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Abstract

This paper describes the package PtProcess which uses the R statistical language. The
package provides a unified approach to fitting and simulating a wide variety of temporal
point process or temporal marked point process models. The models are specified by
an intensity function which is conditional on the history of the process. The user needs
to provide routines for calculating the conditional intensity function. Then the package
enables one to carry out maximum likelihood fitting, goodness of fit testing, simulation
and comparison of models. The package includes the routines for the conditional intensity
functions for a variety of standard point process models. The package is intended to
simplify the fitting of point process models indexed by time in much the same way as
generalized linear model programs have simplified the fitting of various linear models.
The primary examples used in this paper are earthquake sequences but the package is
intended to have a much wider applicability.

Keywords: PtProcess package, marked point process, ground intensity function, non-homogen-
eous Poisson process, R.

1. Introduction

This paper describes a unified approach to fitting and simulating a wide variety of temporal
point process or temporal marked point process models using the R statistical language (R
Development Core Team 2010). These models are defined in terms of a conditional intensity
function, i.e., conditional on the history of the process over time.

Point processes are used for modelling a series of events occurring at points in time. A typical
and important example is the series formed by the times that earthquakes occur in a given
region. Point processes often show a lot of structure. For example, a large earthquake is
often followed by a sequence of aftershocks. Some of the aftershocks may, themselves, have
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aftershocks. These characteristics can be observed in the upper panel of Figure 1. It shows
the Phuket boxing day event on 2004-12-26, and its aftershock sequence, that caused the
devastating boxing day tsunami in the Indian Ocean. The aftershock sequence of events is
also very characteristic of those associated with large earthquakes. Initially, the aftershocks
occur very frequently, and some have large magnitudes. Both the frequency and magnitude
size diminish over time. One can also observe that the larger aftershocks also have their
own associated aftershock sequence. An accessible review of these models is provided by
Vere-Jones (2009), who also discusses these models in the context of forest-fires.

An important concept in temporal point process theory is the conditional intensity function
(conditional on the history of the process over time). This describes the probability of a
new event in the next instant of time given knowledge of the past up until the present. The
conditional intensity function of a marked point process can be considered as having two parts:
the ground intensity function together with the distribution of the marks, both conditional on
the past, where the ground intensity function simply describes the non-homogeneous Poisson
rate of the process over time. Examples of possible marks in the earthquake context are:
the earthquake location, magnitude, and rupture direction. Rigorous definitions are given in
Section 2 of this paper.

In the development of this software, the ground intensity function provides the unifying prin-
ciple. Given the ability to calculate values of the ground intensity function, some integrals of
the ground intensity function, and the conditional distribution of the marks, one can write
generic routines to calculate likelihoods, fit parameters, carry out goodness of fit tests and
do simulations. The R statistical language has the required structure for doing this and the
package PtProcess (Harte 2010), described here, is an implementation of this approach within
the R framework.

The concept of using a general framework for fitting a wide variety of models is well known,
particularly for analysing both designed experiments (Nelder 1977) and generalized linear
models (Nelder and Wedderburn 1972). This unified approach resulted in an enormous sim-
plification in the analyses of linear models carried out by applied statisticians. It is the author’s
aim that the package PtProcess (Harte 2010) provides an appropriate unified approach for
people analysing a range of temporal point process models.

The PtProcess package was originally written (Harte 1998) in S-PLUS to model processes in-
dexed by time and conditional on their history. It has recently been revised to include marked
point processes, and has been added to the Comprehensive R Archive Network (CRAN) at
http://CRAN.R-project.org/package=PtProcess. The R open source software (R Devel-
opment Core Team 2010) provides a sophisticated programming environment for the develop-
ment of such models and is also available for people world-wide to freely use. While functions
for some specific models have been provided in the PtProcess package, the purpose is mainly
to provide a structure and environment for users to define and analyse their own marked point
process models.

The development of the PtProcess package has followed a direction of including the models
that we are currently applying in our earthquake modelling. However, we have endeavored to
structure the package with sufficient generality to allow for the inclusion of a wider class of
temporal point process model: both those of non marked point process type, and those with
a non seismological application.

A package available in CRAN for modelling spatial point processes is spatstat (Baddeley and
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Turner 2005, 2010). The models provided within spatstat have no natural definition of past
history and are based on a Papangelou conditional intensity (i.e., conditional on the spatial
locations of other points, with no time ordering), and hence are quite different to those models
discussed in this paper. The ptproc package by Peng (2003) is based on an earlier version of
PtProcess, extending it into multiple dimensions, but deals more directly with the conditional
intensity function.

In Section 2 we provide a very brief theoretical background to marked point processes, with an
emphasis on those parts that influence the structure of the package. In Section 3 we describe
the main structural features of the package and how the underpinning theory has influenced
that structure. In Section 4 we provide some example code for various analyses.

2. Mathematical background

In this section a very brief summary of marked point processes is provided. The two most
important components of such a model are the ground intensity function and the mark distri-
bution. The ground intensity function describes the rate at which events occur over time, and
is not only influenced by the current time, but also the events that have occurred before the
current time (i.e., process history). This is described in Section 2.1. The mark distribution
describes other variables associated with the event, referred to as marks, and can also be
dependent on the history. The mark distribution is described in Section 2.3. Daley and Vere-
Jones (2003, Chapter 7.3) give an extensive theoretical background to this class of models
and also many other point process models.

2.1. Ground intensity function

The conditional intensity function describes the instantaneous Poisson rate. For example,
consider events that are ordered by time occurring in 2D space. The history up to but not
including time t is denoted by Ht, and in this case is

Ht = {(ti, xi, yi) ∀i : ti < t} ,

where ti is the time of the ith event and (xi, yi) is its spatial location. The conditional intensity
function is

λ(t, x, y |Ht) = lim
δ,ξ,η→0

1

δξη
Pr{Nδξη(t, x, y) > 0 |Ht} , (1)

where Nδξη(t, x, y) is the number of events occurring in [t, t+ δ)× [x, x+ ξ)× [y, y + η).

The ground intensity function describes the instantaneous Poisson rate as a function of time
only. Let Nδ(t) be the number of events in [t, t + δ). Then the ground intensity function is
defined as

λg(t, θ1, · · · , θm |Ht) = lim
δ→0

1

δ
Pr{Nδ(t) > 0 |Ht} , (2)

where (θ1, · · · , θm) ∈ Θm are the parameters. Often these are excluded, and so λg(t|Ht) is
interpreted as λg(t, θ1, · · · , θm |Ht).
An example of a ground intensity function is that of the simple (non-spatial) ETAS model,
i.e., epidemic type aftershock sequence model used in modelling earthquake counts, see Ogata
(1988, 1998, 1999). It assumes that certain earthquake aftershock sequences can be modelled
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like an epidemic, i.e., large earthquakes inducing more aftershocks (higher infection rate) in
a given interval of time and also, the aftershock sequence extends for a longer time after the
mainshock event. The ground intensity function is

λg(t|Ht) = µ+A
∑
i:ti<t

eα(Mi−M0)

(
1 +

t− ti
c

)−p
. (3)

The parameters (µ,A, α, c, p) are all positive, ti is the time of the ith event with magnitude
Mi, and M0 is a threshold magnitude, generally a value below which the dataset is incomplete.
The history of the process up to time t includes all event times and magnitudes up to but not
including t, i.e.,

Ht = {(ti,Mi) ∀i : ti < t} .

The ETAS model says that events are generated as a Poisson process with rate µ. The
first term under the summation (i.e., exp{α(Mi − M0)}) says that larger events raise the
intensity more, and the last term determines the length (time) of the aftershock sequence.
Obviously, the parameters require certain constraints, else the aftershock sequence (epidemic)
could explode and never die out. See Ogata (1988, 1998, 1999) for more details of this model.

