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Abstract

A primary issue in industrial hygiene is the estimation of a worker’s exposure to
chemical, physical and biological agents. Mathematical modeling is increasingly being
used as a method for assessing occupational exposures. However, predicting exposure in
real settings is constrained by lack of quantitative knowledge of exposure determinants.
Recently, Zhang, Banerjee, Yang, Lungu, and Ramachandran (2009) proposed Bayesian
hierarchical models for estimating parameters and exposure concentrations for the two-
zone differential equation models and for predicting concentrations in a zone near and far
away from the source of contamination.

Bayesian estimation, however, can often require substantial amounts of user-defined
code and tuning. In this paper, we introduce a statistical software package, B2Z, built
upon the R statistical computing platform that implements a Bayesian model for esti-
mating model parameters and exposure concentrations in two-zone models. We discuss
the algorithms behind our package and illustrate its use with simulated and real data
examples.

Keywords: Bayesian inference, two-zone models, Markov chain Monte Carlo, R package.

1. Introduction

The estimation of a worker’s exposure to chemical, physical and biological agents is one
of the key responsibilities of industrial hygienists (Ramachandran 2005). Statistical and
mathematical modeling allows hygienists to systematically evaluate retrospective exposure
when past monitoring data are poor or non-existent, to predict current and future exposure
in the absence of the working process or operation, and to estimate exposure with only a small
number of air samples with possibly high variability. Indeed, Nicas and Jayjock (2002) have
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argued that modeling may provide more precise estimates of exposure than monitoring with
only a few data points. With advances in computational methods and inexpensive software
implementation, formal modeling is set to become an indispensable tool in the industrial
hygienists’ armory.

Zhang et al. (2009) recently proposed Bayesian models for estimating model parameters and
exposure concentrations for a two-zone model. Their model predicts concentrations in a
zone near and far away from the source of contamination. Their model also estimates the
contamination rate, air ventilation rate through the system, and the air flow between near and
far fields. In their simulation study, they show that the predictions of near field concentration
concord with the true values, indicating that the two-zone model assumptions agree with the
reality to a large extent and the model is suitable for predicting the contaminant concentration.

It is also well recognized in the statistics literature that spatial hierarchical models offer addi-
tional richness by building dependencies in different stages. These models follow the Bayesian
paradigm of statistical inference (see, e.g., Carlin and Louis 2008; Gelman, Carlin, Stern, and
Rubin 2003), where analysis is based upon sampling from the posterior distributions of the
different model parameters. Hierarchical models are especially advantageous with data sets
having several lurking sources of variation and dependence, where they can estimate much
richer models with less stringent assumptions.

In applied research, providing software with a proposed model encourages other researchers to
explore the proposed model, detect potential issues and advance methodological research. An
exciting prospect in recent times that helps bring such sophisticated statistical methodology to
the users is the R project (R Development Core Team 2011). R is a language and environment
for statistical computing and graphics that offers several built-in functions for mathematical
computations. A convenient feature of R is the ability to create packages (libraries) that
implement the new model. In addition, for computationally-intensive tasks, C, C++ and
Fortran programs can be linked and invoked by R at run time.

The present paper introduces a R package called B2Z – available from the Comprehensive
R Archive Network at http://CRAN.R-project.org/package=B2Z – that implements the
Bayesian two-zone model proposed by Zhang et al. (2009). This package obtains random
samples from the posterior distribution of the parameters and exposure concentrations for
the Bayesian two-zone model. Currently, three different sampler algorithms are available
to do such task: the sampling importance resampling, the incremental mixture importance
sampling, and the Metropolis-within-Gibbs sampler. In addition, the package also offers ap-
proximate Bayesian estimation using the Bayesian central limit theorem. Section 2 recounts
the Bayesian two-zone modeling framework. Section 3 briefly describes the sampler algo-
rithms implemented in B2Z. Section 4 illustrates the use of B2Z with simulated and real data
examples. Finally, Section 5 concludes the paper with some discussion and thoughts.

2. Bayesian two-zone model

Below we describe the Bayesian approach proposed by Zhang et al. (2009) for estimating
model parameters and exposure concentrations in a two-zone model. The two-zone (also
called two-component) model (Nicas 1996; Cherrie and Gelman 1999; Nicas and Miller 1999)
assumes the presence of a contamination source in the workplace and that the region very
near and around the source is modeled as one well-mixed box, called the near field, while the
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Figure 1: Dynamics of the two-zone model.

rest of the room is another well-mixed box that completely encloses the near field box. This
box is called the far field and there is some amount of air exchange between the two boxes.

Customarily, it is assumed that each field is a well mixed box, i.e., two distinct places that are
in the same field have equal exposure concentration levels. In addition, it is assumed that the
contaminant’s total mass is emitted at rate G and that there is an airflow rate between the
near field and far fields equal to β. The final assumption considers that there are supply and
exhaust flow rates which are taken to be the same and equal to Q. Figure 1 is a schematic
depiction of the dynamics of the system, where VN and VF denote the volumes at the near
and far field, respectively. In this context, the occupational hygienist seeks to model the
exposure concentrations at the near and far fields based upon observations collected over a
period of time. Figure 1, along with the assumptions, yields the following system of differential
equations for the two-component model:

d

dt
C (θ1; t) = A (θ1) C (θ1; t) + g (θ1) (1)

where θ1 = {β,Q,G}, C (θ1; t) =

[
CN (θ1; t)
CF (θ1; t)

]
, A (θ1) =

[
−β/VN β/VN
β/VF −(β +Q)/VF

]
and

g (θ1) =

[
G/VN

0

]
. The functions CN (θ1; t) and CF (θ1; t) are the exposure concentrations

in the near and far fields at time t, respectively. Equation 1 is the matrix representation of a
linear system of ordinary differential equations. When A(θ1) is nonsingular, the solution for
(1) has the matrix representation

