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Abstract

The statistical analysis of data which is measured over a spatial region is well es-
tablished as a scientific tool which makes considerable contributions to a wide variety
of application areas. Further development of these tools also remains a central part of
the research scene in statistics. However, understanding of the concepts involved often
benefits from an intuitive and experimental approach, as well as a formal description of
models and methods. This paper describes software which is intended to assist in this
understanding. The role of simulation is advocated, in order to explain the meaning of
spatial correlation and to interpret the parameters involved in standard models. Realistic
scenarios where decisions on the locations of sampling points in a spatial setting are re-
quired are also described. Students are provided with a variety of sampling strategies and
invited to select the most appropriate one in two different settings. One involves water
sampling in the lagoon of the Mururoa Atoll while the other involves sea bed sampling in
a Scottish firth. Once a student has decided on a sampling strategy, simulated data are
provided for further analysis. This extends the range of teaching activity from the analysis
of data collected by others to involvement in data collection and the need to grapple with
issues of design. It is argued that this approach has significant benefits in learning.

The software which implements these tools is built on existing R packages, using rpanel
controls for the geoR geostatistical simulation and modelling tools. The operation and
construction of the software are described in detail. The software is made available as
additional functions rp.geosim, rp.mururoa and rp.firth in the rpanel package.

Keywords: interactive graphics, graphical user interface, learning, sampling, simulation, spa-
tial statistics, R, teaching.

1. Introduction

The statistical analysis of spatial data has been a major growth area of statistical research for
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around three decades and it continues to occupy a place at the very heart of current research.
The need to adapt statistical analysis to spatial structures has generated very important
methodological innovations. On the other hand, the existence of appropriate spatial methods
has had enormously significant impact on a wide variety of application areas, from image pro-
cessing to environmental problems. Cressie (1993) gives an authoritative and comprehensive
overview of spatial concepts and techniques while a wide variety of more recent texts offer
different perspectives on the subject and address important application areas, particularly
environmental science (Webster and Oliver 2001; Piegorsch and Bailer 2005; Barnett 2006;
Diggle and Ribiero 2007).

The concepts associated with spatial variation, and in particular spatial correlation, need to be
firmly understood if spatial analyses are to be properly implemented and interpreted. When
these concepts are met for the first time, they are not always easy to grasp, particularly
for those whose background lies in application areas where quantitative traditions are not
strong. However, even those who are able to approach the topic from a strong background
in the mathematical sciences often benefit from opportunities to develop a more intuitive
understanding to complement the theory.

Appropriate use of software can make substantial contributions towards these aims. A number
of excellent packages to fit spatial models are now available and the ability to use these on
relevant data allows a shift of focus from the algorithmic to the conceptual. An important
example implemented in the R system for statistical computing (R Development Core Team
2010) is the geoR package (Ribeiro and Diggle 2001) which provides a wide variety of tools
for the analysis of geostatistical data. This makes use in turn of the sp classes and methods
(Pebesma and Bivand 2005; Bivand, Pebesma, and Gémez-Rubio 2008) for spatial data and
the RandomFields (Schlather 2009) package for the simulation of data from random fields.

While direct use of analysis packages enables students to engage with real applications, there
remains scope for software whose role is to explain the meaning of spatial models and to allow
students to explore standard concepts such as the meaning of variation in a spatial setting.
The ShowModels function in the RandomFields package, described by Schlather (2001), is a
good example of what can be achieved with standard mouse-click interaction on an R graphics
window. However, the advent of graphical user interface (GUI) software in R greatly extends
the scope for the construction and use of interactive tools. There are now many different
systems to construct GUI controls, such as iplots (Urbanek and Theus 2003), JGR (Helbig,
Urbanek, and Fellows 2010), RGtk2 (Lawrence and Temple Lang 2010) and gWidgets (Verzani
2007). The particular niche occupied by the rpanel package (Bowman, Crawford, Alexander,
and Bowman 2007), which in turn is built on the tcltk system (Dalgaard 2001), is expressed
in the aim to make the addition of interactive graphical controls as simple as possible. This
paper reports on the the use of rpanel to create software which allow students to engage
graphically with spatial concepts. It is available from the Comprehensive R Archive Network
at http://CRAN.R-project.org/package=rpanel.