Figure 1 contains a plot of the ETAS ground intensity function that has been fitted to the
aftershock sequence of the Phuket boxing day earthquake. The mainshock occurred on 2004-
12-25 at 00:58:53.45 GMT. The aftershock sequence extends for a considerable time after the
mainshock and also includes additional mainshock-aftershock sequences. The data can be
found in Harte (2010) and are discussed further in Section 4.

2.2. Likelihood function of simple model

Here we derive the likelihood function for the simple model where the conditional intensity
function is only a function of time, i.e., takes the form of the ground intensity function in
Equation 2.

Let τ be the time of the last event before time t. Also let ∅(τ,t) be the null outcome, i.e., no
events in the interval (τ, t). Denote the conditional distribution of the time of the next event
as

H(t|Hτ ∩ ∅(τ,t)) = Pr{T ≥ t|Hτ ∩ ∅(τ,t)},

and h(t|Hτ ∩ ∅(τ,t)) as the corresponding conditional density function. Then

λg(t|Hτ ∩ ∅(τ,t)) =
h(t|Hτ ∩ ∅(τ,t))

1−H(t|Hτ ∩ ∅(τ,t))
.

Solving the differential equation gives

H(t|Hτ ∩ ∅(τ,t)) = 1− exp

{
−
∫ t

τ
λg(u|Hτ ∩ ∅(τ,u))du

}
,

where τ is the time of the last event occurring before t. Rearranging gives the density function
as

h(t|Hτ ∩ ∅(τ,t)) = λg(t|Hτ ∩ ∅(τ,t)) exp

{
−
∫ t

τ
λg(u|Hτ ∩ ∅(τ,u))du

}
.
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Figure 1: The upper plot shows the Phuket earthquake (2004-12-26 00:58:53.45 GMT),
the Sumatra (Nias) earthquake (2005-03-28 16:09:36 GMT), and the 2007 Sumatra earth-
quakes; and their aftershock sequences. The lower plot shows the logarithm of the ground
intensity function of the ETAS model (Equation 3) with parameter values (µ,A, α, c, p) =
(0.054, 3.15, 1.34, 0.021, 1.12). The spatial boundaries of the analysed region are 89◦E, 105◦E,
5◦S, and 16◦N. Events with magnitude ≥ 5 between midnight on 2004-01-01 and 2009-01-01
have been selected, giving 1248 events. An epicentral plot of the same events can be seen in
Figure 6.
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Say · · · < t−2 < t−1 < t0 < T1 < t1 < t2 < · · · < tn < T2 < tn+1 < tn+2 < · · ·, where ti i ∈ Z
are event times, and [T1, T2] represents the interval within which events are explicitly included
into the likelihood. Those events prior to T1, if available, are included in the history of the
process. In the model fitting context this distinction allows one to use the events prior to T1
to enable the process to “reach equilibrium” or a steady state. Then

logL

= log h(t1|HT1 ∩ ∅(T1,t1)) +
n∑
i=2

log h(ti|Hti−1 ∩ ∅(ti−1,ti)) + log
(
1−H(T2|Htn ∩ ∅(tn,T2))

)
=

n∑
i=1

log λg(ti|Hti)−
∫ t1

T1

λg(u|HT1 ∩ ∅(T1,u))du−
n∑
i=2

∫ ti

ti−1

λg(u|Hti−1 ∩ ∅(ti−1,u))du

−
∫ T2

tn

λg(u|Htn ∩ ∅(tn,u))du

=
∑

i :T1≤ti≤T2

log λg(ti|Hti)−
∫ T2

T1

λg(t|Ht)dt . (4)

2.3. Marked point process

Consider again the situation where the conditional intensity function is given by Equation 1.
By a similar argument as in Section 2.2, its log-likelihood is

logL =
∑
i : ti∈T

log λ(ti, xi, yi |Hti)−
∫
T

∫
Y

∫
X
λ(t, x, y |Ht) dx dy dt ,

where T ⊆ R+ is a time interval, and X and Y are the domains of x and y, respectively.
Obviously this can be extended to include many additional variables. For brevity, we rewrite
it as

logL =
∑
i : ti∈T

log λ(ti, yi |Hti)−
∫
T

∫
Y
λ(t, y |Ht) dy dt , (5)

where y now represents a multivariate variable, referred to below as the marks.

A marked point process is a temporal point process {(ti, yi)} on R+ × Y with the additional
property that the conditional intensity function can be written as the following product

λ(t, y |Ht) = λg(t|Ht)f(y|Ht) , (6)

where λg(t|Ht) is a ground intensity function as in Equation 2, and f(y|Ht) is a multivariate
density function of the marks (Daley and Vere-Jones 2003, Definition 6.4.1). The mark density
could be denoted as f(y, ψ1, · · · , ψp |Ht), where (ψ1, · · · , ψp) ∈ Ψp are the model parameters
associated with the mark distribution. Generally the function parameters are omitted, and
f(y|Ht) is interpreted as f(y, ψ1, · · · , ψp |Ht).
The general form of the log-likelihood of a marked point process then follows directly from
Equation 5 as

logL =
∑
i : ti∈T

log λg(ti|Hti)−
∫
T
λg(t|Ht) dt+

∑
i : ti∈T

log f(yi|Hti) . (7)
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Note that the ground intensity and mark distribution could share some common parameters,
hence Θm (Equation 2) and Ψp are not necessarily disjoint (i.e., Θm ∪ Ψp ⊆ Rq where q ≤
m+p). While a trivial concept here, it is an important consideration in the software structure
in Section 3.

Consider again the ETAS model applied to the Phuket earthquake sequence. Often the
ETAS model is fitted under the assumption that the event magnitudes (i.e., Mi −M0) have
an exponential distribution that is independent of the history of the process. An alternative
assumption could be that during the initial part of the aftershock sequence when λg(t|Ht)
is relatively higher, we might expect the magnitude distribution to have fewer small events,
hence a greater mean, and this mean would return to a lower level as the ground intensity
returned to the relatively low background level. In this situation, the mark distribution (i.e.,
of the magnitude) is conditional on the history of the process, which will determine the current
value of λg(t|Ht).

2.4. Residual process

Let ti, for i = 1, · · · , n, be the times of the observed events. Then consider the transformed
times

τi =

∫ ti

0
λ̂g(t|Ht)dt , (8)

where λ̂g(t|Ht) is the fitted ground intensity function. If the data are sampled from a process

with ground intensity λ̂g(t|Ht), then the transformed time points will form a stationary Pois-
son process with rate parameter one. This sequence of transformed times is referred to as the
residual process. Further details can be found in Ogata (1988) and Aalen and Hoem (1978).

A simple diagnostic graphical test of the model goodness of fit is to plot the event number i
(i.e., i = 1, · · · , n, horizontal axis) versus the transformed time τi (vertical axis). Note that
the horizontal scale is not linear in time. The points should roughly follow the straight line
y = x. Significant departures from this line indicate a weakness in the model. Further, if in
a given sub-interval the line has a slope less than one then the transformed times τi are too
small, which indicates that the fitted ground intensity function λ̂g(t|Ht) is too small in this
sub-interval. Conversely, if the slope is greater than one, the fitted ground intensity function
λ̂g(t|Ht) is too large in this sub-interval.