C(θ1; t) = exp (tA (θ1)) C(θ1; 0) + A−1(θ1) [exp (tA (θ1))− I2] g(θ1), (2)

where I2 is the 2 × 2 identity matrix and exp (tA (θ1)) is the matrix exponential (see, e.g.,
Laub 2005). Assuming that CN (θ1; 0) = CF (θ1; 0) = 0, (2) can be simplified to yield the
following unique solution for the far field and near field concentrations:

CN (θ1; t) = G
Q + G

β +G
(
βQ+λ2VN (β+Q)
βQVN (λ1−λ2)

)
eλ1t −G

(
βQ+λ1VN (β+Q)
βQVN (λ1−λ2)

)
eλ2t,

CF (θ1; t) = G
Q +G

(
λ1VN+β

β

)(
βQ+λ2VN (β+Q)
βQVN (λ1−λ2)

)
eλ1t −G

(
λ2VN+β

β

)(
βQ+λ1VN (β+Q)
βQVN (λ1−λ2)

)
eλ2t,

(3)
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where λ1 and λ2 are the eigenvalues of A (θ1). In fact, these are available in closed form as:

λ1 = 0.5

[
−
(
βVF+(β+Q)VN

VNVF

)
+

√(
βVF+(β+Q)VN

VNVF

)2
− 4

(
βQ
VNVF

)]
,

λ2 = 0.5

[
−
(
βVF+(β+Q)VN

VNVF

)
−
√(

βVF+(β+Q)VN
VNVF

)2
− 4

(
βQ
VNVF

)]
.

(4)

The solutions for the near and far field zones make intuitive sense. Firstly, notice from
(4) that both λ1 and λ2 are negative numbers. Thus, the exponential terms in (3) decay
asymptotically to zero at large values of t. Consequently, the steady state solution for the far
field is G/Q, which is the same as the steady state solution for a one-box model. Also, the
steady state solution for the near field is G/Q+G/β. Therefore, the model predicts relatively
higher exposure intensity near the emission source compared to the one-box well mixed room
model in steady state conditions. Secondly, if β is less than or equal to Q, then the steady
state concentration in the far field is less than twice the steady state concentration in the near
field. In general, Q increases relative to β as the room size increases. Thus, the model draws
a distinction between exposures of workers near the source and those farther away from the
source.

From (3), we also see that the solution of the system in (1) depends upon several parameters.
Customarily, VN and VF are considered fixed and known, while β, Q and G are regarded as
unknown parameters and will need to be estimated. Let Y(t) = (YN (t), YF (t))> be a 2 × 1
vector corresponding to the natural logarithm of the exposure concentration at time point t.
The observed value of Y(t) is a combination of two components:

1. Systematic component : C(θ1; t) = (CN (θ1; t), CF (θ1; t))
>, the solution of the system of

differential equations in (1) at time t;

2. Measurement error process component : ε(t) = (εN (t), εF (t))>, where εN (t) and εF (t) are
the measurement error processes corresponding to the near and far field, respectively.

This leads to the following measurement model:

Y(t) = log C(θ1; t) + ε(t), (5)

where log C(θ1; t) = (logCN (θ1; t), logCF (θ1; t))
>. Following Zhang et al. (2009), we assume

Gaussian measurement error and, more specifically, the following two possibilities:

1. Independent model : ε(t)
iid∼ N2

(
0,Σ =

[
τN 0
0 τF

])
.

2. Dependent model : ε(t)
iid∼ N2

(
0,Σ =

[
τN τNF

τNF τF

])
.

In the independent model, the measurement errors at the near and far field are assumed to
be uncorrelated, while the dependent model relaxes this assumption. For both models, it is
assumed that the measurement errors across time are independent and identically distributed.
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Let Y =
(
Y(t1)

>, . . . ,Y(tn)>
)>

denote the 2n×1 vector of observed log-concentrations from
the near and far fields at n time points. Letting θ = {θ1,Σ} be the collection of unknown
parameters, (5) and the assumptions made on the measurement errors produce the likelihood

p(Y |θ) ∝ (det(Σ))−
n
2

n∏
i=1

exp
{
− 1

2
(Y(ti)− log C(θ1; ti))

>Σ−1(Y(ti)− log C(θ1; ti))
}
,

(6)

where Σ is the covariance matrix of the measurement error process. We assume that the
components β, Q, G and Σ are independent, so that the prior distribution for θ is p(θ) =
p(β)p(Q)p(G)p(Σ). For the independent model, we assume that p(Σ) = p(τN )p(τF ) with
τN ∼ IG(aN , bN ) and τF ∼ IG(aF , bF ), where aN and aF are shape parameters and bN
and bF are scale parameters for the inverse Gamma distribution. For the dependent model,
Σ ∼ IW (S, v) where S is a scale matrix and v is the degrees of freedom for the inverse Wishart
distribution. The parameterizations of the inverse gamma and inverse Wishart here are the
same as in Gelman et al. (2003). The parameters β, Q and G can have any prior distribution
with positive support, i.e., they do not assign positive probabilities to any negative value.
Based upon the above assumptions, the posterior distribution of θ can be computed using
Bayes rule as proportional to p(θ)×p(Y |θ). However, the posterior distribution may not have
a closed form precluding analytical inference. Our package B2Z has three different sampler
algorithms available to obtain samples from the posterior distribution of θ. The algorithms
are discussed in the next section.

3. Bayesian estimation

In this section we briefly discuss the three sampling algorithms and the approximation using
Bayesian central limit theorem that are available in our package B2Z. We also present some
algorithmic implementation details.

