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Abstract

In the paper we present an R package MNM dedicated to multivariate data analysis
based on the L1 norm. The analysis proceeds very much as does a traditional multivariate
analysis. The regular L2 norm is just replaced by different L1 norms, observation vectors
are replaced by their (standardized and centered) spatial signs, spatial ranks, and spatial
signed-ranks, and so on. The procedures are fairly efficient and robust, and no moment
assumptions are needed for asymptotic approximations. The background theory is briefly
explained in the multivariate linear regression model case, and the use of the package is
illustrated with several examples using the R package MNM.

Keywords: least absolute deviation, mean deviation, mean difference, multivariate linear re-
gression, R, shape matrix, spatial sign, spatial signed-rank, spatial rank, transformation-
retransformation method.

1. Introduction

Classical multivariate statistical inference methods (Hotelling’s T 2, multivariate analysis of
variance, multivariate regression, tests for independence, canonical correlation analysis, prin-
cipal component analysis, and so on) are based on the use of the L2 norm. These standard
moment-based multivariate techniques are optimal under the multivariate normality of the
residuals but poor in their efficiency for heavy-tailed distributions. They are also highly
sensitive to outlying observations. In this paper we present an R package MNM – available
from the Comprehensive R Archive Network at http://CRAN.R-project.org/package=MNM

– which uses different L1 norms and the corresponding scores (spatial signs, spatial signed-
ranks, and spatial ranks) in the analysis of multivariate data. The theory of the multivariate
L1 methodology is explained in details in Oja (2010).

We briefly explain the approach in the multivariate multiple linear regression model setting.
This is necessary for the correct use of the arguments of the functions (score, stand, etc.)
in MNM. Let (X,Y) be the n × (q + p) data matrix where X is the matrix of q explaining

http://www.jstatsoft.org/
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variables and Y the matrix of p-variate response variable. We assume that

Y = Xβ + E,

where β is an q×p matrix of regression coefficients, and E = (e1, . . . , en)> is a random sample
of p-variate residuals “centered” at the origin. In this paper, L1 objective functions are used
to find an estimate for the unknown β. We also consider the partitioned model

Y = X1β1 + X2β2 + E

where X1 (resp. X2) is a n× q1 (resp. n× q2) matrix. The null hypothesis H0 : β2 = 0 can
then be tested using the score functions corresponding to L1 norms. Moreover, if we are also
interested in the scatter matrix estimation or testing, we may use the model

Y = Xβ + EΩ>,

where the residuals in E are now “centered and standardized” in a certain way. The matrix
Σ = ΩΩ> is the scatter (or shape) matrix of the residuals in the regression model. Note that
the classical one-sample and several-sample location problems and the one-sample scatter
problem are simple but important special cases here. See Chapters 6 to 9 and Chapter 11 in
Oja (2010). In the book, also the problem of testing independence between the subvectors
(Chapter 10) and the analysis of data from a randomized block design (Chapter 12) are con-
sidered. Therefore in MNM, following the presentation in the book, there are own functions
for these cases as well.

The tests and estimates for the multivariate location problem based on multivariate spatial
signs, signed-ranks, and ranks have been widely discussed in the literature. See, for example,
Möttönen and Oja (1995), Choi and Marden (1997), Marden (1999), and Oja and Randles
(2004). The scatter matrix estimates by Tyler (1987) and Dümbgen (1998) are often used
for robust standardization of the data. The location tests and estimates are robust and they
have good efficiency properties even in the multivariate normal model (Möttönen et al. 1997).
The work in the area is collected together in Oja (2010).

We wish to mention that the procedures based on spatial signs and ranks, however, offer
only one possible multivariate extension of nonparametric tests (sign test, rank test) and
corresponding estimates (median, Hodges-Lehmann estimate). Randles (1989) followed by
a series of papers, for example, develop multivariate nonparametric tests based on so-called
interdirections. These tests are typically asymptotically equivalent to spatial sign and rank
tests described here but, unfortunately, computationally heavy. The multivariate inference
methods based on marginal signs and ranks are described in detail in the monograph by Puri
and Sen (1971). The R package ICSNP (Nordhausen et al. 2010) provides some tools for
the tests based on marginal signs and ranks, including affine invariant modifications of the
tests (see for example Nordhausen et al. 2008). Still another extension which is based on
the affine equivariant signs and ranks is described in Oja (1999). For some implementations
of this approach, see the R package OjaNP (Fischer et al. 2010). There exists a scattered
collection of functions for univariate sign and rank methods; no general R package is available
so far. However base R contains many tests and estimates as does the package exactRankTests
(Hothorn and Hornik 2011) and its successor coin (Hothorn et al. 2006, 2008). For univariate
regressions based on signs and ranks see among others the packages Rfit (Kloke 2010) and
quantreg (Koenker 2011). Some aspects of using R for univariate analysis based on signs and
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ranks are for example covered in Hettmansperger and McKean (2010), Terpstra and McKean
(2005) and Wilcox (2010) to name a few.