An alternative is to plot τi − i on the vertical scale. Such a plot is referred to as a cusum
in the quality control literature and was devised by Page (1954), see also Lucas (1985). In
the present context, the “cumulative sum” is that of the inter-event residual times, and the
subtraction of i removes the mean. Hence, when the process is “under control”, the cusum
will have a zero slope. A positive or negative slope indicates that λ̂g(t|Ht) is either too large
or too small, respectively. A disadvantage of the first graphical representation is that the
vertical scale of the plot increases linearly with the length of the series, and hence deviations
from the line y = x will become visually smaller and hence not as noticeable with increasing
n. The cusum technique effectively reduces the vertical scale. In the same way as Brownian
motion will deviate further from the origin with increasing time, so will the cusum, but it will
be at a much slower rate than in the first plot, i.e., O(

√
n) compared to O(n).

Zhuang (2006) and Schoenberg (2003) discuss the residual process in more general settings.
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2.5. Model simulation

The PtProcess package uses the thinning method (Lewis and Shedler 1979; Ogata 1981)
to simulate event times. Essentially one takes a small sub-interval at the beginning of the
required simulation period. Then one finds the maximum of λg(t|Ht) on the sub-interval,
and simulates an inter-event time according to this maximum rate λmax. Given this has been
done using λmax, the inter-event time will, on average, be too small. Hence, events will be
generated too frequently; thus we generate a potential event (too many on average), and then
“thin”. One then moves along the simulation period and considers the next sub-interval.

Thinning algorithm

1. Let τ be the start of a small simulation interval.

2. Take a small interval (τ, τ + δ).

3. Calculate the maximum of λg(t|Hτ ) in the interval as

λmax = max
t∈(τ,τ+δ)

λg(t|Hτ ) .

4. Simulate an exponential random number ξ with rate λmax.

5. If
λg(τ + ξ)

λmax
< 1

then go to step 6.

Else no events occur in (τ, τ + δ), hence τ ← τ + δ, and return to step 2.

6. Simulate a uniform random number U on the interval (0, 1).

7. If

U ≤ λg(τ + ξ)

λmax
,

then a new “event” occurs at ti = τ + ξ. Simulate the associated marks for this new
event.

8. Increment τ for the next event simulation:

τ ← τ + ξ .

9. Return to step 2.

If λg(t|Ht) is monotonically decreasing (except at event times), as in the ETAS model, then
the selection of δ has no effect because λmax = λg(τ |Hτ ). When λg(t|Ht) is monotonically
increasing (except at event times), there are two extreme situations that could cause the
simulation method to be inefficient. If δ is too small, λmax will be relatively small, hence ξ
quite large, possibly greater than τ + δ. Here many small intervals will be considered, but
each with a very low likelihood of including an event. If δ is too large, λmax will be relatively
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large, hence ξ will be quite small. This could be inefficient as many potential “events” will
be “thinned”. Hence, for best efficiency, one requires δ to be not too small, but also not too
large. Our algorithm sets δ as the 70th percentile of an exponential distribution with rate
equal to λg(τ |Hτ ).

The thinning algorithm is not necessarily the most efficient or intuitive method of simulation.
However, it does provide a method that is sufficiently general for a reasonably wide class
of models. An alternative method for simulating the ETAS model, which also gives more
intuition into the underlying model, is to initially simulate the ancestor (mainshock). Then
one would simulate the children of this ancestor (1st generation), then their children (2nd
generation), and continue until the given family line dies out. At this point the aftershock
sequence (family tree) associated with the given mainshock event (ancestor) has expired and
the process returns to the underlying rate of seismicity. In fact, the ETAS model assumes
that all events are potential ancestors, though many are of sufficiently small magnitude that
they have no offspring.

3. Package structure

3.1. Overview of structure

The essence of the package structure hinges around the concept of a model object. In the
present paper, we are particularly interested in marked point process models. Hence, we want
to define the structure for an R object which embodies all of the information that is required
to define such a model. We want to do this in such a way that we can perform generic like
operations (functions) on this object, for example, a model summary, calculate the residuals,
calculate the log-likelihood, possibly an appropriate plot, simulate data, and so on. The R
programming language has a number of generic functions (e.g., plot, summary, residuals,
logLik, simulate, etc). We want to provide methods for some of the R generic functions for
when such a generic function is applied to a marked point process model object.

The model object needs to contain the dataset and an appropriate specification of the math-
ematical structure of the model. We will need to calculate the log-likelihood, particularly if
we want to maximize the likelihood with respect to the model parameters. Generally, opti-
misation functions require all estimable parameters to be represented as a single vector. We
also want the users to be able to define their own conditional intensity functions and build an
appropriate model object in such a way that the provided methods for marked point process
objects will work on their user defined objects.

In the preceding section (Section 2), it was shown that the marked point process contains two
important “building blocks”, the ground intensity function and the mark density function. In
fact, it can be seen that if the R representations of the ground intensity function and mark
density function can both be evaluated at arbitrary values of time, and the integral of the
ground intensity function can be calculated over arbitrary intervals, then we can calculate the
log-likelihood, simulate a process, calculate the residual process, and so on. In Section 3.2
and Section 3.3 we define a general structure for the R representations of the ground intensity
function and the mark density function, respectively.

As already noted, we require the model parameters to be represented to external functions as
a single vector. This enables the log-likelihood as given by Equation 7 to be maximized over
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the complete model parameter space. The model parameter space is Θm∪Ψp where Θm is the
parameter space of λg(t|Ht), and Ψp is the parameter space of f(y|Ht). Further, Θm ∩Ψp is
not necessarily ∅. Therefore, we need two mappings that map the complete parameter space
into Θm, and another mapping it into Ψp. The structure for these mappings is described in
Section 3.4.

In Section 3.5 we define the structure of the R marked point process model object, and in
Section 3.6 we briefly describe generic functions in R that currently have methods defined
for the marked point process model object. The functions that provide these methods are
relatively simple because they can be written in a very general manner; everything that is
specific to the model of interest is contained within the model object, namely the ground
intensity function and the mark density function. This is why these two functions must
conform to a general specification (Sections 3.2 and 3.3, respectively); they will be executed
directly by the methods functions.

The last subsection (Section 3.7) describes how parameters can be estimated by maximising
the likelihood function.

3.2. Ground intensity function

Ground intensity functions, defined in Section 2.1, are programmed as R functions with the
following structure. In example code below, we generically refer to individual functions as
gif. Those provided in the PtProcess package have a naming convention name_gif. Currently
they include jump processes that are conditional on their history (e.g., etas_gif, srm_gif,
linksrm_gif), and non-homogeneous Poisson processes that are not conditional on their
history (e.g., simple_gif, expfourier_gif, exppoly_gif, fourier_gif, poly_gif).

The R gif functions not only evaluate values of λg(t|Ht), but also its integral, which is
required to calculate the log-likelihood (Equation 7) and the residual process (Equation 8).
In this sense, the R gif function does more than that specified by the mathematical definition
given in Section 2.1.

Forms of usage

An R gif function has two usages, one to evaluate λg(t|Ht) at a specified vector of time
points, and another to evaluate the integral of λg(t|Ht) on a specified interval. The usage is
determined by the mix of supplied arguments. The two usages are, respectively,

gif(data, evalpts, params, tplus = FALSE)

and

gif(data, NULL, params, TT)

where the arguments are defined as follows.

data is a data frame containing the history of the process (Ht). It should contain
all variables that are required to evaluate the gif function, though can
contain others too. No history is represented as NULL.

evalpts is a vector of times at which the gif function is to be evaluated.
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params is vector containing values of the parameters required by the gif function.

TT is vector of length 2, being the time interval over which the integral of the
ground intensity function is to be evaluated.

tplus is logical, λg(t|Ht) is evaluated as λg(t
+|Ht) if TRUE, else λg(t

−|Ht). It is
important if a “jump” occurs at t.

All gif functions must have the same arguments even if they are redundant for the given point
process under study (e.g., a homogeneous Poisson process is not dependent on its history).

