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Abstract

This paper presents the R package alphahull which implements the α-convex hull and
the α-shape of a finite set of points in the plane. These geometric structures provide
an informative overview of the shape and properties of the point set. Unlike the convex
hull, the α-convex hull and the α-shape are able to reconstruct non-convex sets. This
flexibility make them specially useful in set estimation. Since the implementation is based
on the intimate relation of theses constructs with Delaunay triangulations, the R package
alphahull also includes functions to compute Voronoi and Delaunay tesselations. The
usefulness of the package is illustrated with two small simulation studies on boundary
length estimation.
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1. Introduction

The problem of reconstructing a set S from a finite set of points taken into it has been ad-
dressed in different fields of research. In computational geometry, for instance, the efficient
construction of convex hulls for finite sets of points has important applications in pattern
recognition, cluster analysis and image processing, among others. We refer the reader to
Preparata and Shamos (1985) for an introduction to computational geometry and its applica-
tions. From a probabilistic point of view, the set of points from which we try to reconstruct
S is assumed to be non-deterministic. Thus, the term set estimation refers to the statistical
problem of estimating an unknown set given a random sample of points whose distribution is
closely related to it. Under this perspective, the target S might be, for example, a distribu-
tion support, its boundary or a level set. See Cuevas and Fraiman (2009) for a survey of set
estimation theory.

The support estimation problem is formally established as the problem of estimating the
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support of an absolutely continuous probability measure from independent observations drawn
from it. The papers by Geffroy (1964), Rényi and Sulanke (1963), and Rényi and Sulanke
(1964) are the first works on support estimation. They deal with the convex case. When S
is a convex support the natural estimator is the convex hull of the sample. See Schneider
(1988) for classical results on the convex hull estimator. However, when S is not convex,
the convex hull of the sample is not an appropriate choice. In a more flexible framework,
Chevalier (1976) and Devroye and Wise (1980) proposed to estimate the support (without
any shape restriction) of an unknown probability measure by means of a smoothed version
of the sample. The problem of support estimation is introduced by Devroye and Wise (1980)
in connection with a practical application, the detection of abnormal behaviour of a system,
plant or machine. We refer to Korostelëv and Tsybakov (1993) for a compilation of the most
relevant theoretical results on the performance of such estimator. Anyhow, there are also
approaches in-between the two aforementioned. In Rodŕıguez-Casal (2007), the estimation of
an α-convex support is considered. The α-convexity is a condition that affects the shape of
the set of interest but which is much more flexible than convexity and therefore, it allows a
wider range of applications. The α-convex hull of the sample is the natural estimator when
S is α-convex. In this work we discuss the details on the implementation of this estimator.

Set estimation is also related to another interesting problem, the estimation of certain geo-
metric characteristics of the set S such as the surface area (boundary length in R2). There
are other statistical fields which also cope with problems regarding set measurements as, for
example, the stereology. However, stereology focuses on the estimation of certain geometric
characteristics of S without needing to reconstruct the set, see e.g., Baddeley and Jensen
(2005), Cruz-Orive (2001/02), whereas the primary object of interest of set estimation is the
set itself. So in our framework, given a random sample of points in S, the solution to the
surface area estimation problem consists in defining an estimator that captures the shape of
S and then estimating the surface area of S by means of the surface area of the estimator.
Bräker and Hsing (1998) studied the asymptotic properties of the boundary length of the
convex hull of a random sample of points in R2. They obtained the asymptotic normality of
the boundary length of the convex hull estimator as well as its convergence rate in mean. In
spite of the fact that the results are really significant, they are established on the assumption
that the set of interest is convex, which may be too restrictive in practice. As mentioned
before, more flexible estimators, such as the α-convex hull, can be considered. The α-shape,
introduced by Edelsbrunner, Kirkpatrick, and Seidel (1983), is another geometrical structure
that serves to characterize the shape of a set. Its definition is based on a generalization of the
convex hull. This article presents the R implementation (R Development Core Team 2008) of
the α-convex hull and α-shape of a random sample of points in the plane with the package
alphahull, see Pateiro-López and Rodŕıguez-Casal (2009). We also illustrate the applicability
of the library with a simulation study on boundary length estimation.

The paper is organized as follows. In Section 2 we introduce some notation and describe the
primary estimators under study, the α-convex hull and the α-shape of a random sample of
points taken in the set of interest. The details on the implementation in R of the estimators
are given in Section 3, along with the comprehensive description of the library alphahull. In
Section 4, we present a simulation study on boundary length estimation through two examples.
Further computational details are given in Section 5. Section 6 concludes with a discussion
of the contributions included in this paper. Some open problems are also pointed out.
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2. The α-convex hull

Let S be a nonempty compact subset of the d-dimensional Euclidean space Rd, equipped with
the norm ‖·‖. Assume that we are given a random sample Xn = {X1, . . . , Xn} from X, where
X denotes a random variable in Rd with distribution PX and support S. The problem is to
find a suitable estimator of S based on the sample. It seems natural that, in order to properly
define such estimator, we should impose some geometric restriction on S. As we have already
commented, assuming convexity considerably limits the family of sets to estimate. So we
focus on a more flexible shape condition, named α-convexity.

We denote by B̊(x, r) and B(x, r) the open and closed ball with center x and radius r,
respectively. Given A ⊂ Rd, Ac and ∂A will denote the complement and boundary of A,
respectively. A set A ⊂ Rd is said to be α-convex, for α > 0, if A = Cα(A), where

Cα(A) =
⋂

{B̊(x,α): B̊(x,α)∩A=∅}

(
B̊(x, α)

)c
(1)

is called the α-convex hull of A. Therefore, if A is α-convex any point of Ac can be separated
from A by means of an open ball of radius α. Note that the definition of the α-convex hull
given by (1) reminds us of the definition of the convex hull, but replacing the open balls of
radius α with half-spaces. Regarding the relation between convexity and α-convexity, it can
be proved that, if A is convex and closed, then it is also α-convex for all α > 0. If the interior
of the convex hull is not empty then the reciprocal is also true, see Walther (1999).

