-level HLM for Yij with fixed coefficients for each of the explanatory variables except for
X3ij, a random intercept, and random coefficients for X2ij and X4ij, then SAS code which
would fit such a model is below.



Journal of Statistical Software – Code Snippets 7

proc mixed data=hlmdata;
class groupnumber;
model Yij = X1ij X2ij X4ij;
random intercept X2ij X4ij / subject=groupnumber;

run;

Note that in fitting this model in SAS, we are implicitly assuming that Z1 = X2 and Z2 = X4

in our HLM definition.

The second step is to modify the original PROC MIXED step so that it will to produce the
output data sets that will be used as input to the macro. These modifications will include an
extra statement as well as a few extra options for the statements that were already there.

proc mixed data=hlmdata namelen=200;
class groupnumber;
model Yij = X1ij X2ij X4ij / s;
random intercept X2ij X4ij / subject=groupnumber g;
ods output CovParms=cov G=gmat ModelInfo=mod SolutionF=solf;

run;

The modifications are as follows:

� The option NAMELEN=200 has been added to the PROC MIXED statement to ensure that
the output data sets contain the full names of all effects.

� The option S has been added to the MODEL statement after a forward slash so that the
output data set containing the fixed-effects solutions will be produced.

� The option G has been added to the RANDOM statement so that the output data set
containing the estimated random-effects covariance matrix will be produced.

� The ODS OUTPUT statement has been added to name the output data sets that will be
used as input to the macro.

The modified code can then be submitted in order to fit the desired model. If the fit is
successful, then the final step is to invoke the macro itself, supplying to it the names of the
four data sets that were produced by the PROC MIXED step. In our example, this would be
accomplished with the following macro call in SAS.

%hlmrsq(CovParms=cov, GMatrix=gmat, ModelInfo=mod, SolutionF=solf);

Note that since the entire modeling data set was used to fit the model and since we are
not choosing our own value for the representative group size, the WhereExpr and RepSize
arguments have been omitted.

The output of the macro contains the representative group size that was used in the compu-
tations and the R-squared estimates for both levels. It is reproduced in Table 2.
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Explained proportion of variance
Rep size Level 1 Level 2
114.83 0.221825 0.524735

Table 2: R-squared measures for the example model.

4. Interpretation

Interpretation of the numerical values of these R-squared statistics is straightforward given
their definitions as explained proportions of variance for the two levels of the data. As far
as typical behavior of these measures is concerned, Snijders and Bosker (1994) show that
the addition of a level-2 explanatory variable – which, by definition, has no within-group
variability – will leave the estimate of σ2 unchanged but decrease the common variance of the
random effects U0j that are associated with the intercept of the model. This will leave the
estimate of R2

1 the same and increase the estimate of R2
2. They also show that the addition of

a purely level-1 explanatory variable – that is, a variable with no between-group variability
– will decrease the estimate of σ2 but actually slightly increase the variance of the U0j . This
will increase the estimate of R2

1 but decrease the estimate of R2
2.

These R-squared statistics are also useful for diagnostic purposes. As stated earlier, when the
fixed-effects portion of the model is specified correctly, the population parameters R2

1 and R2
2

are always nonnegative and will not decrease when an explanatory variable is added to the
model. However, Snijders and Bosker (1994) note that the estimators R̂2

1 and R̂2
2 of these

quantities do not have these properties. Therefore, if negative values are obtained or if the
estimates decrease when a regressor is added in the course of fitting candidate models, then
the cause must either be random chance or a misspecification of the fixed effects. Snijders and
Bosker (1999) recommend that the modeler suspect misspecification if either of the R-squared
estimates decreases by 0.05 or more upon the addition of an explanatory variable.

One important type of misspecification ought to be considered when the R-squared measures
display anomalous behavior. It is sometimes the case in multilevel modeling that the within-
groups relationship between a response variable and a level-1 fixed-effects regressor will have a
different direction from the between-groups relationship. Returning once again to the example
of students nested within classes, suppose that the response variable is a measure of academic
achievement and the regressor is a measure of perceived level of support from the teacher.
It could be the case that at the classroom level, greater perceived support results in higher
academic achievement, while at the student level, teachers tend to give more support to lower
performing students than to higher performing students. To include only the raw version
of such an explanatory variable in a HLM is to make an implicit and incorrect assumption
of equal within- and between-group regression coefficients which will tend to increase mean
squared prediction error at the group level and, in so doing, decrease the estimate of R2

2,
perhaps to the point where it becomes negative. One way to correct this problem is to
replace the raw variable with separate fixed-effects regressors for its group-centered version
and its group means, thus allowing their estimated coefficients to take values with opposite
signs.
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5. Conclusion

Statistics like these explained proportion of variance measures are not, of course, the ultimate
factor that a modeler will use to identify his/her final model. However, they are useful as
diagnostic tools and as one additional set of criteria among many which researchers can use to
attempt to rank order what is often a large number of candidate models. And while the fact
that software does not currently compute these two particular statistics does not mean that a
modeler could not calculate them on his/her own, there is a certain amount of reliability and
convenience in having access to a macro like the one that we have been working with here.

In addition to its calculation of the two R-squared measures, this macro may also be useful for
providing a framework in which valuable model information can be extracted automatically
from a run of PROC MIXED for use by other SAS procedures. The researcher can utilize this
capability to perform analyses that are not currently available in SAS and to customize the
output to his/her needs.
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