The goal of the paper is to explain the use of the L1 methods based on the spatial signs and
ranks in the analysis of multivariate data and illustrate how the analysis can be implemented
using the R package MNM. The structure of the paper is as follows. In the next Section 2
three multivariate L1 objective functions and the corresponding score functions are discussed.
The use of these score functions in the general multivariate linear regression case (with inner
and outer standardization) is explained in Section 3. For other cases the reader is referred
to Oja (2010). In Section 4 the main functions of the R package MNM are described. In
Section 5 the use of the functions is illustrated with several examples. A summary is given in
Section 6.

2. Multivariate L1 objective functions and score functions

2.1. L1 objective functions

For estimation and testing, write ei = ei(β) = yi − β>xi, i = 1, . . . , n. The regular
least-squares (LS) estimate minimizes the L2 criterion function Dn(β) = 1

n

∑n
i=1{||ei||2} =

1
n

∑n
i=1{e>i ei}. In this paper we consider the L1 type criterion functions

D1n(β) =
1

n

n∑
i=1

{‖ei‖},

D2n(β) =
1

2n2

n∑
i=1

n∑
j=1

{‖ei − ej‖}, and

D3n(β) =
1

4n2

n∑
i=1

n∑
j=1

{‖ei − ej‖+ ‖ei + ej‖}.

Multivariate spatial sign and spatial rank methods are based on the L1 objective functions
D1n, D2n, and D3n and the corresponding score functions. The first objective function
1
n

∑n
i=1{‖ei‖} is the mean deviation of the residuals from the origin, and it is the basis

for the so called least absolute deviation (LAD) methods. It yields different median-type
estimates and spatial sign tests in the one-sample, several-sample and finally general linear
model settings. The second objective function (1/(2n2))

∑n
i=1

∑n
j=1{‖ei − ej‖} is the mean

difference of the residuals which in fact measures how close together the residuals are. The
second and third objective functions generate Hodges-Lehmann type estimates and rank tests
for different location problems.

2.2. Spatial sign, spatial rank, and spatial signed-rank

Let

U(e) = ‖e‖−1e, if e 6= 0

= 0, if e = 0.
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The multivariate spatial sign Ui, multivariate spatial signed-rank Qi, and multivariate spatial
(centered) rank Ri of the residual ei, i = 1, . . . , n, are defined as

Ui = U(ei),

Ri =
1

n

n∑
j=1

{U(ei − ej)}, and,

Qi =
1

2n

n∑
j=1

{U(ei − ej) + U(ei + ej)}.

In the univariate case, one gets just regular sign, (centered) rank, and signed-rank. The three
objective functions D1n, D2n, and D3n then satisfy

1

n

n∑
i=1

{||ei||} =
1

n

n∑
i=1

{U>i ei},

1

2n2

n∑
i=1

n∑
j=1

{‖ei − ej‖} =
1

n

n∑
i=1

{R>i ei}, and

1

4n2

n∑
i=1

n∑
j=1

{‖ei − ej‖+ ‖ei + ej‖} =
1

n

n∑
i=1

{Q>i ei}.

2.3. Multivariate score functions in MNM

The general strategy in the analysis of the multivariate data is first to replace the residuals
ei by some scores Ti = T(ei) or, in more complex designs, the estimated residuals êi by
centered and/or standardized scores T̂i = T(êi), i = 1, . . . , n. (The estimated residuals are

êi = yi − β̂
>

xi or sometimes êi = Σ̂
−1/2

(yi − β̂
>

xi) where β and Σ are estimated under a
full model or under a restricted model depending on the problem at hand.) The statistical
tests are then based on the new data matrix

T = (T1, . . . ,Tn)> or T̂ = (T̂1, . . . , T̂n)>.

The package MNM uses the score functions

T(e) = e (identity score),

= U(e) (spatial sign),

= R(e) =
1

n

n∑
i=1

{U(e− ei)} (spatial rank), and

= Q(e) =
1

2n

n∑
i=1

{U(e− ei) + U(e + ei)} (spatial signed-rank).