3.1. Sampling importance resampling

The sampling importance resampling (SIR; Dijk, Hop, and Louter 1987; Rubin 1987, 1988) is
a fairly straightforward algorithm used to obtain random samples from a probability distri-
bution, here the posterior distribution p(θ |Y). Several variants of this algorithm exist (see,
e.g., Robert and Casella 2004), but the basic idea is to sample θ from an easily tractable
distribution (e.g., the prior distribution) so that the SIR tends to choose θi’s corresponding
to higher values of the likelihood. This sampler is described in the following algorithm:

1. Obtain m i.i.d samples from the prior distribution p(θ). Denote each sample by θi,
i = 1, . . . ,m ;

2. For each sample θi, evaluate the likelihood li = p(Y |θ = θi);

3. Compute the importance weights as:

wi =
li
m∑
k=1

lk

;
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4. From the m samples obtained at the first step, select m samples (with replacement)
using the weights wi’s.

In Step (3), the li’s can be very close to zero so that a large proportion of the importance
weights are close to zero as well. To assuage this issue, we implement in our package the
following computational trick. We replace the computation of the importance weights in
Step (3) for:

wi =
exp(l̃i)
m∑
k=1

exp(l̃k)

;

where l̃i = log (p(Y |θ = θi)) + C, and C is a large positive constant. While this may not
fully resolve the issue of small weights, it does considerably increase the number of non-zero
weights. Nevertheless, for the SIR to sample well from the posterior distribution, m must
be large (thousands or even millions) which can be computationally expensive. In fact, in
our examples, we often discovered the SIR to be returning very few distinct values, even
with an m of size 50,000. This arises due to an inadequate exploration of the parameter
domain. Also, it is important to the SIR that the prior distribution agrees with the likelihood.
Otherwise very few distinct sampled points from the tails of the prior distribution have sizeable
importance weights causing the final sample to have few unique points. The incremental
mixture importance sampling, described next, attempts to circumvent these problems.

3.2. Incremental mixture importance sampling

In contrast to the SIR, at each iteration the incremental mixture importance sampling (Steele,
Raftery, and Emond 2006; Raftery and Bao 2010, IMIS;) adds samples from a multivariate
normal distribution, centered at the point with the highest importance weight, to the current
importance sampling distribution. This covers sections of the posterior distribution with
high importance weights that are normally underrepresented by the importance sampling
distribution. The IMIS algorithm is presented below:

1. Initial stage:

(a) Draw N0 i.i.d. samples θ1, . . . ,θN0 from the prior distribution of θ;

(b) For each θi, evaluate the likelihood li = p(Y |θ = θi) and compute its importance
weight as:

w
(0)
i =

li∑N0
k=1 lk

;

(c) N1 = N0.

2. Importance sampling stage: k = 1. While some stopping criterion (see below) is not
satisfied do:

(a) Denote by µ(k) the input with highest importance weight among the current im-
portance sample up to iteration k;

(b) Find the B inputs with smallest Mahalanobis distance to µ(k). The distances are
calculated with respect to the prior covariance matrix of θ, denoted by Vθ. More
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precisely, the Mahalanobis distance of an input x to µ(k) with respect Vθ is given
by:

D =
√(

x− µ(k)
)>

V−1
θ

(
x− µ(k)

)
(c) Denote by u1, . . . , uB the importance weights of the B inputs selected in the pre-

vious step;

(d) Denote by Σ̃
(k)

the estimated weighted covariance matrix using the selected B
inputs. The weight of the input j is given by:

vj =
(uj + 1/Nk)∑B
k=1(uj + 1/Nk)

∀ j = {1, . . . , B};

(e) Draw B samples from a Nd

(
µ(k), Σ̃

(k)
)

, where d is the dimension of θ;

(f) Compute the likelihood for each new input from the previous step, and combine
the new inputs with the previous ones;

(g) Update: Nk = N0 +Bk;

(h) Compute the mixture sampling distribution q(k) at iteration k, given by:

q(k)(θi) =
N0

Nk
p(θi) +

B

Nk

k∑
s=1

Nd

(
θi |µ(s), Σ̃

(s)
)
,∀ i = {1, 2, . . . , Nk}

where p(·) is the prior distribution of θ and Nd(· |m,S) denotes the multivariate
normal density with vector mean m and covariance matrix S;

(i) Calculate the importance weights using the following formula:

w
(k)
i = c× li ×

p(θi)

q(k)(θi)
∀ i = {1, 2, . . . , Nk}

where c is chosen so that the weights sum to 1;

(j) k = k + 1.

3. Resample stage: Once the stopping criterion (see below) at the importance sampling

stage is satisfied, use the importance weights w
(K)
1 , . . . , w

(K)
NK

to draw, with replacement,
M inputs from the importance sample θ1, . . . ,θNK

, where K is the total number of
iterations at the importance sampling stage.

Stopping criterion: Raftery and Bao (2010) suggest ending the importance sampling step
when the expected fraction of unique points in the resample is at least 0.632. B2Z follows
this suggestion. However, the user can provide a maximum number of iterations at the
importance sampling stage in case the stopping criterion takes too long to be met. Raftery
and Bao (2010) also suggest that a good choice for the input parameters is: N0 = 1000d,
B = 100d and M = 3000. Recall that if the independent model is considered d = 5, otherwise
d = 6.

3.3. Metropolis-within-Gibbs sampling

Gibbs sampling (Geman and Geman 1984; Gelfand and Smith 1990) is a popular Markov
chain Monte Carlo (MCMC) algorithm that samples from the full conditional distributions
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for each parameter. This is attractive in our context since the full conditional distributions
for τN and τF in the independent model and for Σ in the dependent model are respectively
given by:

1. Independent model :

τN |θ1,Y ∼ IG

aN +
n

2
, bN +

1

2

n∑
j=1

(YN (tj)− log(CN (θ1; tj)))
2

 ,

τF |θ1,Y ∼ IG

aF +
n

2
, bF +

1

2

n∑
j=1

(YF (tj)− log(CF (θ1; tj)))
2

 .