Using the same ideas as in the convex case, an estimator for an α-convex support can be
defined. Assume that S is α-convex for some α > 0. Then it seems reasonable to consider an
estimator fulfilling this shape restriction. So, given a sample Xn ⊂ S, the natural estimator
of S is the smallest α-convex set which contains Xn, that is, the α-convex hull of the sample,
Cα(Xn), see Figure 1.

What can we say about the performance of Cα(Xn) as a support estimator? Like in other
contexts, in order to evaluate a set estimator, we need certain measure of the distance be-
tween the estimator and the target S. Thus, the performance of a set estimator is usually
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Figure 1: In pink, α-convex hull of a set of points in the plane for some α > 0.
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Figure 2: In blue, α-shape of a set of points in the plane for some α > 0. Two points are
α-neighbours if there exists an open ball of radius α with both points on its boundary and
which contains no sample points.

evaluated through either the Hausdorff distance, dH , or the distance in measure, dµ, where
µ stands for the Lebesgue measure. We refer to Edgar (1990) for a discussion on metrics
between sets. Rodŕıguez-Casal (2007) proved that, if S is α-convex and standard with re-
spect to PX , then dH(S,Cα(Xn)) = O((log n/n)1/d) almost surely. A Borel set A is said
to be standard with respect to a Borel measure ν if there exists ε0 > 0 and δ > 0 such
that ν(B(x, ε) ∩ A) ≥ δµ(B(x, ε)), for all x ∈ A, 0 < ε ≤ ε0. The standardness condition
prevents the set S from being too spiky, see Cuevas and Fraiman (1997) for more details.
Although the family of α-convex sets is much wider than the family of convex sets, Cα(Xn)
achieves the same convergence rates as the convex hull of Xn in the convex case, see Düm-
bgen and Walther (1996). Moreover, if S belongs to Serra’s regular model, that is, if S is
morphologically open and closed with respect to a compact ball of radius α (see Serra 1984),
then dH(S,Cα(Xn)) = O((log n/n)2/(d+1)) almost surely. Again, the α-convex hull is able to
achieve the same convergence rate as the convex hull when S belongs to the Serra’s regular
model.

Edelsbrunner et al. (1983) defined in R2 a similar construct, the λ-hull of a finite set of points in
the plane, for an arbitrary λ ∈ R. Following their terminology, Cα(Xn) equals the λ-hull of Xn
for λ = −1/α and it can be computed in time O(n log n) using O(n) space. The algorithm,
described in Section 3, is based on the closed relationship that exists between λ-hulls and
Delaunay triangulations. The Delaunay triangulation of a finite set of points contains, as
subgraphs, various structures that have important applications in pattern recognition, cluster
analysis, etc. See Aurenhammer and Klein (2000) for a survey. The α-shape is one of those
subgraphs, derived from a straightforward generalization of the convex hull. For α > 0, the
α-shape of Xn is defined as the straight line graph connecting α-neighbour points. Two points
Xi, Xj ∈ Xn are α-neighbour if there exists an open ball of radius α with both points on its
boundary and which contains no sample points, see Figure 2. The definition of α-shape can
be extended to arbitrary real α and higher dimensions, see Edelsbrunner and Mücke (1994).
The α-shape is an approach to formalize the intuitive notion of shape for spatial point sets.
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α = 0.25 
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Figure 3: Influence of the parameter α on the α-shape. From left to right, α-shape of a
random sample of size n = 300 on the annulus with outer radius 0.5 and inner radius 0.25 for
α = 0.02, 0.25, 1.

The value of the parameter α controls the shape of the estimator. For sufficiently large α, the
α-shape is identical to the boundary of the convex hull of the sample. As α decreases, the
shape shrinks until that, for sufficiently small α, the α-shape is the empty set, see Figure 3.
As with the α-convex hull, the α-shape of n points in the plane can be determined in time
O(n log n) and space O(n), see Edelsbrunner et al. (1983). The description of the algorithm
and the details of its implementation in R are given in Section 3.

3. Implementation

The R package alphahull consists of three main functions: delvor, ashape, and ahull. The
implementation of the α-convex hull and of the α-shape is based on the intimate relation of
theses constructs with Delaunay triangulations. The function delvor described in Section 3.1
computes the Delaunay triangulation and the Voronoi diagram of a given sample of points in
the plane. Based on the information provided by the function delvor, the function ashape

described in Section 3.2 constructs the α-shape for a given value of α > 0. Finally, the function
ahull described in Section 3.3 constructs the α-convex hull. The R package alphahull also
includes plot functions for the different objects and some other auxiliary functions which are
described throughout this section.

3.1. Voronoi diagram and Delaunay triangulation

The Voronoi diagram of a finite sample of points Xn = {X1, . . . , Xn} in R2 is a covering of the
plane by n regions Vi where, for each i ∈ {1, . . . , n}, the cell Vi consists of all points in R2 which
have Xi as nearest sample point. That is, Vi = {x ∈ R2 : ‖x−Xi‖ ≤ ‖x−Xj‖ for all Xj ∈
Xn}. We denote the Voronoi Diagram of Xn by V D(Xn). The Voronoi cells are closed and
convex. Furthermore, Vi is unbounded if and only if Xi lies on the boundary of the convex
hull of Xn. Otherwise Vi is a nonempty convex polygon. Two sample points Xi and Xj are
said to be Voronoi neighbours if the cells Vi and Vj share a common point.