The role of simulation is discussed in Section 2, where software to provide interactive control
of model parameters and displays is described. Sections 3 and 4 discuss two scenarios where
data are to be sampled from a spatial region. Students are required to make a decision on
how this sampling should be conducted, with the software providing a variety of options, and
some simple analysis of the collected data. Some final discussion is given in Section 5. Issues
of software design are discussed in an appendix.
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2. Simulation of spatial data

Simulation provides a very natural tool to promote an intuitive understanding of random
variation in a variety of settings, simply by viewing repeated realizations of data. For spatial
data, a helpful starting point is the simulation of random surfaces which are generated by
a Gaussian process. If, for simplicity, the mean value is set to 0, then the process can be
defined over a spatial region by the covariance function C(s,t), where s and ¢ denote spatial
locations. When the process is (weakly) stationary, C' is a function only of h = ||s — ¢||, the
distance between the two spatial locations. The material described in this paper uses the

Matérn covariance function
o? h\ " h
Chy=—— (-] Ksl—-]),
0 =510 (5) % (5)

where K (z) denotes the modified Bessel function of the third kind of order . This offers
a flexible family of covariance functions with a degree of control of shape expressed in the
parameter k. For example, the standard exponential model is obtained by setting x = 0.5.
Since many covariance functions have broadly similar shapes, it is the role of the variance
(02) and correlation range (¢) parameters which are of most interest. However, in the pa-
rameterization shown above, the range is also directly affected by x. This can be remedied
by adopting the parameterization of Handcock and Wallis (1994), defined by ¢ = 0/(2+/k),
which gives the new range parameter 8 a clear interpretation, unaffected by the setting of «.
This parameterization has been adopted here.

For visualization, the random surface generated by the Gaussian process can be evaluated at
a fine grid of spatial locations. A simple approach is to construct the covariance matrix X
whose (i, j)th element contains C' evaluated at grid points ¢ and j. A Cholesky, or equivalent,
decomposition of ¥ provides a matrix which, when multiplied by a vector of independent
standard normal random variables, produces a vector of data whose covariance matrix is X.
This approach can be very inefficient when large samples are involved but a variety of other
computational approaches are available. The grf function from the geoR package in R uses
the GaussRF function from the RandomFields package of Schlather (2009), while Rue and
Held (2005) and Rue and Follestad (2002) describe how Gaussian Markov random fields can
be used to provide very efficient approximations. The spectralGP package of Paciorek (2007)
offers another route, also in R, although this requires grid sizes based on powers of 2.

Direct calls to these applications are straightforward for those familiar with R. However, the
use of a graphical user interface allows the focus to be directed towards repeated, and possibly
rapid, simulations without the distraction of intervening code. Figure 1 shows displays created
by the rpanel function rp.geosim(). Repeated simulations can be generated by pressing a
button, while the parameter values can be controlled by the sliders. The instant visual
feedback from the data patterns generated by different values promotes good understanding
of what is meant by the variance of the process, referred to here by the standard terminology
of ‘partial sill’, and the correlation range parameter. It is particularly helpful to explore
the relationship between the range parameter and the smoothness of the resulting random
surface. The speed with which new simulations can be generated makes the connection
between parameter values and patterns easier to establish, without the intervening distraction
of explicitly re-executing code. A checkbox allows an alternative display in three-dimensional
form, using the tools provided by the rgl package of Adler and Murdoch (2010) to create a
3D scatterplot and surface facility in the rpanel function rp.plot3d.
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Figure 1: Simulations created by the rpanel function rp.geosim(). The top row shows a
contour plot, and rgl plot, of a Gaussian process with the Matérn covariance function, using
the parameter values shown in the plot title. The middle row shows the same plots for a second
set of data simulated under the same conditions. The bottom panel shows a contour plot of
data simulated with a smaller range parameter, together with a plot of the semivariogram.
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Figure 2: These plots show the simulated Gaussian process displayed in the middle row of
Figure 1. In the top row, sampling points for the extraction of data from this process are
indicated. In the middle row, further independent variation has been added at these sampling
positions, to simulate a nugget effect. In the bottom panel, the underlying process has been
removed from the plot, leaving only the data which would be available in a sampling exercise.
The true and sample variograms have also been added.
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The surfaces shown in Figure 1 represent the entire spatial process. However, it would be
rare to observe a process in complete form and so it is then helpful to discuss the process of
measurement, leading to observed data corresponding to a more limited set of spatial locations.
A regular grid of sampling locations is shown in the top two panels of Figure 2. This raises
the issue of measurement error, or more generally of additional small-scale variation, in the
so-called ‘nugget’ effect. A slider is available to control the variance of this additional source of
variation, represented in the discrepancies between the colors of the points and the underlying
surface in the contour plot, and more obviously in the separation of points and surface in the
3D plot, both shown in the middle panels of Figure 2. Again, repeated simulations and
altered nugget values communicate the meaning of this parameter effectively. It is also useful
to be able to separate simulations which generate new measurement errors on a fixed surface
from simulations which generate new values for both. The former type of simulation can be
implemented by checking the ‘Sample points only’ checkbox. This can helpfully illustrate
a discussion of what it means to take repeated samples of spatial data, and whether the
underlying process or simply the measurement errors will have changed between the repeat
visits.