2. Dependent model : Σ |θ1,Y ∼ IW (S1, ν1), where

(a) S1 = S +
∑n

j=1 (Y(tj)− log(C(θ1; tj))) (Y(tj)− log(C(θ1; tj)))
>;

(b) ν1 = ν + n.

However, the full conditional distribution of θ1 does not have a closed form and we sample
from its full conditional distribution using the Metropolis algorithm (see Metropolis algorithm
section below). This is called the Gibbs sampler with Metropolis step (or Metropolis-within-
Gibbs). The algorithm is as follows:

Provide the initial value θ
(0)
1 ;

for k in 1 : N do
Draw a sample from Σ |θ(k−1)

1 ,Y, and denote it as Σ(k)

Using Metropolis sampler, draw a sample from θ1 |Σ(k),Y and denote by θ(k).
end for

Metropolis algorithm

Metropolis (Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller 1953; Hastings 1970) is a
well known MCMC sampling algorithm. Here, at each iteration we sample a candidate from a
proposal distribution and then decide whether the candidate should be accepted or not. This
decision is based on the ratio of the posterior distribution evaluated at the candidate and
the previously accepted candidate. Since this is a ratio one needs to evaluate the posterior
distribution only up to a proportionality constant. Several variants of the Metropolis sampler
exist (see, e.g., Robert and Casella 2004). The one that is currently implemented in B2Z is
the random-walk Metropolis algorithm with normal proposals and is described as follows:

Provide the initial value θ
(0)
1 ;

for k in 1 : N do
Generate a candidate θ

(∗)
1 from a Nd

(
θ
(k−1)
1 ,V

)
r =

p

(
θ(∗)

1

∣∣∣Y)
p

(
θ(k−1)

1

∣∣∣Y)
if r ≥ 1 then

θ
(k)
1 ← θ

(∗)
1

else
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Generate a number u from a U(0, 1)
if u < r then
θ
(k)
1 ← θ

(∗)
1

else
θ
(k)
1 ← θ

(k−1)
1

end if
end if

end for

The input parameters for the Gibbs sampler with the Metropolis step algorithm are the

number of updates N , the vector initial value θ
(0)
1 , and a covariance matrix V for the proposal

distribution. An approach that usually works well in practice estimates the posterior mode
and uses it as an initial value. For V, we use the negative inverse of the hessian matrix of the
log posterior distribution evaluated at the posterior mode. This approach is implemented in
B2Z as the default for setting initial values and specifying the proposal covariance matrix V.

3.4. Bayesian central limit theorem

Differently from the previous sections where we discussed about samplers algorithms, in this
section we briefly discuss the Bayesian central limit theorem (BCLT). This theorem states that
under some assumptions we can use a Gaussian approximation to the posterior distribution

p(θ |Y) =
f(θ)∫
f(θ)dθ

, where f(θ) = p(Y |θ)p(θ).

Consider a Taylor expansion of ln(f(θ)) centered on the posterior mode θ0. At θ0 the gradient
∇f(θ) will vanish. Thus the expansion around θ0 is given by

ln(f(θ)) ' ln(f(θ0))−
1

2
(θ − θ0)

>H(θ − θ0) , (7)

where H is the negative Hessian matrix of the log posterior distribution evaluated at the
posterior mode. Exponentiating both sides in Equation 7, we obtain

f(θ) ' f(θ0) exp

{
−1

2
(θ − θ0)

>H(θ − θ0)

}
. (8)

From (8), f(θ) is seen to be approximately equal to a multivariate normal density with
mean θ0 and covariance matrix H−1. Since the posterior density, p(θ |Y), is proportional
to f(θ), it too is approximately equal to the multivariate normal density. We note this
approximation assumes that the prior distribution of θ and the likelihood must be positive
and twice differentiable near the posterior mode. For further details, see Bishop (2006).

To compute estimates of the parameters using the BCLT, we use the R built-in function called
nlminb. This function implements constrained and unconstrained optimizations using PORT
routines (Gay 1990), allowing us to estimate the posterior mode numerically. Subsequently,
we use the R function hessian, from the package numDeriv (Gilbert 2011) to calculate a
numerical approximation to the Hessian matrix of the log posterior function at the estimated
posterior mode.

3.5. Algorithmic implementation details

B2Z is an R package that performs sampling-based Bayesian inference for the two-zone model
described in Section 4.2. Currently, three sampling algorithms are available: (a) MCMC,
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(b) IMIS and (c) SIR. In addition, the package also offers approximate Bayesian estimation
using the (d) BCLT. The Bayesian two-zone model can be fitted using the function B2ZM,
where the desired sampling algorithm is specified as an argument to this function. Another
option is to use one of the following functions directly: B2ZM_BCLT, B2ZM_MCMC, B2ZM_IMIS and
B2ZM_SIR. In either one of the cases, the output is a valid input for the functions summary

and plot. For instance, suppose fit is an output from B2ZM. Then, the line command
summary(fit) returns the following:

� Some posterior summaries for each of the parameters θ:

– Posterior median, mean, standard deviation;

– 100(1− α)% credibile intervals, where α is specified by the user;

– Posterior covariance matrix.

� Posterior model comparisons using the deviance information criterion (DIC); see Spiegel-
halter, Best, Carlin, and van der Linde (2002).

� Sample quality measurements that depend on the sampler algorithm. Specifically,

– SIR: Effective sample size (ESS), proportion of unique points in the sample, max-
imum importance weight;

– IMIS: ESS, maximum importance weight, variance of the re-scaled importance
weights, entropy of importance weights relative to uniformity, expected fraction of
unique points and expected number of unique points after re-sampling;

– MCMC: effective sample size and MCMC acceptance rate.