A triangulation of Xn is a planar graph with vertex set Xn and straight line edges that partition
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Figure 4: There is a one-to-one correspondence between the Voronoi diagram (in green) and
the Delaunay triangulation (in red).

into triangles the convex hull of the nodes Xn. The Delaunay triangulation of Xn, denoted
by DT (Xn), is defined as the straight line dual to V D(Xn). That is, there exists a Delaunay
edge connecting the sample points Xi and Xj if and only if they are Voronoi neighbours, see
Figure 4. In other words, each circumcentre of a Delaunay triangle coincides with a Voronoi
cell vertex. The Delaunay triangulation was introduced by Voronoi (1908) and extended by
Delaunay (1934), to whom it owes its name. A complete overview over the existing literature
on these geometric constructions can be found in Okabe, Boots, Sugihara, and Chiu (2000).
We also refer to the survey by Aurenhammer (1991) for more details on the properties of the
Delaunay triangulations and the Voronoi diagrams and their multiple applications.

From the computational viewpoint, efficient methods for the computation of Delaunay tri-
angulations and Voronoi diagrams have been developed. Aurenhammer and Klein (2000)
presented a review of algorithms, from the earliest intuitive methods to more efficient rep-
resentations of these geometric structures. For example, the incremental insertion process
by Green and Sibson (1978), the Divide and Conquer method by Shamos and Hoey (1975)
or the plane-sweep technique by Fortune (1987) are the basis of a large class of worst-case
optimal algorithms for computing the whole Voronoi diagram in the plane. Of course, these
techniques can also be applied to the computation of the Delaunay triangulation. See for ex-
ample the efficient incremental algorithm by Lawson (1977). Both the Voronoi diagram and
the Delaunay triangulation of n points can be computed in O(n log n) time and linear space.
Furthermore, by the duality between the Voronoi diagram and the Delaunay triangulation,
either tessellation is easily obtained from a representation of the other in O(n) time.

Currently, there are several libraries available in R that compute the Delaunay triangulation
or the Voronoi diagram of a given set of points. See the packages deldir by Turner (2009)
or geometry by Grasman and Gramacy (2008), among others. These libraries differ on the
implemented algorithms and the data structures that store the information. For example,
the package deldir computes the Delaunay triangulation and the Voronoi diagram of a planar
point set according to the second iterative algorithm of Lee and Schachter (1980). Unfortu-
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Figure 5: Voronoi diagram and Delaunay triangulation of a uniform random sample of size
n = 25 on the unit square obtained from package deldir (left) and package alphahull (right).

nately, this package does not return the kind of data structure we need in order to compute
the α-shape and the α-convex hull. The function deldir computes the triangulation of a
set of points enclosed in a finite rectangular window. In consequence, the endpoints of the
Voronoi edges outside that window are discarded. This fact does not appear to be a problem
unless we need to know all the Voronoi edges, as in our case. Note that, in principle, the
location of the furthest Voronoi vertex is unknown and enlarging the window size to ensure
that the information is complete has a considerable computational cost. Our package al-
phahull computes the Delaunay triangulation and the Voronoi diagram with respect to the
whole plane, see Figure 5. The function delvor included in the library internally calls the
TRIPACK Fortran 77 software package by Renka (1996) that employs an incremental algo-
rithm to construct a constrained Delaunay triangulation of a set of points in the plane. Then,
the Voronoi diagram is derived via dualization. For each edge of the Delaunay triangulation
the corresponding segment in the Voronoi diagram is obtained by connecting the circumcen-
ters of the two neighbour triangles that share that edge. For those edges of the Delaunay
triangulation that lie on the boundary of the convex hull, the corresponding segments in the
Voronoi diagram are semi-infinite. We compute the triangulation by invoking the function
tri.mesh from package tripack, see Renka and Gebhardt (2009). The code to compute the
corresponding Voronoi diagram is a corrected version of the function voronoi.mosaic which
is also included in the package tripack. We have observed that, for certain sets of points,
voronoi.mosaic fails when computing the so called dummy nodes. These points represent
the endpoints of the unbounded Voronoi edges, see Figure 6.

The output of the function delvor is a list with three components. The first component,
mesh, stores the primal and dual information. For each edge of the Delaunay triangulation
mesh contains the indexes ind1, ind2 and the coordinates (x1, y1), (x2, y2) of the sample
points that form the edge, the coordinates of the endpoints of the corresponding segment
in the Voronoi diagram (mx1, my1), (mx2, my2), and an indicator that takes the value 1 for
those endpoints of the Voronoi edges that represent a boundless extreme, that is, bp1 = 1
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Figure 6: Voronoi diagram and Delaunay triangulation of a uniform random sample of size
n = 10 on the unit square obtained from package tripack (left) and package alphahull (right).
The Voronoi diagram returned by the function voronoi.mosaic from tripack is not well
defined.

if (mx1, my1) is a dummy node and the same for bp2. The second component, x, stores the
sample points and the third component, tri.obj, stores the information of the Delaunay
triangulation obtained from the function tri.mesh. As an illustration, we have applied the
function delvor to a uniform random sample of size n = 5 on the unit square. The result is
assigned to the object dv and printed out.