Function attributes

Functions have been given an attribute "rate", taking the values of "bounded", "decreasing"
or "increasing". This is used within the simulate method for ‘mpp’ objects which uses the
thinning method (see Section 2.5). This method requires a knowledge of the maximum of
λg(t|Ht) in a given interval. The argument tplus is also used by the simulation routine,
where it is necessary to determine the value of the intensity immediately after a simulated
event.

Example function

Consider the following simple “conditional” intensity function

λg(t|Ht) = α+ βt ,

where α, β and t are all assumed to be positive. In fact the function is not dependent on the
history of the process at all, but the essential structure of the R function below is still the
same; the history argument (data) is simply not used within the function. It can be seen that
the function has two parts, depending on whether the argument TT is missing. If an interval
TT = (T1, T2) has been specified, then the integral∫ T2

T1

λg(t|Ht) dt = α(T2 − T1) +
β

2

(
T2

2 − T12
)

is returned, otherwise λg(t|Ht) is evaluated at each value of t specified within evalpts. Check-
ing for positive values could also be included within the function, but this would be at the
expense of execution time.

R> example_gif <- function(data, evalpts, params, TT = NA, tplus = FALSE) {

+ alpha <- params[1]

+ beta <- params[1]

+ if(any(is.na(TT))) {

+ if (is.vector(evalpts)) eval.times <- evalpts

+ else eval.times <- evalpts[, "time"]

+ ci <- alpha + beta * eval.times

+ } else {

+ ci <- alpha * (TT[2] - TT[1]) + beta/2 * (TT[2]^2 - TT[1]^2)

+ }

+ return(ci)

+ }

R> attr(example_gif, "rate") <- "bounded"
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The other unused function argument in this example is tplus. In many processes that are
dependent on the history, a jump occurs in λg(t|Ht) at the time of an event, more specifically,
the process is assumed to be left continuous. If tplus == TRUE, then λg(t

+|Ht) is returned,
i.e., the value of the function immediately after the jump. This value is required by the
thinning simulation algorithm. Note also the attribute that has been attached at the bottom
of the function code. This is also required by the thinning simulation algorithm to determine
λmax (see Section 2.5).

Code for other functions that are conditional on the process history can be scrutinized by
printing out the function. The essential structure of the R function is the same as in the
example above.

3.3. Mark distributions

In order to fit a marked point process, we need to define the appropriate R function to calculate
the mark densities. If we want to simulate a marked point process, then we need to define the
appropriate R function to simulate the mark variates. Consider a mark distribution, which
could be multivariate, called “xyz”. We will refer to the corresponding R mark density and
mark simulation functions as dxyz_mark and rxyz_mark, respectively. The prefixes “d” and
“r” are chosen to be consistent with the nomenclature used in the standard R probability
functions. R functions representing mark density and random number generators have the
follow generic argument structure:

dxyz_mark(x, data, params)

and

rxyz_mark(ti, data, params)

respectively, where:

ti is the time of an event (scalar),

x is a data.frame of mark values and times of specific events, generally a
subset of the history,

data is a data.frame containing the history of the process, denoted below as Ht,
and

params is a numeric vector of parameters.

Mark density functions must return a vector with length being equal to the number of rows
in x. Each element contains the logarithm of the joint density of the marks corresponding to
each event time (row) in x.

The random number generator simulates each mark for a single value of ti. It must return
a list of simulated marks corresponding to the specified time ti, and so each component in
the list will be of length one. A list is used (rather than a numeric vector) because it allows
marks to have a more complex structure.

Consider again the example of the Phuket earthquake sequence. Assume that after very
large events, there is a deficit of smaller magnitude events and more larger magnitude events
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(i.e., relative to the exponential distribution)1; in particular a gamma distribution with shape
parameter that is greater than one. When the shape parameter is equal to one, we have the
exponential distribution. We want the distribution to return to roughly exponential after
the ground intensity has returned to a low level that is characteristic of the background level
of seismicity. Hence, define an R mark density function with seven parameters. Parameters
p1, · · · , p5 will be required to evaluate the R ground intensity function etas_gif. Assume that
the magnitude distribution is gamma with scale parameter p6, and with a shape parameter
given by

shape = 1 +
√
λg(t|Ht) p7 , (9)

where p7 (p7 > 0) is a free estimable parameter. When λg(t|Ht) is small, the magnitude
distribution roughly returns to the exponential distribution with an approximate rate of p6.
The square root transformation was chosen pragmatically, to have a similar effect as a log
transform, but ensuring that the values all remain positive. The density function could be
written as follows:

R> dmagnitude_mark <- function(x, data, params) {

+ lambda <- etas_gif(data, x[, "time"], params = params[1:5])

+ y <- dgamma(x[, "magnitude"], shape = 1 + sqrt(lambda) * params[7],

+ rate = params[6], log = TRUE)

+ return(y)

+ }

An R function to simulate such a mark distribution could be as below. Note that only one
value of the mark that corresponds to time ti is simulated.

R> rmagnitude_mark <- function(ti, data, params) {

+ lambda <- etas_gif(data, ti, params = params[1:5])

+ y <- rgamma(1, shape = 1 + sqrt(lambda) * params[7], rate = params[6])

+ return(list(magnitude = y))

+ }

In the above example, we have modified the exponential distribution to restrict the number of
very small events just above the threshold magnitude M0. However, another problem with the
exponential distribution is that its tail is too long, and hence if very large earthquake sequences
are simulated, earthquake events with unrealistically large magnitudes2 will occasionally be
generated. The gamma distribution above actually compounds this problem. Ideally, one also
wants to truncate the tail of the exponential distribution, see Harte (2010, topic dpareto).

3.4. Model parameter space

The parameter spaces of the ground intensity function and mark distribution (i.e., Θm and
Ψp) are not necessarily disjoint. In order to provide sufficient flexibility, mappings need to

1This deficit of smaller events does occur, though the reason is not completely clear. One explanation is
that the region is so active after a large event that signals from small events arriving at seismic stations will
not be able to be distinguished from the signals of the larger events. Alternatively, the region could be in a
state of super criticality, and any minor disturbance will coalesce into a larger event.

2It is not really possible for earthquakes with magnitude greater than about 9.5 to occur as the rupture size
relative to the size of the Earth would be too great.
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be defined from the full model parameter space to both Θm and Ψp. These are specified by
means of R expressions.

The mapping expressions can contain any legitimate R arithmetic expression. The complete
set of model parameters are assumed to be contained in a vector called params. Here is
an example of a five parameter model, where the gif has four parameters (mapping gmap),
and the mark distribution has three parameters (mapping mmap), with mappings specified as
follows:

R> gmap <- expression(c(params[1:3], exp(params[5])))

R> mmap <- expression(c((params[1] + params[2])/2, params[4:5]))

Note that params[4] is exclusive to mmap, params[3] is exclusive to gmap, and all other param-
eters are shared. Note the inclusion of the R combine (c) function, because the expression

must create a vector of parameters. These expressions are embedded directly into the code
of various functions.

3.5. Marked point process model object

A marked point process is defined within a list object of class ‘mpp’. By giving the object
a class, we can use the object orientated nature of the R programming language and provide
appropriate methods for some generic functions that are already defined within R.

The ‘mpp’ object must contain all of the information required to define the marked point
process model. It can be constructed using the mpp function which has the following usage

mpp(data, gif, marks, params, gmap, mmap, TT)

where the arguments are as follows.

data is a data.frame containing the history of the process, denoted below as
Ht. It should contain all variables that are required to evaluate the gif

function and the mark distribution, though can contain others too. No
history is represented as NULL.

gif is the ground intensity function as described in Section 3.2.

marks is a list containing the mark distribution as described in Section 3.3.
The first component of the list contains the mark density function and
the second the random number generating function, e.g., list(dxyz_mark,
rxyz_mark). Undefined components are represented as NULL,
e.g., list(dxyz_mark, NULL).

params is a numeric vector of all model parameters.

gmap is an expression that maps the model parameters (params) into the pa-
rameter sub-space Θm of the ground intensity function; see Section 3.4.

mmap is an expression that maps the model parameters (params) into the pa-
rameter sub-space Ψp of the mark distribution; see Section 3.4.