Finally, it is helpful to suppress the simulated surface and show only the measured values at
the sampling locations. This, of course, is the usual starting point for a spatial analysis and
leads, for example, to the construction of a sample semivariogram, as shown in the bottom
panel of Figure 2. Repeated simulation at this stage has a further useful role to play in
demonstrating the considerable variation which can be exhibited by sample semivariograms.
However, more generally, the preceding discussion of the full spatial process as a description
of the way the data were generated promotes a deeper understanding of the underlying model
and the meaning of any subsequent fitted parameters.

The rp.geosim function gives control of additional aspects of the simulations, such as the
sample size and the value of the x parameter in the Matérn covariance function, as well as
angle and ratio parameters for anisotropy. The effects of altering all of these parameters are
very instructive.

3. Mururoa atoll: A spatial sampling scenario

While the analysis of data collected by others in real applications is a very instructive expe-
rience, there are some statistical issues which are brought to the fore most effectively when
students are confronted with issues of design. The rpanel function rp.mururoa is constructed
around a real sampling context based on the effects of nuclear experiments conducted between
1966 and 1996 in the South Pacific, at the atolls of Mururoa and Fangataufa, (IAEA Inter-
national Advisory Committee 1998). As part of the assessment of subsequent radiological
conditions, both terrestrial and aquatic samples were collected and assayed for activities due
to strontium-90, caesium-137, plutonium and tritium. The sampling scenario in rp.mururoa
is based on water sampling by boat for tritium in the Mururoa atoll.

The principle of random sampling is an important one in many application areas and so this
is a natural starting point for Mururoa. However, repeated random selection of sampling
positions, as illustrated in the top two panels of Figure 3, immediately draws attention to the
difficulty that spatial gaps of substantial size may well occur. A more systematic approach, by
placing a regular grid over the region of interest, solves this problem and ensures good spatial
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Figure 3: The top two panels show sampling positions for Mururoa Atoll which have

selected randomly.

a randomly selected starting point.
different choices of random and systematic spacing between and within transects.

Take sample

Take sample |

Take sample

been

The left hand middle panel illustrates the use of a regular grid, with
The remaining three panels show line transects with

coverage. The ‘Grid/Transect x-align’and ‘Grid/Transect y-align’ doublebuttons allow
the grid position to be shifted and raises the issue of how this should be chosen. An element of
random sampling can be adopted by selecting the horizontal and vertical location of the grid
lines randomly, as illustrated in the left hand middle panel of Figure 3. A further approach is
to use line transects, which are well adapted to movement of a boat along a fixed direction and
with the spacing of sampling locations between and/or within transects selected randomly. A
systematic rather than random strategy for both these spacings produces a regular grid which
is no longer oriented in a north-south and east-west direction. Again, the starting position
for the grid can be selected randomly. All of these options are illustrated in the remaining
three panels of Figure 3. The direction of the transects has been selected to match the broad
orientation of the water body within the atoll. This direction could, in principle, itself be
selected randomly, although practical considerations in maneouvering the boat may militate
against that. Finally, for all strategies, the number of sampling points also has to be specified.