R> x <- matrix(runif(10), ncol = 2)

R> dv <- delvor(x)

R> dv

$mesh

ind1 ind2 x1 y1 x2 y2 mx1 my1

2 5 0.6066043 0.93781202 0.7440690 0.73178007 0.7920124 0.9126422

5 4 0.7440690 0.73178007 0.9885872 0.25985470 0.8741500 0.4998702

3 5 0.4580710 0.09584452 0.7440690 0.73178007 0.2685215 0.5633686

1 5 0.9055416 0.76391156 0.7440690 0.73178007 0.7920124 0.9126422

1 4 0.9055416 0.76391156 0.9885872 0.25985470 0.8741500 0.4998702

1 2 0.9055416 0.76391156 0.6066043 0.93781202 0.7920124 0.9126422

2 3 0.6066043 0.93781202 0.4580710 0.09584452 0.2685215 0.5633686

3 4 0.4580710 0.09584452 0.9885872 0.25985470 0.6583438 0.3880547

mx2 my2 bp1 bp2

0.2685215 0.5633686 0 0

0.6583438 0.3880547 0 0

0.6583438 0.3880547 0 0

0.8741500 0.4998702 0 0

2.5733037 0.7798133 0 1
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1.9802581 2.9552532 0 1

-0.4374804 0.6879159 0 1

1.1711731 -1.2707707 0 1

$x

[,1] [,2]

[1,] 0.9055416 0.76391156

[2,] 0.6066043 0.93781202

[3,] 0.4580710 0.09584452

[4,] 0.9885872 0.25985470

[5,] 0.7440690 0.73178007

$tri.obj

triangulation nodes with neigbours:

node: (x,y): neighbours

1: (0.9055416,0.7639116) [3]: 2 4 5

2: (0.6066043,0.937812) [3]: 1 3 5

3: (0.458071,0.09584452) [3]: 2 4 5

4: (0.9885872,0.2598547) [3]: 1 3 5

5: (0.744069,0.7317801) [4]: 1 2 3 4

number of nodes: 5

number of arcs: 8

number of boundary nodes: 4

boundary nodes: 1 2 3 4

number of triangles: 4

number of constraints: 0

attr(,"class")

[1] "delvor"

The plot of the previous Delaunay triangulation and Voronoi diagram is displayed in Figure 7.
This graph is produced using the function plot.delvor (S3 method for class ’delvor’). The
arguments are the same as those of the function plot.deldir from package deldir.

R> plot(dv, main = "Delaunay triangulation and Voronoi diagram",

+ col = 1:3, xlab = "x-coordinate", ylab = "y-coordinate",

+ xlim = c(-0.5, 1.5), ylim = c(-0.5, 1.5), number = TRUE)

3.2. The α-shape

For the construction of the α-shape of a finite sample of points Xn, the package alphahull
implements the algorithm by Edelsbrunner et al. (1983), see Table 1.

The algorithm relies on the notion of α-extreme point and α-neighbour. A sample point Xi

is termed α-extreme if there exists an open ball of radius α with Xi on its boundary and
which contains no sample points. Finding the α-extreme points is not a difficult task once the
Delaunay triangulation and the Voronoi diagram are determined. Note that, if the sample
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Figure 7: Plot of the Delaunay triangulation (red) and Voronoi diagram (green) of a uniform
random sample of size n = 5 on the unit square. The dashed green lines correspond to the
unbounded Voronoi edges.

points Xi lies on the convex hull of Xn, then Xi is α-extreme for all α > 0. If Xi does not lie on
the convex hull we only need to compute the distances from Xi to the vertexes of the Voronoi
cell Vi. Then, Xi is α-extreme for all α satisfying 0 < α ≤ max{‖Xi − v‖ , v vertex of Vi}, see
the left-hand side of Figure 8. Finding the α-neighbour points is, however, trickier. Consider
an edge of the Delaunay triangulation connecting the sample points Xi and Xj and its dual
edge of the Voronoi diagram. The points Xi and Xj are α-neighbours for all α satisfying
αmin ≤ α ≤ αmax, where αmin and αmax are determined from the position of Xi and Xj with
respect to the vertexes of the dual Voronoi edge, see the right-hand side of Figure 8.

The function ashape, included in the library alphahull, computes the α-shape of a given
sample Xn for a given value of α > 0. The output of the function ashape is a list with six
components. The components x and alpha store the input information whereas the compo-
nent delvor.obj stores the output object from the function delvor, see Section 3.1. The
indexes of the α-extremes are given by the component alpha.extremes. The α-neighbours
connections are given by the first two columns of the matrix edges. The structure of edges
is that of matrix mesh returned by the function delvor. Note that the α-shape is a subgraph
of the Delaunay triangulation and, therefore, edges is a submatrix of mesh. The length of the

Algorithm α-shape

1: Construct the Voronoi diagram and Delaunay triangulation of Xn.
2: Determine the α-extremes of Xn.
3: Determine the α-neighbours of Xn.
4: Output the α-shape.

Table 1: Algorithm for computing the α-shape.
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Figure 8: Delaunay triangulation (in red) and Voronoi diagram (in green) of a random sample
of size n = 10. Left: The sample point Xi is α-extreme for all α ≤ r, where r is the maximum
distance from Xi to the vertexes of the Voronoi cell Vi (in thick solid line). Right: The sample
points Xi and Xj are α-neighbours for all α satisfying αmin ≤ α ≤ αmax.

α-shape is stored in the component length. The function plot.ashape (S3 method for class
’ashape’) produces a plot of the α-shape. Graphic parameters can control the plot appear-
ance. Moreover, the Delaunay triangulation and the Voronoi diagram can be added to the
plot by specifying the argument wlines (wlines = "del" for the Delaunay triangulation,
wlines = "vor" for the Voronoi diagram or wlines = "both" for both plots). Next, we
show an example on how these functions work. We have applied the function ashape to a
uniform random sample of size n = 20 on the unit square with α = 0.2. The result is assigned
to the object alphashape.