The package coda (Plummer, Best, Cowles, and Vines 2006) offers several other diagnostics
measures. We show in Section 4.1 how to integrate the packages B2Z and coda. For details
on some of the above quantities (e.g., DIC and ESS) see Carlin and Louis (2008).

The line command plot(fit) produces some graphical summaries of the estimated model.
In particular, this line command returns:

� 100(1 − α)% posterior predictive interval along with the posterior median of the log
concentrations at the near field over the observed period of time, where α is specified
by the user;

� 100(1 − α)% posterior predictive interval and the posterior median of the log concen-
trations at the far field over the observed period of time, where α is specified by the
user;

� Empirical posterior distributions for each parameter in the model;

� If Metropolis-within-Gibbs is selected, autocorrelation function (ACF) and trace history
of the sampling of each parameter is also plotted.

Due to the domain of the parameters in the model, we actually implement the algorithms
cited previously (except SIR) on a transformation of θ. After sampling from the posterior
distribution of the transformed variables, we back transform to obtain a sample from the
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posterior distribution of θ. In particular, consider the dependent model and denote X1 = β,
X2 = Q, X3 = G, X4 = τN , X5 = τF and X6 = τNF . Suppose the priors for β, Q and G have
supports (a1, b1), (a2, b2) and (a3, b3), respectively, where 0 ≤ ai < bi <∞ for all i = 1, . . . , 3.
Consider the following transformations given by hi(·) for i = 1, 2, . . . , 6:

Ui = hi(Xi) = log

(
Xi − ai
bi −Xi

)
∀ i = {1, 2, 3},

Ui = hi(Xi) = log (Xi) ∀ i = {4, 5},

U6 = h6(X4, X5, X6) = log

(
X6 −

√
X4X5√

X4X5 −X6

)
.

Therefore, the domain of U = (U1, U2, . . . , U6)
> is in R6. Notice that if the independent

model is considered, the variable U6 is not needed in U, and therefore its domain is R5. Thus,
the density of U is given by:

p(U = u |Y) = p(θ = h−1(u) |Y) · |J|, (9)

where h−1(u) = (h−11 (u1), h
−1
2 (u2), . . . , h

−1
6 (u6))

> and |J| is the jacobian of the transformation
with J being the 6 × 6 matrix whose (i, j)-th element is Jij = ∂Xi

∂Uj
. Regardless of the model

choice, the matrix J is a lower triangular matrix, therefore |J| is the product of the diagonal
elements, which is

|J| =
3∏
i=1

(bi − ai)eUi

(1 + eUi)2
×

5∏
i=4

eUi , (independent model)

|J| =
3∏
i=1

(bi − ai)eUi

(1 + eUi)2
×

5∏
i=4

eUi × 2e
(U4+U5)

2
+U6

(1 + eU6)2
. (dependent model)

(10)

The transformation hi(·) makes the support of the Ui the real line, which improves the al-
gorithmic efficiency. Also, when we back transform, the sampled values for β, Q and G are
within their respective domain, and the covariance matrices composed by the sampled val-
ues for τN , τF and τNF are positive definite, since h4 and h5 guarantee that τN and τF are
positive, and h6 ensures that the covariance inequality is held, that is, τ2NF ≤ τNτF .

When any of the domains of β, Q or G is (0,∞), the corresponding Ui is the natural loga-
rithm of Xi and the computation of the jacobian is still very similar to the one presented in
Equation 10.

4. Illustrating B2Z

In this section we illustrate B2Z using two synthetic datasets and a real dataset. The simu-
lated exposure concentrations at the near and far fields, over n time points, were generated
according to the following algorithm:

1. Choose the values of the parameters θ1 and Σ as desired. Recall that Σ is a diagonal
matrix in the independent model, or a matrix with non-null entries in the off diagonal
for the dependent model. In any case, Σ must be a positive definite matrix.
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2. For (i in 1 : n)

(a) Using the fixed parameters in Step 1, find the solution of the system of differential
equations in (1). Denote this solution by

C (θ1; ti) = (CN (θ1; ti) , CF (θ1; ti))
>.

(b) Generate the measurement error component ε(ti) = (εN (ti), εF (ti))
> from aN2(0,Σ).

(c) The log exposure concentrations in the near and far fields at time ti are

Y(ti) = log C (θ1; ti) + ε(ti).

(d) The exposure concentrations in the near and far fields at time ti are exp(Y(ti)).

The dataset in Section 4.1 was generated considering dependent measurement errors, i.e.,
τNF 6= 0. Section 4.2 presents an application of the Bayesian two-zone model to a simulated
dataset where the measurement errors are independent, while Section 4.3 applies the model
to a real exposure dataset. We started each sampler with a seed set to 2011.

4.1. Simulated data 1

Consider a simulated dataset that contains 100 exposure concentrations equally-spaced be-
tween times 0 and 4 minutes. Following the study simulation in Zhang et al. (2009), the
parameters values used in the simulation process are: β = 5 m3/min, Q = 13.8 m3/min,

G = 351.54 mg/min and Σ =
[

1 0.5
0.5 0.64

]
. The volumes at the near and far fields in this

simulated data are, respectively, VN = π × 10−3m3 and VF = 3.8m3.

To fit the Bayesian two-zone model, we need to specify the prior distributions for the unknown
parameters. We assume that β ∼ Unif (0, 10), Q ∼ Unif (11, 17) and G ∼ Unif (281, 482). The

dependent model is used in this section. Therefore, we assume that Σ ∼ IW
([

10 0
0 10

]
, 4
)

.

The example code below illustrates how to specify the model information and the sampling
algorithm desired using B2Z.