The need to make a decision on sampling strategy requires students to think carefully about
the consequences for later analysis and this is a very valuable activity. (The reader may
wish to consider at this stage which strategy he or she would select.) When a decision has
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Figure 4: The top panel shows sampled points for Mururoa Atoll, with the observed values
coded by color. The two middle panels display a predicted surface, with standard error
information superimposed as contours, under an assumption of constant trend. The bottom
panel shows the true surface (trend plus spatial process) from which the data were simulated.

been made, the ‘Take sample’ button on the right hand size of the panel generates simulated
data, on a scale of kBq/m? for subsequent analysis. (The structures used to simulate the
data are discussed in Appendix A below.) The controls on the left hand side of the panel are
also disabled, representing the fact that in practice a single decision must be made and its
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consequences lived with.

A new set of controls is now available on the right hand side of the panel. These call geoR
functions such as variog, variofit, krige.control and krige.conv to perform some simple
analysis based on kriging, illustrated in Figure 4. The measured values at the sampling
positions, a predicted surface and its standard errors can all be viewed, and choices can
be made on whether a constant, linear or quadratic trend function should be fitted. It is
instructive to view the differences in predicted surfaces which these choices produce, with
a quadratic trend prone to more extreme prediction at the edges of the spatial region. A
checkbox is also available to display the structure from which the data were simulated, namely
the trend function plus spatial process. Within the context of a teaching exercise, the ability
to compare predictions with the underlying truth is very helpful.

On some occasions, kriging may run into computational difficulties. The appendix shows
how the simulated data may be exported to a file for examination outside the rpanel applica-
tion. This allows investigation of whether large spatial gaps, which may occur with random
sampling, are implicated in the computational problem.

4. The sea bed of a firth: Stratified spatial sampling

A second sampling exercise is available in the rpanel function rp.firth. This scenario is
based on the mapping of radioactivity and the calculation of a radionuclide inventory within
a water body. (A ‘firth’ is a Scottish term for a long, narrow indentation of the sea coast at
the mouth of a river.) Interest lies in nuclides which, on release into a water body, attach
(adsorb) to sediment in a manner which depends on the sediment particle size. Cobalt-60 and
caesium-137 are examples of nuclides which exhibit this behaviour. In this sampling scenario,
the map of sediment type is used to define regions of different particle size from which the
sediment samples will be collected by grabs from a boat.

The additional issue to be faced in this scenario is the presence of strata, as the different
types of material on the sea bed may affect the mean values of the measurements taken. One
option is simply to select sampling positions randomly and hope that this will automatically
cover the strata in a suitable manner. However, as illustrated earlier, this approach suffers
from the possibility of large spatial gaps. A systematic approach using a regular grid, with
random selection of the grid starting position, is again available. A further variation is to
retain the grid as the basic structure but to allow the horizontal positions of the sampling
points along the grid lines to be selected randomly. Finally there is an option to focus on the
strata more directly, by carrying out stratified random sampling to ensure that the number
of sampled points in each stratum matches the proportion of the spatial region which each
stratum represents. Even where stratified sampling is not used, the numbers of sampling
positions which fall into each stratum are printed at the top of the panel plot, so that this
aspect of the sampling strategy can be monitored. A number of these different strategies are
illustrated in Figure 5.