R> x <- matrix(runif(40), ncol = 2)

R> alpha <- 0.2

R> alphashape <- ashape(x, alpha = alpha)

R> names(alphashape)

[1] "edges" "length" "alpha" "alpha.extremes"

[5] "delvor.obj" "x"

R> alphashape$alpha.extremes

[1] 5 14 9 6 12 11 13 2 3 8 19 20

R> alphashape$edges[, 1:2]

ind1 ind2

[1,] 12 6
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[2,] 13 20

[3,] 8 14

[4,] 13 19

[5,] 2 3

[6,] 2 12

[7,] 3 11

[8,] 3 19

[9,] 5 20

[10,] 5 8

[11,] 6 9

[12,] 9 14

R> alphashape$length

[1] 3.076418

A plot of the α-shape may be obtained as follows. The result is displayed in Figure 9.

R> plot(alphashape, col = c(4, 1), xlab = "x-coordinate", ylab = "y-coordinate",

+ number = TRUE, main = expression(paste(alpha, "-shape")))

Also the Delaunay triangulation can be plotted by specifying the argument wlines as in the
following code. The result is displayed in Figure 10.

R> plot(alphashape, wlines = "del", col = c(4, 1, 2), xlab = "x-coordinate",

+ ylab = "y-coordinate",

+ main = expression(paste(alpha, "-shape and Delaunay triangulation")))

α−shape

x−coordinate

y−
co

or
di

na
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

Figure 9: Plot of the α-shape of a uniform random sample of size n = 20 on the unit square
for α = 0.2.
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Figure 10: Plot of the α-shape (in blue) and Delaunay triangulation (in red) of a uniform
random sample of size n = 20 on the unit square for α = 0.2. The α-shape is a subgraph of
the Delaunay triangulation.

3.3. The α-convex hull

Recall the definition of the α-convex hull given in Equation (1). By DeMorgan’s law, the
complement of Cα(Xn) can be written as the union of all open balls of radius α which contain
no point of Xn, that is,

Cα(Xn)c =
⋃

{B̊(x,α): B̊(x,α)∩Xn=∅}

B̊(x, α). (2)

Therefore, in order to compute the complement of the α-convex hull of a sample of points we
should identify all those balls of radius α that do contain no point of the sample. Fortunately,
the problem simplifies thanks to the following lemma by Edelsbrunner et al. (1983).

Lemma 3.1. Let B̊(x, r) be an open ball which does not contain any point of a sample Xn.
Either B̊(x, r) lies entirely outside the convex hull of Xn or there is an open ball which contains
B̊(x, r) but no points of Xn and which has its centre on an edge of V D(Xn).

Therefore, we only have to consider appropriate balls centered on edges of V D(Xn). For
the implementation we have considered the two following situations. First, if Xi and Xj

are two sample points such that the corresponding Voronoi cells Vi and Vj share a common
closed line segment [a, b], then it follows from the duality between the V D(Xn) and DT (Xn)
that the union of open balls with centres on the edge [a, b] which do not contain any point
of a sample is equal to B̊(a, ‖a−Xi‖) ∪ B̊(b, ‖b−Xi‖), see the left-hand side of Figure 11.
Second, if Xi and Xj are two sample points such that the corresponding Voronoi cells Vi
and Vj share a common semi-infinite line segment [a,+∞), then the union of open balls
with centres on the edge [a,+∞) which do not contain any point of a sample can be written
as B̊(a, ‖a−Xi‖) ∪ H(Xi, Xj), where H(Xi, Xj) denotes the open halfplane defined by the
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Figure 11: Delaunay triangulation (in red) and Voronoi diagram (in green) of a random
sample of size n = 10. Left: Union of open balls centered on a closed Voronoi edge. Right:
Union of open balls centered on a semi-infinite closed Voronoi edge.

straight line through Xi and Xj , see the right-hand side of Figure 11. It can be shown that,
for each edge of the Voronoi diagram, the union of open balls with centres on it and radius α
which do not contain any point of Xn can be written as the union of a finite number of open
balls or halfplanes. As a consequence, the complement of the α-convex hull of n points can
be expressed as the union of O(n) open balls and halfplanes, see Lemma 6 by Edelsbrunner
et al. (1983). The package alphahull implements the algorithm in Table 2.

The function ahull, included in the library alphahull, computes the α-convex hull of a given
sample Xn for a given value of α > 0. The output of the function ahull is a list with six
components. The components x and alpha store the input information whereas the compo-
nent ashape.obj stores the output object from the function ashape (see Section 3.2) which
is invoked during the computation of the α-convex hull. Information about the open balls
and halfplanes that define the complement of the α-convex hull is stored in the component
complement. For each row i, complement[i, ] contains the information relative to an open
ball or halfplane of the complement. The first three columns are assigned to the characteriza-
tion of the ball or halfplane i. Thus, if the row i refers to an open ball, complement[i, 1:3]

contains the center and radius of the ball. If the row i refers to a halfplane, complement[i,
1:3] determines its equation. For the halfplane y > a + bx, complement[i, 1:3]=(a, b,

-1). In the same way, for the halfplane y < a + bx, complement[i, 1:3]=(a, b, -2),

Algorithm α-convex hull

1: Construct the Voronoi diagram and Delaunay triangulation of Xn.
2: Determine the union of open balls and halfplanes that form Cα(Xn)c.
3: Output the α-convex hull.