R> set.seed(2011)

R> fit.depend <- B2ZM(data = ex1, priorBeta = "unif(0,10)",

+ indep.model = FALSE, priorQ = "unif(11,17)", priorG = "unif(281,482)",

+ S = diag(10,2), v = 4, VN = pi * 10^-3, VF = 3.8, sampler = "MCMC",

+ mcmc.control = list(NUpd = 10000, burnin = 1000, lag = 1, m = 5000))

Sampler Input parameters

MCMC N = 10000, burnin = 1000, thin = 1
IMIS N0 = 6000, B = 600, M = 3000
SIR m = 50000

Table 1: Input parameters for each posterior sampling algorithm.
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Parameter Real value Sampler 2.5% Median 97.5% Mean SD

β 5.000

SIR 3.613 7.874 7.874 6.543 1.677

IMIS 3.728 5.091 6.859 5.158 0.801

MCMC 3.736 5.141 6.970 5.201 0.819

BCLT 3.562 4.985 6.351 4.963 0.716

Q 13.800

SIR 13.356 14.494 14.562 14.326 0.477

IMIS 11.403 14.570 16.872 14.458 1.573

MCMC 11.375 14.705 16.897 14.552 1.577

BCLT 11.736 14.251 16.478 14.212 1.325

G 351.540

SIR 310.223 414.590 469.354 393.996 46.670

IMIS 296.300 375.007 463.859 376.749 45.239

MCMC 294.689 379.521 468.779 379.639 45.466

BCLT 304.889 369.093 444.387 370.910 36.885

τN 1.000

SIR 0.957 0.957 1.735 1.129 0.297

IMIS 0.984 1.283 1.738 1.302 0.192

MCMC 0.993 1.289 1.723 1.308 0.188

BCLT 0.963 1.263 1.662 1.275 0.179

τF 0.640

SIR 0.683 0.683 0.959 0.729 0.072

IMIS 0.577 0.747 0.989 0.756 0.105

MCMC 0.572 0.742 0.989 0.752 0.108

BCLT 0.553 0.723 0.944 0.731 0.102

τNF 0.500

SIR 0.320 0.376 0.617 0.412 0.103

IMIS 0.375 0.565 0.826 0.576 0.117

MCMC 0.375 0.567 0.828 0.576 0.116

BCLT 0.359 0.561 0.792 0.565 0.111

Table 2: Posterior summaries – Dependent model.

The argument data is a 3-column matrix such that the columns are time, exposure concen-
trations at the near field and at the far field, respectively. The argument mcmc.control is a
list that contains the input parameters for the Metropolis-within-Gibbs algorithm. Similarly,
there are control input arguments to BCLT, IMIS and SIR as well, which are bclt.control,
imis.control and sir.control, respectively. More details about the arguments in B2ZM can
be found in R using the line command help(B2ZM).

As discussed in Section 3, the sampling algorithms require some input parameters. Table 1
presents the input parameters provided for each sampling algorithm in this example. The
BCLT implemented in the B2Z package requires two input parameters: m and sample_size.
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Figure 2: 95% posterior predictive intervals and posterior medians of the log exposure con-
centrations at the near and far fields over the observed period of time.

In particular, to estimate the posterior mode (needed in the BCLT), the function nlminb

is used, which depends on the starting parameter values. The input m is the number of
sampling values from the prior distributions of β, Q and G. Therefore, the vector among the
m sampled with largest likelihood value is used as starting parameter values. The other input
parameter sample_size is the size of the sample from the approximate posterior distribution
of the parameters in the model according to the BCLT. We use m = 8000 and sample_size

= 2000.

Table 2 presents several posterior summaries for each parameter in the dependent model
obtained by using the function B2ZM within the package B2Z. The IMIS and Metropolis-within-
Gibbs algorithms provide similar estimates for the parameters in the model. In addition, the
posterior means obtained by these algorithms fairly estimate the parameters in the model,
except for β and G that were estimated using the SIR algorithm. The 95% credible intervals
cover the true values of the parameters, except for τF when using the SIR algorithm.

In this example, the SIR algorithm samples poorly from the posterior distribution. In fact, the
proportion of unique points in the sample is very low (0.062%), which explains the strange
behavior in the standard deviation estimates. On the other hand, IMIS and Metropolis-
within-Gibbs algorithms perform better. In particular, the IMIS has an expected fraction of
unique points equaling 58.7% and the ESS for the Metropolis-within-Gibbs the acceptance
rate is 51.27%.

The following figures are produced using the line command plot(fit.depend), where the
output fit.depend is an object from the Bayesian two-zone model fitted using the Metropolis-
within-Gibbs algorithm. The analogous figures for the SIR and IMIS algorithms, and BCLT
are not shown in this paper. However, they can be produced by running the example codes
in the tutorial of B2Z.

Figure 2 shows the 95% posterior predictive intervals and the posterior medians of the log ex-
posure concentrations at the near and far fields. These graphs help environmental researchers
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Figure 3: Empirical posterior distributions of the parameters in the dependent model.

know more about the range of the log exposure concentrations over the observed period of time
in both fields. The solid lines in Figure 2 represent the observed log exposure concentrations.

Figure 3 shows the empirical posterior distributions of the parameters in the dependent model.
Each empirical posterior distribution contains two curves:

� normal density centered at the estimated posterior mean and scaled by the estimated
posterior standard deviation of the parameter;

� Gaussian kernel density curve.

Figure 4 shows the Metropolis history plot and ACF for the parameters in the model.

The Bayesian two-zone model fitting was done on a PC Intel Core Duo CPU P8600 with
2.40GHz and 4.00GB of Memory RAM. The computational time (in seconds) obtained for
the SIR, IMIS, Metropolis-within-Gibbs and BCLT are 59.36, 133.30, 67.40, and 18.64, re-
spectively. In this example, the computational time for the Metropolis-within-Gibbs also
includes the time spent estimating the starting values and the covariance matrix needed for
the proposal distribution.