TT is a vector of length 2, being a time interval. Its use depends on whether
the log-likelihood is being calculated or events are being simulated; see
Section 3.6 for further details.
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3.6. Generic functions

The R generic functions logLik, plot, residuals, simulate and summary currently have
methods for the ‘mpp’ model object. The algorithms to calculate the log-likelihood, residual
process, and simulate data were given in Section 2.3, Section 2.4 and Section 2.5, respectively.
The R code can be scrutinized by printing the logLik, residuals, or simulate methods,
respectively. Similarly, the methods for plot and summary can be scrutinized by printing
plot or summary methods, respectively.

Let x be an object with class ‘mpp’. We now briefly describe these functions.

logLik(x) returns the log-likelihood. If x$marks[[1]] is NULL, then logL as in Equa-
tion 4 is returned, else logL as in Equation 7 is returned. Events included
in the interval x$TT explicitly enter the likelihood, however, all events (even
before x$TT[1]) are included in the history. This allows one to initially
wait until x$TT[1] for the process to reach a steady state.

plot(x) plots the ground intensity function as in the lower panel of Figure 1.

residuals(x) returns a vector ("ts" object) of event times of the residual process, see
Equation 8.

simulate(x) returns an object of class ‘mpp’. By default, the function simulates events
between x$TT[1] and x$TT[2]. This can be overridden by a more sophis-
ticated stopping condition. The new object will contain all events in the
object x prior to x$TT[1] and then the newly simulated events.

summary(x) returns a list object containing a summary of the model.

3.7. Model fitting

Maximising the likelihood function is a non-trivial computational exercise. There are a num-
ber of possible problems: some optimisation routines are very sensitive to poor initial starting
values of the parameters, hard boundaries on the parameter space, and different parameters
may have very different scales or ranges of appropriate values. We will discuss these problems
and how they are related at the end of this subsection.

Initially we want to set up a fairly general framework that gives the user flexibility to use
different optimizers, utilize provided parameter scaling within the optimizer or implement
their own, and also implementation of parameter constraints. This is achieved with a generic-
like function called neglogLik. It returns the negative log-likelihood of the model. The
function code is essentially as follows:

R> neglogLik <- function(params, object, pmap) {

+ object <- pmap(object, params)

+ return(-logLik(object))

+ }

where:

params is a vector of parameter values that could belong to a subspace of the full
parameter space, further details below,
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object is a model object, and

pmap is a user provided function mapping the revised parameter values params

into the appropriate locations in object. The default is that the params

vector is mapped one to one (untransformed) onto the model vector.

Initially new parameter values contained in params are mapped into the appropriate locations
in the model object. The log-likelihood function is then calculated, the method being deter-
mined by the class of the object. It is essentially a “wrapper” function for the generic logLik
function. We now show that it serves a number of useful purposes: as well as outputting
the negative value of the log-likelihood, it also allows one to restrict the parameter space to
a subspace of the full model, and also allows one to transform the parameters to eliminate
boundary problems.

Parameter transformation: Case 1

Consider a model defined in an object x. Assume that the full model has five parameters,
and we want to estimate the parameters by maximising the likelihood. We can achieve this
by using the R function nlm which is in fact a minimizer (can also use optim), hence the
calculation of the negative log-likelihood.

We initially provide starting values for nlm. Say the following values are reasonable:

R> initial <- c(10, 20, 30, 40, 50)

We want nlm to start with these initial values, and iteratively calculate new versions until
convergence is achieved. The logLik function call within the function neglogLik will use
those parameter values that are contained within the current model object, so we need a
function to update these values with the new estimates at each iteration:

R> allmap <- function(y, p) {

+ y$params <- p

+ return(y)

+ }

Now the neglogLik function can be minimized using nlm, where the behaviour of the function
neglogLik is determined by the class of the object x:

R> z <- nlm(neglogLik, initial, object = x, pmap = allmap)

R> x <- allmap(x, z$estimate)

R> print(logLik(x))

Parameter transformation: Case 2

The iterative process can get into trouble if the domain of some parameters have boundaries
and new estimates fall outside of this domain. Consider the above five parameter example
again, but where we only want to maximize the likelihood over parameters 1, 3, 4, and 5 while
fixing parameter 2 at 20. Further, assume that parameter 1 can only take values between 9
and 11, parameter 3 must be positive, and parameters 4 and 5 can take any real values.
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This would be achieved with the following code. The modified logit transformation allows
nlm to select values for the first parameter from the entire real line (eliminating boundary
problems), which then get mapped into the required interval. Similarly, the logarithmic
transformation ensures that parameter 3 will always be positive.

R> x$params[2] <- 20

R> logitab <- function(y, a, b) log((y - a) / (b - y))

R> invlogitab <- function(eta, a, b) a + (b - a) * exp(eta)/(1 + exp(eta))

R> initial <- c(logitab(10, 9, 11), log(30), 40, 50)

R> mapcase2 <- function(y, p) {

+ y$params[1] <- invlogitab(p[1], 9, 11)

+ y$params[3] <- exp(p[2])

+ y$params[4:5] <- p[3:4]

+ return(y)

+ }

R> z <- nlm(neglogLik, initial, object = x, pmap = mapcase2)

R> x <- mapcase2(x, z$estimate)

R> print(logLik(x))

Hessian, standard errors, AIC and parameter scaling

Routines that find the maximum by essentially taking the “steepest ascent” will generally
be quite efficient. However, to take this route, numerical derivatives (possibly 2nd too if a
quadratic approximation is used) will need to be calculated (we have not included formulae for
derivatives in the model object). If the provided initial values are too poor, then this strategy
also performs poorly or may not even work. Ideally one would like a robust initial method,
particularly if one is uncertain of the parameter values. The R function optim provides a
number of possibilities. Its default method uses the Nelder-Mead simplex algorithm (Nelder
and Mead 1965) which appears to be more robust than methods based on derivatives.

There are a few possible ways to calculate the standard errors of parameters. One way is to
calculate the Hessian matrix. Again, depending on the method that the optimizer uses, the
Hessian may well have been calculated, and an argument simply needs to be set to request
the optimisation function to output this matrix. The covariance matrix of the parameter
estimates can then be calculated by inverting this matrix, and the standard errors are the
square roots of the diagonal elements of this inverted matrix. One needs to take some care
here though too. For example, the estimated Hessian matrix will be dependent on how many
iterations the optimizer has performed prior to the final iteration. At each iteration, the
optimizer will generally revise the parameter scaling factors (see below), which in turn will
affect the calculated numerical derivatives. The estimated matrix will be rather poor if few
iterations have been done because the scaling factors will not have had sufficient time to
“settle down”. If the model variables have been transformed, then the Hessian provided by
the optimisation routine will be of the transformed variables. One may want to revert to
untransformed variables close to the solution if standard errors really are required. Further,
use of such standard errors appeals to asymptotic theory of maximum likelihood parameter
estimates (normality) which may provide a poor approximation if the sample dataset is too
small.
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An alternative to Hessian-based standard errors is to simulate data of the same size as the
observed dataset using the estimated parameter values for the observed dataset. One would
then estimate the parameters for the simulated dataset. By repeating this simulation and
model fitting many times, one can derive empirical distributions for each of the parameters.
Given that some of these models can take a considerable amount of computing time to fit, this
would only be a viable option in the case of relatively small datasets, where the asymptotic
theory is less likely to hold. At least in the case of the larger datasets, the asymptotic theory
is more likely to hold.