Table 2: Algorithm for computing the α-convex hull.
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Figure 12: The extremes of an arc can be written as c+ rAθ(v) and c+ rA−θ(v), where Aθ(v)
represents the clockwise rotation of angle θ of the unitary vector v.

for the halfplane x > a, complement[i, 1:3]=(a, 0, -3) and for the halfplane x < a,
complement[i, 1:3]=(a, 0, -4). On the other hand, the component arcs stores the
boundary of the α-convex. Note that ∂Cα(Xn) is formed by arcs of balls of radius α (be-
sides possible isolated sample points). These arcs are determined by the intersections of some
of the balls that define the complement of the α-convex hull. The extremes of an arc can be
written as c + rAθ(v) and c + rA−θ(v) where c and r represent the center and radius of the
arc, respectively, and Aθ(v) represents the clockwise rotation of angle θ of a unitary vector
v, see Figure 12. Thus, the structure of the matrix arcs is as follows. For each arc of the
boundary, the first two columns (c1, c2) correspond to the coordinates of the center c. The
third column r corresponds to the radius α. The next two columns (v.x, v.y) correspond to
the coordinates of the unitary vector v and the angle θ is stored in the last column theta.
The matrix arcs also stores the sample points that lie on the boundary of the α-convex hull
(rows where columns 3 to 6 are equal to zero). Finally, the boundary length of the α-convex
hull is stored in the component length.

The function plot.ahull (S3 method for class ’ahull’) produces a plot of the α-convex hull.
As with plot.ashape and plot.delvor some graphic parameters can control the plot appear-
ance. The α-shape can be added to the plot by specifying the argument do.shape = TRUE.
Moreover, the Delaunay triangulation and the Voronoi diagram can be added to the plot by
specifying the argument wlines (wlines = "del" for the Delaunay triangulation, wlines =

"vor" for the Voronoi diagram or wlines = "both" for both plots). As an example, we have
applied the function ahull to a uniform sample of size n = 100 on the annulus with outer
radius 0.5 and inner radius 0.25. The result is assigned to the object alphahull.

R> alpha <- 0.1

R> alphahull <- ahull(x, alpha = alpha)

R> names(alphahull)

[1] "arcs" "length" "complement" "alpha" "ashape.obj"

[6] "x"

R> alphahull$complement[, 1:3]

c1 c2 r

[1,] 0.9859157 0.2624408 0.1470753
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[2,] 0.9854346 0.2629982 0.1464956

[3,] 0.2911565 0.9650050 0.1000354

[4,] ..... ..... .....

[188,] 2.08475937 -37.350594570 -2.0000000

[189,] 0.87392545 0.206752552 -1.0000000

[190,] -0.05950829 0.179047491 -2.0000000

R> alphahull$arcs

c1 c2 r v.x v.y theta

[1,] 0.9727443 0.30951251 0.1 -0.2632053 0.9647398 0.3255635

[2,] 0.9415490 0.29557316 0.1 -0.8029687 0.5960211 0.6837166

[3,] 0.9337136 0.25201205 0.1 -0.9806226 -0.1959064 0.5982983

[4,] 0.8762460 0.08137977 0.1 -0.7360387 0.6769395 0.7016039

[5,] 0.7854558 -0.01400530 0.1 -0.3084052 0.9512551 0.2221727

[6,] 0.6398895 0.03934587 0.1 0.7451447 0.6669028 0.3975462

[7,] 0.6288842 0.04544647 0.1 -0.2913489 0.9566168 0.8647566

[8,] 0.5345367 -0.01462047 0.1 -0.5636399 0.8260206 0.6253032

[9,] ..... ..... ... ..... ..... .....

R> alphahull$length

[1] 5.827047

A plot of the α-convex hull may be obtained as follows. The result is displayed in Figure 13.
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Figure 13: Plot of the α-convex hull of a uniform random sample of size n = 100 on the
annulus with outer radius 0.5 and inner radius 0.25. The value of α is 0.1.
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Figure 14: Left: plot of the α-convex hull and balls defining the complement. Right: plot of
the α-convex hull (in pink) and α-shape (in blue).

R> plot(alphahull, col = c(6, rep(1, 5)), xlab = "x-coordinate",

+ ylab = "y-coordinate", main = expression(paste(alpha, "-hull")))

The plot of the α-convex hull together with some of the balls of radius α that define its
complement, see Equation (2), is displayed in the left-hand side of Figure 14. This plot is
obtained by using the information of the component arcs as shown in the following code. The
function arc included in the library plots an arc given its center, radius, the unitary vector v
and the angle θ, see Figure 12.

R> plot(alphahull, col = c(6, rep(1, 5)), xlab = "x-coordinate",

+ ylab = "y-coordinate", main = expression(paste(alpha, "-hull")))

R> warcs <- which(alphahull$arcs[, 3] > 0)

R> for(i in warcs) {

+ arc(alphahull$arcs[i, 1:2], alphahull$arcs[i, 3], c(0, 1),

+ pi, col = "gray", lty = 2)

+ }

The relation between the α-convex hull and the α-shape is shown in the right-hand side of
Figure 14. In order to plot both the α-convex hull and the α-shape, specify the parameter
do.shape = TRUE as in the following code.

R> plot(alphahull, do.shape = TRUE, col = c(6, 4, rep(1, 4)),

+ xlab = "x-coordinate", ylab = "y-coordinate",

+ main = expression(paste(alpha, "-hull and ",alpha, "-shape")))

Once Cα(Xn)c is constructed we can decide whether a given point p ∈ R2 belongs to the
α-convex hull or not, by checking if it belongs to any of the open balls or halfplanes that form
the complement of the α-convex hull. The function inahull returns a logical value specifying
whether p belongs to Cα(Xn)c. For the previous example:
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R> inahull(alphahull, c(0.5, 0.5))

[1] FALSE

R> inahull(alphahull, c(0.8, 0.2))

[1] TRUE

4. Boundary length estimation

Boundary length estimation is an interesting geometrical problem that has been studied in
several fields like stereology or set estimation. It also has some relevant applications. For
example, the ratio between the boundary length and the squared root of the area is a scale
invariant measurement of boundary roughness. Small values of this ratio correspond to round
and non fragmented sets whereas large values suggest irregular boundaries and/or fragmented
sets. This boundary roughness measurement has been used as an auxiliary diagnosis criterion
to distinguish from a good or bad prognosis based on medical images in fields like oncology
or cardiology. See, for instance, Cuevas, Fraiman, and Rodŕıguez-Casal (2007).