B2Z can also interact with the package coda. For instance, Gelman and Rubin’s convergence
diagnostic can be computed very easily using the function gelman.diag provided by the
package coda. To compute that measure we need to fit the model more than one time.
In particular, we fit the model three times using Metropolis sampler and denote them by
fit.depend1, fit.depend2 and fit.depend3. The following code shows how to compute
the Gelman and Rubin’s convergence diagnostic in this example.

R> fit1 <- do.call(cbind, fit.depend1[c("Beta", "Q", "G")])

R> fit2 <- do.call(cbind, fit.depend2[c("Beta", "Q", "G")])

R> fit3 <- do.call(cbind, fit.depend3[c("Beta", "Q", "G")])
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Figure 4: MCMC trace and ACF plots for β, Q and G.

R> x <- mcmc.list(list(mcmc(fit1), mcmc(fit2), mcmc(fit3)))

R> gelman.diag(x)

Potential scale reduction factors:

Point est. 97.5% quantile

Beta 1.01 1.02

Q 1.00 1.01

G 1.00 1.01
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Multivariate psrf

1.01

Since the values in the output above are close to 1, we conclude that there is no evidence
that the chain does not converge. For further information regarding Gelman and Rubin’s
convergence diagnostic see Gelman and Rubin (1992). A multivariate version of Gelman and
Rubin’s diagnostic was proposed by Brooks and Gelman (1998).

4.2. Simulated data 2

Here we consider another simulated dataset with most parameters that generated exposure
concentrations being the same as those in Section 4.1. The only difference is that now the
measurement errors at the near and far field are considered independent. In particular, we set

Σ =
[

1 0
0 0.64

]
. As in the previous section, we assume β ∼ Unif (0, 10), Q ∼ Unif (11, 17) and

G ∼ Unif (281, 482). However, now we fit the independent model and therefore we assume
that τN ∼ IG(5, 4) and τF ∼ IG(5, 7).

The example code below shows how to specify the modeling information and the sampling
algorithm desired using B2Z.

R> set.seed(2011)

R> fit.indep <- B2ZM(data = ex2, indep.model = TRUE,

+ priorBeta = "unif(0,10)", priorQ = "unif(11,17)",

+ priorG = "unif(281,482)", tauN.sh = 5, tauN.sc = 4, tauF.sh = 5,

+ tauF.sc = 7, VN = pi * 10^-3, VF = 3.8, sampler = "IMIS",

+ imis.control = list(N0 = 5000, B = 500, M = 3000, it.max = 16))

The input parameters used by the algorithms are the same as the ones presented in Table 1,
except for the IMIS algorithm, which uses N0 = 5000 and B = 500 in this section.

Table 3 presents posterior summaries for each parameter in the independent model. The pa-
rameters estimate using IMIS and Metropolis-within-Gibbs sampler are similar. Considering
the parameters β,G and τF , the BCLT posterior means were closer to the true values than
using the other algorithms.

The three samplers and the BCLT have very similar posterior summaries. All the 95% cred-
ibility intervals cover the true values of the parameters. Compared to the previous example,
the performance of SIR is slightly better; the proportion of unique sampled points is 2.5%.
The IMIS and Metropolis-within-Gibbs algorithms sample fairly well from the posterior distri-
bution. As a matter of fact, the fraction of unique points for IMIS is 0.654 and the acceptance
rate for the Metropolis-within-Gibbs is 49.23%.

The computational times (in seconds) for SIR, IMIS, Metropolis-within-Gibbs and BCLT
were 29.50, 83.50, 41.01 and 8.05 respectively. Again, the computational time for Metropolis-
within-Gibbs includes the time to estimate the covariance matrix of the proposal distribution.
In the next section we illustrate an application of B2Z to a real experimental data set.
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Parameter Real value Sampler 2.5% Median 97.5% Mean SD

β 5.000

SIR 3.074 4.216 5.956 4.300 0.767

IMIS 3.097 4.187 5.907 4.276 0.736

MCMC 3.120 4.196 5.995 4.300 0.746

BCLT 2.971 4.168 5.520 4.200 0.663

Q 13.800

SIR 11.772 14.828 16.913 14.818 1.382

IMIS 11.954 14.988 16.919 14.835 1.406

MCMC 12.030 15.058 16.904 14.900 1.370

BCLT 12.176 14.915 16.651 14.763 1.252

G 351.540

SIR 281.791 331.052 408.878 332.522 36.291

IMIS 284.285 328.712 410.566 333.464 34.857

MCMC 285.367 329.867 408.828 334.313 33.837

BCLT 294.470 333.618 412.503 339.556 32.246

τN 1.000

SIR 0.704 0.926 1.182 0.933 0.125

IMIS 0.700 0.910 1.189 0.920 0.127

MCMC 0.702 0.907 1.192 0.919 0.127

BCLT 0.695 0.895 1.169 0.904 0.123

τF 0.640

SIR 0.570 0.706 0.962 0.733 0.107

IMIS 0.569 0.728 0.953 0.735 0.098

MCMC 0.568 0.731 0.961 0.740 0.102

BCLT 0.557 0.721 0.945 0.729 0.098

Table 3: Posterior summaries – Independent model.

4.3. Experimental two-zone study

In this section we fit the Bayesian two-zone model to the data set used in the experimental
two-zone study in Zhang et al. (2009). Here, exposure concentrations of Toluene over a period
of time were observed. These measurements were made in four directions (east, west, north
and south) on three horizontal parallel planes at 5 different distances (10cm, 15cm, 20cm,
30cm, and 40cm) from the contamination source, where the source was located on the middle
plane and the exposure concentrations were measured every 5 seconds for at least 15 minutes
in each location. Although combinations of factors such as presence of a worker’s body, body
movement and heat were also included in the experimental study, here we consider only the
plain experimental data, i.e, the measurements that do not include any of those factors. A
very detailed explanation of this experiment can be found in Zhang et al. (2009).