In some respects, the problems associated with calculating the standard errors are not really
such a problem. Often one wants to compare a sequence of different fitted models. However,
the difference between this sequence of fitted models to a sequence of fitted regression models
in the linear model context is that the point process models are generally not nested. Hence,
it is not simply a matter of testing whether a particular parameter is equal to zero or not. In
the point process application areas, greater use seems to be made of measures like the AIC
to compare competing models.

Scaling of the parameters may also be required if the different parameters are on very different
scales. Both of the R functions nlm and optim have an argument where the parameter scales
can be specified. Alternatively, scaling can be jointly achieved in many situations by using
the log-based transformations already discussed, in much the same way where one uses a log
transformation in classical regression models.

4. Example

In this section we fit two models to the Phuket aftershock sequence (Figure 1). The analyses
here are very preliminary, and to provide a satisfactory model description of the process
is a very complex task. For example, one complication is the temporal-spatial-magnitude
boundaries imposed on the dataset. The data sequence is part of a geophysical process that
has and will continue ad infinitum, and the spatial region selected is part of a larger tectonic
environment. Further, all earthquake catalogues are incomplete for small magnitude events,
and the catalogue completeness magnitude is not necessarily constant in time and space3.
While the models fitted below describe certain features of the given dataset, they probably
have a very poor forecasting ability of future events.

The dataset is contained in the PtProcess package (Harte 2010). The data were originally
extracted from the PDE (preliminary determination of epicentres) catalogue provided by the
US Geological Survey (ftp://hazards.cr.usgs.gov/pde/). The catalogue is incomplete for
events with magnitude below about 4.5. The magnitudes are rounded to one decimal place.
To further restrict the size of the dataset, we have only included events with magnitude ≥ 5,
so that the effective magnitude cut-off is 4.95. The selected spatial region has boundaries
89◦E, 105◦E, 5◦S and 16◦N. It is arbitrary what unit of time is used in the ground intensity
function, though some of the parameter values will be peculiar to the chosen unit. For studies
over hundreds of years, one would probably use years. In this example the time variable is
the number of days since the beginning of the dataset, i.e., midnight on 2004-01-01 is time

3One cause of temporal inhomogeneity is the implementation of temporary seismographs in a region after
a major event. Geophysicists particularly want to determine information about the stress-fracturing process,
but the resulting inhomogeneity in the catalogued events causes modelling problems. This can be minimized
by taking a reasonably high threshold magnitude, here selected as M0 = 4.95.

ftp://hazards.cr.usgs.gov/pde/
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zero. All 1248 recorded events up until midnight on 2009-01-01 have been included, i.e., 1827
days later.

In Section 4.1 an ETAS ground intensity function with an exponential magnitude distribution
(independent of the history) is fitted to the data. In Section 4.2 a model with a gamma
density for the event magnitudes (Equation 9) is fitted to the data. This mark distribution
is dependent on the history of the process. The residual process for each model is calculated
and plotted in Section 4.3, and a forecast based on simulation is performed in Section 4.4.

4.1. Null model

In this subsection we fit a model to the Phuket earthquake data (Figure 1) with an ETAS
ground intensity function (Equation 3) and an exponential distribution that is independent
of the process history for the event magnitudes.

We initially set up the model object in a way that it can be used more generally in the
following subsections. This is done by using the gamma density for the event magnitudes
(mark distribution) as in Equation 9. In this subsection, we then impose restrictions on the
parameters to ensure that the exponential distribution is actually fitted.

R> library("PtProcess")

R> data("Phuket")

R> Phuket$magnitude <- Phuket$magnitude - 4.95

R> dmagn_mark <- function(x, data, params) {

+ if (params[7] > 0) {

+ lambda <- etas_gif(data, x[, "time"], params = params[1:5])

+ y <- dgamma(x[, "magnitude"], shape = 1 + sqrt(lambda) * params[7],

+ rate = params[6], log = TRUE)

+ } else y <- dexp(x[, "magnitude"], rate = params[6], log = TRUE)

+ return(y)

+ }

R> rmagn_mark <- function(ti, data, params) {

+ if (params[7]>0) {

+ lambda <- etas_gif(data, ti, params = params[1:5])

+ y <- rgamma(1, shape = 1 + sqrt(lambda) * params[7], rate = params[6])

+ } else y <- rexp(1, rate = params[6])

+ return(list(magnitude = y))

+ }

R> TT <- c(0, 1827)

R> params <- c(0.05, 3.1, 1.3, 0.02, 1.1, 1/mean(Phuket$magnitude), 0)

R> x <- mpp(data = Phuket, gif = etas_gif,

+ mark = list(dmagn_mark, rmagn_mark), params = params, TT = TT,

+ gmap = expression(params[1:5]), mmap = expression(params))

The gamma distribution reduces to the exponential distribution when the shape parameter
is one (i.e., params[7]=0, the default value within the model object). In this situation the
magnitudes are independent of the history and hence the rate is easily estimated as the inverse
of the mean. This has also been set as the default value within the model object. Since the
rate parameter of the exponential distribution has already been estimated and is contained
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within the model object, we only need to estimate the five parameters associated with the
ground intensity function. The function expmap below restricts the estimation to only these
five parameters. Further, the model parameters are all positive. By allowing the minimizers
to work with the logarithms of the estimated parameters, values on the entire real line can
be selected (hence no boundary problems), and these get mapped back onto the positive real
line within the function expmap.

Initially the function optim is used to estimate the parameters. Estimates from this are then
used as starting values for nlm. The function optim uses, by default, the Nelder-Mead simplex
algorithm (Nelder and Mead 1965) which is generally more robust to poor starting values.
The function nlm uses a steepest ascent method, based on numerical derivatives. It is much
more sensitive to poor initial values, but convergence is relatively fast with good starting
values.

R> expmap <- function(y, p) {

+ y$params[1:5] <- exp(p)

+ return(y)

+ }

R> initial <- log(params[1:5])

R> z <- optim(initial, neglogLik, object = x, pmap = expmap,

+ control = list(trace = 1, maxit = 100))

R> initial <- z$par

R> z <- nlm(neglogLik, initial, object = x, pmap = expmap,

+ print.level = 2, iterlim = 500, typsize = initial)

R> x0 <- expmap(x, z$estimate)

4.2. Full model

In this subsection we fit a model to the Phuket earthquake data (Figure 1) with an ETAS
ground intensity function (Equation 3) and a gamma density for the event magnitudes (mark
distribution) as in Equation 9. We use the model object x that has already been defined in
Section 4.1.

R> allmap <- function(y, p) {

+ y$params <- exp(p)

+ return(y)

+ }

R> initial <- log(c(0.05, 3.1, 13, 0.02, 1.1, 1/mean(Phuket$magnitude), 0.1))

R> z <- optim(initial, neglogLik, object = x, pmap = allmap,

+ control=list(trace = 1, maxit = 200))

R> initial <- z$par

R> z <- nlm(neglogLik, initial, object = x, pmap = allmap,

+ print.level = 2, iterlim = 500, typsize = initial)

R> x1 <- allmap(x, z$estimate)

4.3. Goodness of fit

The log-likelihood of both fitted models be calculated as follows.
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Null model Full model

p1 = µ 0.0540 0.0542
p2 = A 3.1512 3.0949
p3 = α 1.3429 1.3547
p4 = c 0.0211 0.0211
p5 = p 1.1205 1.1192

p6 2.6931 2.9490
p7 0 0.0290

logL 309.6458 320.4775

Table 1: Parameter estimates of the ETAS model (Equation 3) fitted to the Phuket earth-
quake of 2004-12-26 (00:58:53.45 GMT) and aftershock sequence. The “full model” refers to
that model using a gamma distribution which is dependent on the history for the event mag-
nitudes, and the “null model” refers to that model where the magnitudes have an exponential
distribution which is independent of the history.