4.1. Simulation study

Here we illustrate, with a small simulation study, the ability of the α-convex hull and the α-
shape to estimate the boundary length of an unknown set based on a random sample of points
taken on it. We have considered the set S in Figure 15. The exact value of the boundary
length of the set S is 3.1612. We shall use this information to evaluate the performance of
the estimators.

For the study we have generated 500 uniform samples of size n = 1000 on S. For each
sample Xn we construct Cα(Xn) and the corresponding α-shape, denoted by αshape(Xn). The
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Figure 15: Set S with boundary length 3.1612.
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Figure 16: Uniform sample Xn of size n = 1000 on S. Left: α-convex hull of Xn for α = 0.035.
Right: α-shape of Xn for α = 0.035.

boundary length of S is estimated through the boundary length of both estimators. Note
that the α-convex hull and the α-shape have the drawback of depending on the parameter α,
which in general may be unknown. From the theoretical viewpoint, nothing is known about
how to select the parameter α. However, some preliminary results for the α-convex hull of a
sample, see Rodŕıguez-Casal (2007), suggest that it is advisable to choose the largest α for
which the set of interest is α-convex, at least if you want the set to be properly recovered. In
this example, this value is α = 0.035, see Figure 16. Even so, we have evaluated the estimators
for different values of α in order to study the influence of this parameter on the estimations.
The results are summarized in Tables 3, 4, and 5.

For those values of α close to α = 0.035, the results are quite reasonable. Small values of α
provide, however, considerably biased estimations, especially in the case of the α-shape, see
the first column of Table 4. Recall that the α-shape was defined as the straight line graph
whose edges connect α-neighbours. When α is small, a considerable number of interior points
of the set turn out to be α-extremes and the α-shape looks like a mesh connecting many of
them, see Figure 17. As a consequence, the length of the α-shape is large, as it is the result
of the addition of many small segments. The estimations are also biased for large values of
α, observe the last column of Tables 3 and 4. When α is too large the estimators are not

α 0.01 0.03 0.05 0.07 0.09 0.11

Average 7.5838 3.3180 3.2770 3.2214 2.6603 2.7800
Std. deviation 0.2293 0.0188 0.0342 0.0112 0.0593 0.0152

Median 7.5776 3.3172 3.2853 3.2207 2.6562 2.7816

Table 3: Average, standard deviation and median of the boundary length of Cα(Xn), based
on 500 uniform samples Xn on S with sample size n = 1000. The exact value of the boundary
length of S is 3.1612.
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α 0.01 0.03 0.05 0.07 0.09 0.11

Average 10.5307 3.1949 3.2151 3.2107 2.7416 2.6949
Std. deviation 0.3310 0.0151 0.0225 0.0990 0.0502 0.0125

Median 10.5308 3.1940 3.2127 3.1514 2.7366 2.6934

Table 4: Average, standard deviation and median of the boundary length of αshape(Xn), based
on 500 uniform samples Xn on S with sample size n = 1000.

α 0.01 0.03 0.05 0.07 0.09 0.11

Cα(Xn) 19.6117 0.0249 0.0146 0.0037 0.2545 0.1456
αshape(Xn) 54.4186 0.0014 0.0034 0.0123 0.1786 0.2177

Table 5: Mean square error of the boundary length of Cα(Xn) and αshape(Xn), based on 500
uniform samples Xn on S with sample size n = 1000.

Figure 17: Uniform sample Xn of size n = 1000 on S and α-convex hull of Xn for α = 0.01.

longer able to identify the cavities of the set, see Figure 18. Note that the α-shape tends to
the convex hull as α is larger. As a consequence, the boundary length is underestimated.

Finally, we also include some descriptive graphs. Figure 19 shows boxplots of the estimates
for different values of α. Due to the bias problems explained before, the scale for the case
α = 0.01 is much higher than for the rest of values of α. For the sake of clarity, we have
omitted this case in the plots.

4.2. The Koch snowflake curve

As a second illustration, we have considered an example from fractal geometry. Fractal shapes
can be generated in many ways. The simplest way is to take a generating rule and iterate it
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Figure 18: Uniform sample Xn of size n = 1000 on S. Left: α-convex hull of Xn for α = 0.11.
Right: α-shape of Xn for α = 0.11.

●

●●●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●●

●

●
●●●
●

●
●●●
●

●

●

●
●

0.03 0.05 0.07 0.09 0.11

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

α

●

●●●●●

●

●●●●

●

●●
●

●
●

●

●
●●

●

●

●

●●

●

●

●

●●●●●●●

0.03 0.05 0.07 0.09 0.11

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

α

Figure 19: Summary graphs for the set S. Left: boxplots for the boundary length of Cα(Xn)
for different values of α. Right: boxplots for the boundary length of αshape(Xn) for different
values of α.

over and over again. The Koch snowflake, described by von Koch (1904), is one of the earliest
fractal curves. It is built by starting with an equilateral triangle, removing the inner third of
each side, building another equilateral triangle at the location where the side was removed,
and then repeating the process, see Figure 20. The package alphahull includes the function
koch, that computes the twist points of a Koch snowflake given the side length of the initial
equilateral triangle and the number of iterations. As an example, the code that generates
Figure 20 is given below.
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Figure 20: The first four iterations of the Koch snowflake.