To illustrate B2Z using this real data set, we use the observed exposure concentrations on the
middle plane and north direction. The measurements at 10 cm and 15 cm from the contam-
ination source represent the exposure concentrations at the near and far fields, respectively.
The volumes of the near and far fields are π × 10−3m3 and 3.8m3, respectively. There are
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140 observed time points equally spaced between 5 and 700 seconds.

We start with the dependent model. We let β ∼ Unif (0, 10), Q ∼ Unif (11, 17) and G ∼
Unif (281, 482). We also assume Σ ∼ IW

([
10 0
0 10

]
, 4
)

. To fit this model using the IMIS

sampler, we use the following line command:

R> fit.imis <- B2ZM(data = real.data, priorBeta = "unif(0,10)",

+ indep.model = FALSE, priorQ ="unif(11,17)", priorG = "unif(281,482)",

+ S = diag(10,2), v = 4, VN = pi * 10^-3, VF = 3.8, sampler ="IMIS",

+ imis.control = list( N0 = 6000, B = 600, M = 3000, it.max = 16))

Now we fit the Bayesian two-zone model using the Metropolis sampler. However, unlike the
previous two sections, we provide the covariance matrix in the proposal distribution for the
Metropolis-within-Gibbs algorithm. To do this, we use the output imis.control to form a
guess for such a matrix. The following line commands show how this can be done:

R> initial <- summary(fit.imis)$summary[, "Mean"][1:3]

R> prop.matrix <- summary(fit.imis)$PostCovMat[1:3, 1:3]

Therefore, defining the covariance matrix for the proposal distribution in the function B2ZM

is very straightforward, as given in the code below:

R> fit.mcmc <- B2ZM(data = real.data, priorBeta = "unif(0,10)",

+ indep.model = FALSE, priorQ = "unif(11,17)", priorG = "unif(281,482)",

+ S = diag(10,2), v = 4, VN = pi * 10^-3, VF = 3.8, sampler = "MCMC",

+ mcmc.control = list(initial = initial, Sigma.Cand = prop.matrix,

+ NUpd = 10000, burnin = 1000, lag = 1))

Parameter Sampler 2.5% Median 97.5% Mean SD

β
IMIS 8.131 9.320 9.840 9.238 0.467

MCMC 8.090 9.287 9.939 9.228 0.498

Q
IMIS 11.002 11.043 11.200 11.058 0.056

MCMC 11.001 11.039 11.221 11.058 0.061

G
IMIS 473.059 480.086 481.873 479.307 2.592

MCMC 473.583 480.276 481.905 479.554 2.396

τN
IMIS 0.065 0.080 0.102 0.081 0.010

MCMC 0.065 0.081 0.104 0.082 0.010

τF
IMIS 0.269 0.340 0.446 0.343 0.045

MCMC 0.270 0.339 0.435 0.342 0.042

τNF
IMIS −0.045 0.000 0.036 −0.001 0.021

MCMC −0.047 0.000 0.037 −0.001 0.021

Table 4: Posterior summaries – Experimental data set – Dependent model.
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Figure 5: 95% posterior predictive intervals and posterior medians of the log exposure con-
centrations at the near and far fields over the observed period of time – Real experimental
data set.

Parameter 2.5% Median 97.5% Mean SD

β 8.634 9.358 9.865 9.333 0.325

Q 11.004 11.038 11.191 11.052 0.047

G 473.647 480.118 481.685 479.481 2.192

τN 0.051 0.063 0.080 0.064 0.008

τF 0.283 0.348 0.440 0.352 0.042

Table 5: Posterior summaries – Experimental data set – Independent model.

The estimates for the parameters using IMIS and Metropolis-within-Gibbs are presented in
Table 4.

Figure 5 shows the 95% posterior predictive intervals and the posterior medians of the log
exposure concentrations at the near and far fields using the Metropolis-within-Gibbs sampler.
We discover that the posterior medians do not predict the log exposure concentrations very
well, especially for the far field.

Table 4 reveals that the Metropolis and IMIS algorithms yield similar estimates. The DICs
found using IMIS and Metropolis algorithms are 140.224 and 140.816, respectively. We also
fit the independent model, for which we assume τN ∼ IG(5, 4) and τF ∼ IG(5, 7). Since
in the previous examples we noticed that the algorithms in general have similar estimates,
we only fit the independent Bayesian two-zone model using the IMIS algorithm. Posterior
summaries of the parameters in the independent model are presented in Table 5.

The DIC for the fitted independent model is 115.392, which indicates that the independent
model fits the data better than the dependent model. However, the estimates in Table 5 are
not substantially different from those in Table 4.
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5. Discussion

In this paper we have introduced our user-friendly R package B2Z. We have described the
underlying models and a suite of algorithms to perform Bayesian inference on the two-zone
models in occupational hygiene (e.g., Zhang et al. 2009). In particular, we have demonstrated
the main function called B2ZM, where the output from this function is a valid input for the
functions summary and plot. Currently B2Z implements three different samplers: SIR, IMIS,
and the MCMC. In addition, the package also offers approximate Bayesian inference using
the Bayesian central limit theorem. Our illustrative examples show that IMIS, MCMC and
BCLT obtain similar posterior summaries. The SIR’s performance was somewhat inferior,
but it is easier to implement and can be useful as an initial tool for exploring approximate
posteriors. Our examples also show that the Bayesian two-zone model can be fitted within a
reasonable time (ranging from 8 to 140 seconds). In particular, IMIS is the slowest algorithm
while BCLT has the fastest computational time. In ongoing work we focus upon including
new features: adaptive MCMC samplers, maximum likelihood estimators, and a function
called predict where users can define time intervals over which concentration predictions are
sought. The B2Z 1.4 is already available for download from the Comprehensive R Archive
Network at http://CRAN.R-project.org/package=B2Z.
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