The spatial sign score Ui = U(ei), the spatial rank score Ri = R(ei), and the spatial signed-
rank score Qi = Q(ei) thus correspond to the three L1 criterion functions as explained in
the previous section. Inner centering and/or standardization are used in MNM to attain the
affine invariance property of the tests and the affine equivariance property of the estimates.
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An estimate for the scatter (or shape) matrix of the residuals is then obtained as a side
product.

2.4. Important matrices

For theoretical studies we often need to know the matrices

A = E{T(ei)L(ei)
>} and B = E

{
T(ei)T(ei)

>
}
,

where L(e) = −∇ log f(e) is the optimal location score for the density of the residuals f .
Then one can show, see e.g., Möttönen et al. (1997) and Chapter 8 in Oja (2010), that, with
distinct i, j, and k,

� for the identity score,

A = E
[
eie
>
i

]
and B = E

[
eie
>
i

]
,

� for the spatial sign score,

A = E

[
1

‖ei‖

(
Ip −

eie
>
i

‖ei‖2

)]
and B = E

[
eie
>
i

‖ei‖2

]
,

� for the spatial rank score,

A = E

[
1

‖ei − ej‖

(
Ip −

(ei − ej)(ei − ej)
>

‖ei − ej‖2

)]
and B = E

[
(ei − ej)(ei − ek)

>

‖ei − ej‖ · ‖ei − ek‖

]
.

� for the spatial signed-rank score,

A = E

[
1

‖ei + ej‖

(
Ip −

(ei + ej)(ei + ej)
>

‖ei + ej‖2

)]
and

B =
1

4
E

[(
ei − ej
‖ei − ej‖

− ei + ej
‖ei + ej‖

)(
ei − ek
‖ei − ek‖

− ei + ek
‖ei + ek‖

)>]
.

Of course, assumptions are needed for the existence of the matrix A. See Section 3.1 for these
assumptions. Note that natural estimates of A and B are obtained by replacing, in the above
formulae, the expected values by the averages and the residual ei by estimated residuals êi,
i = 1, . . . , n. In the following, the theory is presented using a general score function T(e).

3. Multivariate linear regression model

3.1. Model and assumptions

We consider the data matrix (X,Y) where X is a n× q matrix of explaining variables (fixed)
and Y is a n × p matrix of response variables. The multivariate linear regression model is
written as

Y = Xβ + EΩ>,



6 Multivariate L1 Methods: The Package MNM

where β is a q × p matrix of unknown regression coefficients, Σ = ΩΩ> is a scatter matrix,
and E is an n × p matrix of unobserved centered and standardized residuals. The following
assumptions are needed for asymptotic approximations, that is, for the limiting distributions
of the test statistics and the estimates. In practical data analysis with the package MNM, the
validity of the asymptotic p values and the covering probabilities of the confidence ellipsoids
thus depends on whether the assumptions hold. In some cases, if the assumptions are not
true, one can still apply permutation versions of the tests or use bootstrapping techniques to
estimate the accuracy of the estimates.

Design assumptions: The n× q design matrix (sequence) X satisfies

1

n
X>X→ D and

max1≤i≤n{‖Cxi‖2}∑n
i=1{‖Cxi‖2}

→ 0, as n→∞,

for some positive definite q × q matrix D and for all p× q matrices C.

Distributional assumptions: The rows of E = (e1, . . . , en) are i.i.d. from

(i) a distribution with E(ei) = 0 and E(eie
>
i ) = Ip (identity score), or

(ii) a continuous distribution with bounded density (spatial sign, rank, and signed-rank
scores), standardized so that E(T(ei)) = 0 and E(T(ei)T(ei)

>) ∝ Ip.

It is important to note that, in our approach, the parameters are fixed so that the transformed
residuals (not the original ones) are standardized. Note also that no moment assumptions are
needed for the spatial sign, signed-rank, or rank methods.

3.2. Testing problem I: Inner and outer standardization

We wish first to test the null hypothesis H0 : β = 0. (Of course, the null hypothesis
H0 : β = β0 may be tested just by replacing yi by yi − β>0 xi.) Write Ti = T(yi) and
Ti(β) = T(yi − β>xi), i = 1, . . . , n, and

T = (T1, . . . ,Tn)> and T(β) = (T1(β), . . . ,Tn(β))>.

Then, under our assumptions and under the null hypothesis, n−1/2vec (T>X)→d Npq(0,D⊗
B) and the test statistic

Q2 = Q2(X,Y) = n · tr (PXPT) →d χ
2
pq.

where PX = X(X>X)−1X> and PT = T(T>T)−1T> are n × n projection matrices. Note
that Q2 depends on Y through T(T>T)−1/2. The n × p matrix T(T>T)−1/2 gives outer
standardized scores as [T(T>T)−1/2]>[T(T>T)−1/2] = Ip.