R> print(logLik(x0))

R> print(logLik(x1))

The log-likelihood and parameter estimates of the (null) model with exponential magnitudes
and the (full) model with gamma magnitudes are listed in Table 1. Using only one extra
parameter, the difference between the log-likelihoods is quite significant. The difference be-
tween the parameters associated with the ETAS ground intensity function are quite small.
The ground intensity function can be plotted as plot(x1, log = TRUE) (lower panel of Fig-
ure 1) and a summary of the model object as summary(x1).

A graphical representation of the model goodness of fit is to plot the residual process (Equa-
tion 8) as described in Section 2.4. The code is written below and the resultant graph is
shown in Figure 2.

R> plot(residuals(x1), xlab = "Event Number", ylab = "Transformed Time",

+ pty = "s")

R> points(residuals(x0), lty = 2, type = "l", col = "red")

R> big <- list(id = c(35, 511, 733, 875, 972, 1124, 1194),

+ date = c("26Dec04", "28Mar05", "24Jul05", "16May06", "12Sep07",

+ "20Feb08", "27Jun08"))

R> axis(3, at = big$id, labels = big$date, las = 2)

R> abline(v = big$id, lty = 3, col = "blue")

R> abline(a = 0, b = 1, lty = 3, col = "blue")

An alternative (see discussion in Section 2.4) is to plot the cusum process. The code is written
below and the resultant graph is shown in Figure 3.

R> n <- nrow(Phuket)

R> plot(residuals(x1) - 1:n, xlab = "Event Number", ylab = "Cusum")



22 PtProcess: Modelling Marked Point Processes Indexed by Time in R

Event Number

Tr
an

sf
or

m
ed

 T
im

e

0 200 400 600 800 1000 1200

0
20

0
40

0
60

0
80

0
10

00
12

00

26
D

ec
04

28
M

ar
05

24
Ju

l0
5

16
M

ay
06

12
S

ep
07

20
F

eb
08

27
Ju

n0
8

Figure 2: Residual process times for the ETAS model (Equation 3) fitted to the Phuket
earthquake of 2004-12-26 (00:58:53.45 GMT) and aftershock sequence. The solid black line
represents the model using a gamma distribution that is dependent on the history for the
event magnitudes, and the dashed red line represents the model where the magnitudes have
an exponential distribution that is independent of the history. The dashed line cannot be
distinguished from the solid line in this plot. The dates of the larger events are marked on
the top axis.

R> points(residuals(x0) - 1:n, lty = 2, type = "l", col = "red")

R> axis(3, at = big$id, labels = big$date, las = 2)

R> abline(v = big$id, lty = 3, col = "blue")

R> abline(a = 0, b = 0, lty = 3, col = "blue")
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Figure 3: Cusum of residual process times for the ETAS model (Equation 3) fitted to the
Phuket earthquake of 2004-12-26 (00:58:53.45 GMT) and aftershock sequence. The solid black
line represents the model using a gamma distribution that is dependent on the history for the
event magnitudes, and the dashed red line represents the model where the magnitudes have
an exponential distribution that is independent of the history. As in Figure 2, the difference
between the cusum residual times for both models is also very small.

Plots of the residual process are essentially checking the goodness of fit of the ground intensity
function. Figures 2 and 3 indicate that there is very little difference between these functions.
This is consistent with the very similar parameter estimates for the two models as listed in
Table 1.

A useful diagnostic to evaluate the goodness of fit of the mark distribution is to plot their
cusums over time. Under the null model, the magnitudes have an exponential distribution
with mean 1/p6. Similarly, in the full model the expected value of the magnitude of the event
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occurring at ti is
1 +

√
λg(ti|Hti) p7
p6

.

The code written below compares the magnitude cusums over time for the two models, the
graph being shown in Figure 4. This shows an obvious difference and is the main reason for
the difference in the log-likelihood between the two models.

R> lambda <- etas_gif(data = x1$data, evalpts = x1$data$time,

+ params = x1$params[1:5])

R> mean1 <- (1 + sqrt(lambda) * x1$params[7]) / x1$params[6]

R> plot(ts(cumsum(x1$data$magnitude - mean1)),

+ ylab = "Cusum", xlab = "Event Number", ylim = c(-13, 20))

R> mean0 <- 1/x0$params[6]

R> points(ts(cumsum(x0$data$magnitude - mean0)), type = "l", lty = 2,

+ col = "red")

R> abline(h = 0, lty = 3, col = "blue")

R> axis(3, at = big$id[-1], labels = big$date[-1], cex.axis = 0.7, las = 2)

R> abline(v = big$id[-1], lty = 3, col = "blue")

4.4. Simulation

The Phuket example dataset has an observation period that ceases at midnight on 2009-01-01.
Consider the situation where the current time is midnight on 2009-01-01 (time 1827), and we
want to determine the probability distribution of the time to the next event with magnitude
≥ 6.5. This distribution can be determined empirically by simulation. In this example, we
use the model with a gamma distribution for event magnitudes.

We need to define a stopping condition as a function (see code below). The object data

will contain all historical events and simulated events up until the most recently simulated
event. The variable names in the object data will be those from the original history. This
function will be evaluated immediately after the marks have been simulated for the most
recent event (see the simulate method for ‘mpp’ objects in package PtProcess). If this event
has a magnitude ≥ 6.5 (recall that M0 = 4.95), then the function returns TRUE, which will
cause the simulate method to stop simulating further events. We also change x$TT=c(1827,

Inf), and since x$TT[2] is infinity, the simulation can only stop by meeting the stopping
condition.

Then 2000 simulations are performed, and from each the time to the first magnitude 6.5 event
is recorded in the vector y. Finally a histogram of these times (in days from 2009-01-01) is
plotted and shown in Figure 5.

R> stop.cond <- function(data) {

+ n <- nrow(data)

+ return(data$magnitude[n] >= 1.55)

+ }

R> x2 <- x1

R> x2$TT <- c(1827, Inf)

R> y <- rep(NA, 2000)
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Figure 4: Cusum of event magnitudes for the ETAS model (Equation 3) fitted to the Phuket
earthquake of 2004-12-26 (00:58:53.45 GMT) and aftershock sequence. The solid black line
represents the model using a gamma distribution that is dependent on the history for the
event magnitudes, and the dashed red line represents the model where the magnitudes have
an exponential distribution that is independent of the history.

R> for (i in 1:2000) {

+ print(i)

+ x3 <- simulate(x2, seed = i, stop.cond = stop.cond)

+ y[i] <- x3$data$time[nrow(x3$data)]

+ }

R> hist(y - 1827, breaks = seq(0, max(y - 1827), length.out = 20),

+ xlab = "Days Since 1 January 2009", main = "")

R> z <- quantile(y - 1827, probs = c(0.99, 0.95, 0.90, 0.80, 0.50))

R> abline(v = z, lty = 2, col = "blue")

R> axis(3, at = z, labels = c(0.99, 0.95, 0.90, 0.80, 0.50))

R> box()
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Figure 5: The ETAS model (Equation 3) with gamma magnitudes is initially fitted to the
Phuket earthquake of 2004-12-26 (00:58:53.45 GMT) and aftershock sequence. The example
dataset runs until midnight on 2009-01-01. 2000 simulations were commenced from this date
until the first magnitude 6.5 event in each occurred. The histogram represents the empirical
distribution of the times to this event. The dash lines represent the 0.5, 0.8, 0.9, 0.95 and
0.99 quantiles.