Once a decision has been made, and the ‘Take sample’ button pressed, data are simulated
and presented for analysis. The observed data and a simple spatial prediction are displayed
in the top two panels of Figure 6, on a scale of Bq/kg. The additional issue of strata can be
incorporated into the prediction process by fitting level shifts, using the 1ikfit function in
geoR. This assumes a model which has a trend function, a single random spatial process plus
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Figure 5: The top panel shows sampling positions for the firth which have been selected
randomly. The second panel illustrates the use of a regular grid, with a randomly selected
starting point. The third panel illustrates the additional step of assigning horizontal positions
randomly within a grid structure. The bottom panel shows locations selected by stratified
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Figure 6: The top panel shows sampled points for the firth, with the observed values coded by
color. The second panel displays a predicted surface under an assumption of constant trend
while the third shows a prediction which incorporates stratum effects. The bottom panel
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shows the true surface (trend plus stratum effects plus spatial process) from which the data

were simulated.
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a mean shift for each stratum, as well as a nugget effect. This model structure may be beyond
the level of sophistication which is appropriate for students who are meeting spatial data for
the first time. However, even if the technicalities are beyond the grasp of the students, the
underlying concepts can be demonstrated clearly in a graphical manner, through the changes
in levels across the strata boundaries in the third panel of Figure 6. Indeed, on this occasion
the data were simulated from a model which did indeed have strata effects, as shown in the
bottom panel of Figure 6 where the true data structure is displayed.

5. Discussion

The aim of the tools described in this paper is to enable students and researchers to explore
some of the issues associated with spatial data and models in an interactive manner, to pro-
mote intuitive understanding of the concepts involved. In particular, the sampling scenarios
provide contexts in which issues of design have to be considered and this helpfully extends
the range of activities to which students can be exposed.

Graphical controls for simulation can clearly be implemented to good effect in a much wider
range of application areas. Even within the context of spatial data, it would be straightforward
in principle to apply this to spatial point patterns, for example using the splancs (Rowlingson
and Diggle 2008) or spatstat (Baddeley and Turner 2005) packages.

Teachers may wish to build on the sampling scenarios tools by incorporating other practical
aspects of data collection. For example, information about likely forms of spatial correlation
and nugget effects might be added to GUIde sampling strategies. Similarly, decisions on sam-
pling strategies have to be taken within the context of budget limits so the costs of sampling
could be given a simple quantification as a fixed overhead plus a component proportional to
sample size. The allocation of a fixed budget, or the need to negotiate beyond this, provide
further constraints which students need to consider.
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A. Software design

The spatial functions described above are all constructed with the graphical control tools
provided by the rpanel package. The aims of rpanel are to make it as easy as possible for
R users to add GUI controls, using single function calls for each, and in addition to provide
a range of useful applications which make use of these tools. The basic mechanism of the
package is described in Bowman et al. (2007). It is built on the teltk package, with ‘behind
the scenes’ management of its communication mechanisms, and requires the user to supply an
‘action’ function which will be executed when the state of a particular control widget is altered.
The complexity of an rpanel application is therefore determined by the sophistication of the
user’s code. Integration of R plots within the control panel, built on the tkrplot package of
Tierney (2005), is a particularly helpful feature which avoids the need for multiple windows.
This feature is used repeatedly in the spatial applications described above, as the Figures
illustrate.

A recent feature of rpanel is the extension of facilities for arranging controls within the panel.
The spatial applications use these features extensively, for example allowing the ‘Take sample’
button to be replaced by a larger set of controls which activate analysis of the sampled data.
Earlier modes of operation allowed the positioning of control items within a panel through
simple top/bottom/left/right orientation, or by the specification of pixel positions. These
modes make use of the ‘pack’ and ‘place’ modes within Tcl/Tk. As an alternative, more
flexible approach, a grid system can now be specified for the panel as a whole, using the
rp.grid function, which in turn calls the ‘grid’ mode within Tcl/Tk. For example, the basic
layout of the Mururoa panel is constructed by identifying each grid component by name and
row/column position in a grid layout.

rp.grid(panel, "controlsl", row = 0, column = 0)
rp.grid(panel, "controls2", row = 0, column = 3)
rp.grid(panel, "plotl", row = 0, column = 1)
rp.grid(panel, "plotla", row = 0, column = 2)
rp.grid(panel, "plot2", row = 1, column = 1)

Individual controls can then be added by referring to a row/column position in a named grid
element. For example, the following code adds a color chart and three controls to the grid on
the right hand side of the Mururoa panel.