For the spatial sign and rank score, the test with outer standardized scores is not necessarily
affine invariant, however. Affine invariance means here that Q2(XV,YW) = Q2(X,Y), for
all nonsingular q×q and p×p matrices V and W, respectively. An affine invariant modification
of the test statistic is obtained using inner standardization of the scores as follows.

1. Find S−1/2 such that if T̂i = T(S−1/2yi) then T̂>T̂ ∝ Ip.
This is called inner standardization.
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2. The invariant test statistic is then Q2 = n · tr
(
PXPT̂

)
.

The symmetric matrix S satisfying S−1/2S(S−1/2)> = Ip is then the corresponding scatter (or
shape) matrix estimate for Σ = ΩΩ>. For the spatial sign score, S is Tyler’s shape matrix,
and S−1/2 is Tyler’s transformation. See Tyler (1987).

3.3. Estimation problem: With and without inner standardization

Next we wish to estimate the unknown q×p matrix β. The estimate β̂ based on score function
T solves

T(β̂)>X = 0.

Then, under general assumptions,
√
nvec(β̂ − β) →d Nqp

(
0,D−1 ⊗ (A−1BA−1)

)
where A and B were given in Section 2.4. For the practical estimation of the covariance
matrix of vec(β̂), estimates of A and B are easily available as described in Section 2.4.

Different scores then yield the following estimates.

� Identity score: The regular LS estimate which minimizes
∑n

i=1 ‖yi − β>xi‖2.

� Spatial sign score: The multivariate least absolute deviation (LAD) estimate which
minimizes

∑n
i=1 ‖yi − β>xi‖.

� Spatial rank score: The multivariate mean difference (MD) estimate which minimizes∑n
i=1

∑n
j=1 ‖(yi − yj)− β>(xi − xj)‖.

The spatial signed-rank score is used only in the one-sample location case, and it gives the
multivariate Hodges-Lehmann location estimate. See Chapter 7 in Oja (2010). Note that the
spatial rank score does not yield an estimate for the intercept vector. The spatial signed-rank
score applied to the estimated residuals can then be used for the estimation of the intercept
parameter.

The regular LS estimate is fully regression equivariant. For the concept of regression equivari-
ance, see e.g., Ollila et al. (2002). The LAD and MD estimates can be made affine equivariant
using inner standardization as follows. Find a transformation matrix S−1/2 and β̂ such that

if êi = S−1/2(yi − β̂
>

xi) and T̂i = T(êi), i = 1, . . . , n, then simultaneously

T̂>X = 0 and T̂>T̂ ∝ Ip.

Then β̂ is affine equivariant and S is the scatter/shape estimate of Σ based on the score
function T.

In the package MNM, an equivariant LAD estimate, for example, is calculated using a fixed
point algorithm as follows. First the residuals, second the regression coefficient matrix, and
finally the residual scatter matrix are updated using repeatedly the following three steps.

1. ei ← S−1/2(yi − β>xi), i = 1, . . . , n

2. β ← β +
[∑n

i=1{‖ei‖−1xix>i }
]−1∑n

i=1{xiU(ei)
>}S1/2

3. S ← p
n S1/2

∑n
i=1{U(ei)U(ei)

>} S1/2.
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If inner standardization is not used then one just repeats steps 1 and 2 with S = Ip. In
the one-sample location case one then gets (i) the spatial median (without inner standard-
ization), or (ii) the Hettmansperger-Randles estimate (with inner standardization). The
Hettmansperger-Randles estimate combines the Tyler’s transformation and the spatial me-
dian. See Hettmansperger and Randles (2002). In MNM, similar algorithms are used for the
calculation of the value of the MD estimate (with and without inner standardization) as well.

3.4. Testing problem II: Inner and outer standardization

Consider now the partitioned model

Y = X1β1 + X2β2 + ε

where X1 (resp. X2) is a n × q1 (resp. n × q2) matrix. We wish to test the null hypothesis

H0 : β2 = 0. (i) If the outer standardization is used, one finds scores T̂i = T(yi − β̂
>

xi1),
i = 1, . . . , n, such that T̂>X1 = 0. (ii) In the inner standardization, the standardized scores

T̂i = T(S−1/2(yi − β̂
>

xi1)), i = 1, . . . , n, satisfy both T̂>X1 = 0 and T̂>T̂ ∝ Ip. The score
test statistic is now

Q2 = n · tr
(
PX̂2

PT̂

)
where X̂2 = (In−PX1)X2. With the inner standardization, the test is fully invariant. Under
the null hypothesis, the test statistic has an approximate χ2 distribution with q2p degrees of
freedom. The Wald-type test statistic which uses vec(β̂2) and its estimated covariance matrix
in the full model is asymptotically equivalent with the score test statistic.