5. Current development

There are two problems where the current development of the package is being focussed.
The first term in the log-likelihood function generally has a double sum. When upwards
of 10,000 events are in the dataset, evaluation of the likelihood function is very slow. The
second problem involves the product structure of the conditional intensity function given by
Equation 6. In some models this condition can be too restrictive. In this section we briefly
discuss these two problems, and the solutions being implemented.
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5.1. Computational complexity

The main computational work in calculating the likelihood function, and hence fitting a model,
is the calculation of the term ∑

i : ti∈T
log λg(ti|Hti)

in Equation 7. This is because it is generally conditional on the history of the process. Hence,
given a value of t, we must effectively look through the historical events to see how they affect
the ground intensity at t, which will occur as a summation like operation. In some cases,
some sufficient statistics can be calculated (e.g., see function linksrm1_gif) and stored for
subsequent function calls, and in others all calculations are repeated every time the function
is called (e.g., see function etas_gif).

One way to speed up the calculation of this term is to use parallel processing. We have recently
implemented this using the R package called snow. One question with parallel processing is at
what level in the program structure should it be implemented, for example, at a relatively fine
level like each time we multiply matrices, or at a much coarser level? If one is using a cluster of
nodes (machines) each with multiple processors, the efficiency is very dependent on the speed
of communication between processors. In clusters this communication is very slow compared
to a super computer. Hence, it is best to allocate large amounts of work to the nodes, and
minimize communication. We have implemented the parallel processing at a relatively coarse
level, being done within the logLik method. This ensures that some benefits can be had when
using any ground intensity function. Further, the most computationally intensive aspects of
these models is the model fitting. Implementation within the likelihood function also ensures
benefits during estimation too.

If there are n events, then the double sum in the first term of Equation 7 will contain approx-
imately n(n+ 1)/2 terms. There may be more if there are further historical events that occur
before those that occur within the interval T . These terms are then split equally between
the available processors. When we use two processors on the same node (machine) with a
dataset of about 8,300 events, we get an increase in speed of about 1.8 over a single processor.
When we use 6 processors (all roughly of comparable speed), 2 on each of 3 nodes, we get an
increase in speed of about about 4 over a single processor. This reflects the slow connection
between nodes compared to the much faster connection between processors on the same node.
The speed factors reduce for datasets of fewer events. The test model was that discussed in
the following section (Section 5.2). No parallel processing was applied to other terms in the
likelihood function.

5.2. Spatial distribution as a mark

In Section 2, it was shown that the main aspects of modelling a marked point process involve
the ability to calculate values of the ground intensity function λg(t|Ht), calculate the integral
of the ground intensity function, and calculate values of the mark density f(y|Ht). It also
requires the condition that the conditional intensity function can be expressed as a product
as in Equation 6.

In the case of earthquake modelling, we could, therefore, include the spatial location of the
event, the rupture length, rupture direction, and other measured information about a given
event. The catch is that the conditional intensity function must satisfy Equation 6. This can
put a considerable constraint on the form of the model. To see the problem, consider again
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Figure 6: Epicentral plot of events in the Phuket example dataset. The size of the circle is
proportional to the event magnitude. The location of the event on 2004-12-26 and all events
during the 30 days afterwards are colored red. Similarly, the event locations on 2005-03-28,
2005-07-24, 2007-09-12 and 2008-02-20, and events occuring in the 30 days after each are
colored green, cyan, blue and magenta, respectively. Other events are represented in black.
The same events are plotted in Figure 1. The map is drawn using the R packages by Becker
et al. (2010b,a).
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the ETAS model. Let

ξi(t) = eα(Mi−M0)

(
1 +

t− ti
c

)−p
then the ground intensity function of the non-spatial ETAS model given by Equation 3 can
be written as

λg(t|Ht) = µ+A
∑
i:ti<t

ξi(t). (10)

If a spatial version of this model was to be a marked point process, then we would require a
density function to describe the spatial distribution of the events, say f(x, y), such that the
product with λg(t|Ht), as in Equation 6, gives the conditional intensity function λ(t, x, y |Ht).
Unfortunately this model has the wrong structural form.

Consider the following argument. Given Equation 10, it is natural to think of the non-spatial
ETAS model as a composite model, i.e., a composition of many processes. It contains a
Poisson part with rate parameter µ, and the term Aξi(t) can be thought of as the ground
intensity function of the aftershock sequence associated with the ith event. We require ξi(t)
to be integrable so that the ith family line dies out, i.e., the aftershocks associated with the
ith event eventually stop. Now assume that the ith event has spatial location (xi, yi) (in 2D,
disregarding depth) and magnitude Mi. Then we would expect the aftershock sequence to
be located relatively close to (xi, yi), and the spatial spread would be expected to be larger
if the magnitude Mi was greater. This suggests that a possible very simplistic mark density
to describe the spatial distribution of the aftershock sequence associated with the ith event
could be something like

fi(x, y) =
1

2πσ2
exp

(
(x− xi)2 + (y − yi)2

−2σ2

)
,

where σ2 = deβ(Mi−M0), and d and β are estimable parameters (see Ogata and Zhuang (2006)
for other possibilities). Then a possible form of the conditional intensity function of a spatial
ETAS model is

λ(t, x, y|Ht) = ζ(x, y) +A
∑
i:ti<t

ξi(t)fi(x, y) , (11)

where, given that X × Y is the observation region,∫
Y

∫
X
ζ(x, y) dx dy = µ ,

and ∫
Y

∫
X
fi(x, y) dx dy = B(xi, yi) < 1 .

The function B(xi, yi) is effectively a boundary correction accounting for the finite spatial
observation region (i.e., X × Y). It can be seen that the summation in Equation 11 is being
taken over many marked point process models. This composite marked point process model
still has one important structural characteristic of the more simple marked point process
model. If we integrate over the mark space, the marginal intensity is similar to the overall
ground intensity function (Equation 10), except for the inclusion of the boundary correction,
i.e., ∫

Y

∫
X
λ(t, x, y|Ht) dx dy = µ+A

∑
i:ti<t

B(xi, yi) ξi(t) ,
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denoted by λ̃g(t|Ht), say. Because of this, a number of the generic methods written for the
simple marked point process work also in this situation with only minor modifications. For
example, we could simulate a spatial ETAS point process by generating the time to the next
event based on the current value of λ̃g(t|Ht) as in the simple case4. Once a new event time
has been simulated (say tj), the event would be allocated to one of the existing clusters or the
background process, depending on the relative values of µ and B(xi, yi)ξi(tj) for all ti < tj .
Other marks, including magnitude, would be allocated to the new event at this stage as well.
Estimation of the process is reasonably straightforward too. The PtProcess package currently
has a prototype function for this situation.

The isotropic mark density function defined above is obviously unsatisfactory to model the
Phuket example dataset. In Figure 6 we see that the spatial distributions of the aftershocks
associated with the largest mainshocks are not isotropic, and further, they are not even centred
about the main shocks. The aftershocks of the 2004 Boxing Day event tend to occur to the
north. This often occurs, i.e., the mainshock can be on the periphery of what will develop
as the aftershock region. There is some current argument (McGuire, Zhao, and Jordan 2002)
that various second moment properties of the mainshock provide information of whether the
aftershock region will be offset in this manner. If this is true, these measured properties
should be built into the spatial density function. Further, note the alignment of the events
within a long thin approximately elliptical region whose major axis is roughly parallel to the
island of Sumatra. One may also want to consider functions with a powerlaw decay rather
than the exponential decay of the bivariate normal density function, for example, see Ogata
and Zhuang (2006).
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