R> par(mfrow = c(2, 2))

R> for(k in 1:4) {

+ snow <- koch(side = 1, niter = k)

+ plot(snow[, 1], snow[, 2], type = "l", xlab = "", ylab = "",

+ axes = FALSE, asp = TRUE)

+ polygon(snow[, 1], snow[, 2], col = 4)

+ }

The snowflake, conceptually, has an infinite length. On iteration k (k = 1, 2, . . .), the curve
consists of 3 · 4k−1 line segments, each of length l(1/3)k−1, being l the side length of the
initial equilateral triangle. Therefore, the total length of the Koch snowflake on iteration k is
3l(4/3)k−1. Assume now that we are given a random sample of points into the set enclosed
by a Koch snowflake curve. Then, we can approximate the length of the Koch snowflake by
means of the perimeter of the α-convex hull or the length of the α-shape of the sample. The
function rkoch generates random points from a uniform distribution on the set enclosed by
a Koch snowflake. In the following example, we use the function rkoch to generate n = 2000
points on a Koch snowflake with initial side length 1 and 3 iterations. Then, we construct the
α-shape and the α-convex hull of the sample by invoking the function ahull (note that the
function ahull implicitly calculates the α-shape), see Figure 21. Of course, the estimation of
the boundary length will depend on the selected parameters, in particular, in the value of α,
see Figure 22.
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Figure 21: Random sample of size n = 2000 from a uniform distribution on a Koch snowflake
with initial side length 1 and 3 iterations. Left: α-shape for α = 0.05. Right: α-convex hull
for α = 0.05.

Figure 22: Random sample of size n = 2000 from a uniform distribution on a Koch snowflake
with initial side length 1 and 3 iterations. From left to right, α-shape for α = 0.15, 0.05, 0.02.

R> unifkoch <- rkoch(2000, side = 1, niter = 3)

R> alpha = 0.05

R> alphahull <- ahull(unifkoch, alpha = alpha)

In order to study this, we have generated 500 uniform samples of size n = 2000 on the first
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α 0.01 0.03 0.05 0.07 0.09 0.11

Iteration k = 1
(L = 3)

Average 2.9322 3.0296 2.9610 2.9439 2.9364 2.9321
Std. deviation 0.0221 0.0454 0.0240 0.0226 0.0223 0.0221

Median 2.9338 3.0251 2.9621 2.9449 2.9377 2.9337

Iteration k = 2
(L = 4)

Average 3.7582 4.1563 3.8678 3.8173 3.7842 3.7582
Std. deviation 0.0412 0.1606 0.0442 0.0420 0.0412 0.0412

Median 3.7604 4.1332 3.8677 3.8164 3.7855 3.7604

Iteration k = 3
(L = 5.333)

Average 3.4962 5.4180 4.7710 4.6239 4.4936 3.4962
Std. deviation 0.0930 0.2688 0.0738 0.0719 0.0678 0.0930

Median 3.4791 5.3963 4.7755 4.6272 4.4991 3.4791

Iteration k = 4
(L = 7.111)

Average 3.4752 6.0907 4.3594 4.1746 3.7671 3.4752
Std. deviation 0.0367 0.3167 0.0805 0.0814 0.1021 0.0367

Median 3.4742 6.0629 4.3585 4.1721 3.7586 3.4742

Table 6: Average, standard deviation and median of the length of αshape(Xn), based on 500
uniform samples Xn with sample size n = 2000 on a Koch snowflake with initial side length
1 and k iterations. The lengths of the first four iterations of a Koch snowflake curve with
initial side length 1 are L = 3, 4, 5.333 and 7.111, respectively.

four iterations of a Koch snowflake with initial side length 1. For each sample Xn we construct
the α-shape. The length of the Koch snowflake curve is estimated through the length of the
α-shape. Different values of α have been considered in order to study the influence of this
parameter on the estimations. The results are summarized in Table 6.

As expected, the boundary length estimation becomes more biased as the complexity of the
Koch snowflake increases. In the convex case, k = 1, the estimator works reasonably well for
every value of α. However, for k = 2 and k = 3, the influence of α is more obvious. As in the
previous simulation study, when α is too large the estimator is not longer able to identify the
cavities of the set. On the other hand, small values of alpha can reduce the bias, even though
the variance of the estimator increases, see for instance the case α = 0.03 and k = 3. Lastly,
as k increases (k ≥ 4), the estimator has more difficulty in capturing the numerous twists of
the curve even for small values of α until it finally breaks down, see Figure 23.

5. Computational details

The results in this paper were obtained using R 2.9.2 (R Development Core Team 2008). The
alphahull package is available from the Comprehensive R Archive Network at http://CRAN.

R-project.org/package=alphahull. This article describes version 0.1-1 of the package.

http://CRAN.R-project.org/package=alphahull
http://CRAN.R-project.org/package=alphahull
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Figure 23: In blue, α-shape for α = 0.03 of a random sample of size n = 2000 from a uniform
distribution on a Koch snowflake with initial side length 1 and k iterations.

6. Conclusions

In this paper we have described the implementation in R of the α-convex hull and of the
α-shape of a random sample of points in the plane. The package alphahull is the result of
that implementation, which is based on efficient algorithms presented by Edelsbrunner et al.
(1983). The α-convex hull and the α-shape generalize the notion of convex hull and serve to
characterize the shape of an unknown set based on random sample of points taken into it. The
results obtained by Rodŕıguez-Casal (2007) on the behaviour of the α-convex hull estimator
give us the theoretical basis for using this geometrical construct as a support estimator. Apart
from the support estimation problem, we think that these structures can play an important
role in other interesting statistical problems which involve the notion of the shape of a point
cloud such as cluster analysis and data depth. As an example of these potential applications
of the proposed algorithms two small simulation studies on boundary length estimation has
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been carried out in this work. The results inspire us to address in the future this problem
from the theoretical viewpoint.
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