rp.tkrplot(panel, plotla, mururoa.colour.chart,

hscale = panel$hscale * 0.12, vscale = panel$hscale * 0.7,

grid = "plotla", row = 0 , column = 0)
rp.checkbox(panel, display.options,

labels = c("points", "predicted surface", "prediction s.e."),

initval = c(TRUE, FALSE, FALSE), action = mururoa.predict,

title = "Display", grid = "controls2", row = 0, column = 0)
rp.radiogroup(panel, trend.setting, c("cte", "1st", "2nd"),

labels = c("constant", "linear", "quadratic"), action = mururoa.predict,

title = "Display", grid = "controls2", row = 1, column = 0)
rp.checkbox(panel, mururoa.true, mururoa.samp.redraw,

title = "True surface", grid = "controls2", row = 2, column = 0)
rp.do(panel, mururoa.samp.redraw)
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Trend trend.fn A function of a position vector of length two, to
be evaluated over the grid defined by horizontal
and vertical margins seq(0, 100, by = 0.5)
and seq(0, 50, by = 0.5) for rp.mururoa
and 0:200, 0:60 for rp.firth.

Covariance parameters | cov.pars A vector of length two giving the variance and
range parameters of the spatial process, in the

form required by geoR.
Nugget nugget The variance of the nugget effect.

Strata effects strat.effect | The shifts in mean associated with each stra-
tum. (This is required only for rp.firth.)

Table 1: The components used to define the structure from which data are simulated in the
rp.mururoa and rp.firth functions.

This gives considerable flexibility in layout.

In the spatial scenarios embodied in rp.mururoa and rp.firth, sampling takes place over
irregular regions. The simple approach which has been adopted to deal with this is to work
with a fine grid of discrete spatial locations. This avoids the need for more complex strategies
such as uniform sampling within an enclosing rectangle followed by exclusion of points falling
outside the region of interest. It is also particularly helpful in the context of strata as each
discrete location has an associated stratum identifier, which allows simple implementation of
proportional sampling strategies.

With random sampling, the use of this fine grid allows a specified number of sampling locations
to be sampled in a simple manner. With grid and transect sampling, particularly with random
selection of the x and y alignment, this is much more difficult to achieve. With grid sampling,
a simple solution is to set the grid spacing to \/A/n, where A is the area of the region and
n is the desired number of points. This does not guarantee exactly the specified number of
points but the deviation is likely to be very small. With transect sampling, the same formula
is used to determine the number of transects, which are then placed either systematically or
randomly. The number of points on each transect is then set proportionately to the length
of each transect within the spatial region of interest. The points are then placed either
systematically or randomly. These strategies have the additional advantage of adjusting the
numbers of grid lines or transects automatically, as the requested sample size increases.

The spatial sampling applications have embodied within them a particular data structure
from which data are subsequently sampled. This structure is defined by the components
shown in Table 1, together with their corresponding R expressions. These objects are loaded
automatically by rpanel, along with other information used to draw region boundaries and
other features. However, it is much more flexible to allow these parameters to be altered, so
that teachers can construct the detailed nature of the simulated data, to highlight particular
issues. This raises the interesting question of how a teacher can alter the required settings
without these being accessible to students. The first requirement is a means of passing
parameter values to rp.mururoa and rp.firth and this is available in a parameter argument
which takes a list object with named components. The second requirement is a means of hiding
this parameter setting from others. This can be achieved by starting a fresh R session and
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executing the following code which, in this case, simply sets the stratum effects of rp.firth
to zero.

spatial.samp <- function(arg) rp.firth(parameters = arg)

hideargument <- function(f, arg) function() f(arg)

spatial.sampling <- hideargument (spatial.samp,
list(strat.effect = rep(0, 4)))

rm(hideargument)

The workspace should then be saved in a file. Students can then load this workspace file and
launch the customized software simply by making the function call spatial.sampling().
The required information is lifted from the appropriate environment without being directly
accessible by students.

It is also possible to write the sampled data to a file for more extensive analysis by other
means. This is achieved simply by specifying a filename in the file argument of rp.mururoa
and rp.firth.
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