3.5. Inference for shape

Let Kp,p be the commutation matrix, that is, a p2 × p2 block matrix with (i, j)-block be-
ing equal to a p × p matrix that has one at entry (j, i) and zero elsewhere, and Jp,p for
vec(Ip)vec(Ip)

>. Matrix

Cp,p =
1

2
(Ip2 + Kp,p)−

1

p
Jp,p

projects a vectorized matrix vec(A) to the space of symmetrical and centered vectorized
matrices. The tests and estimates for the shape parameter are based on the squared norm of
such a projection,

Q2(A) = ‖Cp,pvec(A)‖2,

which is proportional to the variance of the eigenvalues of a symmetrized version of A. For
symmetrical positive definite p × p matrices A, it then holds that Q2(A) = 0 if and only if
A ∝ Ip.

For simplicity, assume that β = 0 and we wish to estimate unknown Σ = ΩΩ> and test the
null hypothesis H0 : Σ ∝ Ip. Matrix Σ is then also defined by the condition

E
(
T(Σ−1/2yi)T(Σ−1/2yi)

>
)
∝ Ip.

The algorithm for the estimate S = S(Y) of Σ (up to a multiplying constant) with re-
spect to the origin then uses the steps (i) T̂i ← T(S−1/2yi), i = 1, . . . , n, and (ii) S ←
[p/tr(T̂>T̂)]S1/2T̂>T̂S1/2.
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The test statistic for testing H0 : Σ ∝ Ip (hypothesis of sphericity) is simply

Q2
(
n−1T>T

)
=
∥∥∥Cp,pvec

(
n−1T>T

)∥∥∥2 .
Under the null hypothesis,

(n/τ)Q2 →d χ2
(p+2)(p−1)/2

where τ is sometimes unknown and has to be estimated. Recall that in our approach n−1T>T
is the regular covariance matrix, spatial sign covariance matrix, or rank covariance matrix
depending on which score function is chosen.

4. R package MNM (Multivariate Nonparametrical Methods)

4.1. General features

The package provides multivariate tests and estimates and other procedures based on the (i)
identity score, (ii) spatial sign score, and (iii) spatial rank score. Most functions in the package
have an argument score which can be set to "identity", "sign" or "rank" (or sometimes
also to "symmsign" for symmetrized signs). Let T(e) be the chosen score function. In the
procedures, the user can also choose between inner and outer standardization. In the outer
standardization the model is

yi = β>xi + ei, where E(T(ei)) = 0

and in the inner standardization one assumes that

yi = β>xi + Ωei, where E(T(ei)) = 0 and E(T(ei)T(ei)
>) ∝ Ip.

The argument stand should then be "outer" or "inner" for outer or inner standardiza-
tion, respectively. The default values are score = "identity" and stand = "outer". For
different standardizations, see also Oja (2010).

For most testing functions, the p values can be based on limiting distributions of the test statis-
tic (method = "approximation"). The test is then asymptotically distribution-free. Another
possibility is to use conditionally distribution-free test versions (method = "permutation" or
method = "signchange") which is based on permutation or sign-change arguments, respec-
tively. See again Oja (2010) for more details. The approximations based on the limiting
distributions may not be good for small sample sizes. (As far as we know, there are no
simulation studies to consider this problem.) Therefore permutation tests are very much
recommended for the p value calculation with small sample sizes. In general a comparison
of asymptotic and permutation based p values is a good strategy when analyzing data, Also
bootstrapping could be used to estimate the accuracy of the estimates but is not yet available
in MNM.

Many formulas of the tests and estimates mentioned above contain matrix inverses. In the
implementation of the methods we avoid computing the explicit inverse when possible. How-
ever, if the same inverse matrix is used repeatedly like for example in the p value calculation
for the permutation tests, we choose to compute it. (Note that, for the permutation tests,



10 Multivariate L1 Methods: The Package MNM

we need to compute the inverse only once.) Since most of the matrices to be inverted are
symmetric, the inverses are found via Cholesky decomposition when appropriate.

Note that the functions which use ranks, signed-ranks, and symmetrized signs may sometimes
be slow and memory consuming since they operate with pairwise differences and pairwise sums
of observation vectors.

We will now describe the main functions of the package in more detail.

4.2. One-sample location problem

The one-sample location estimates with their estimated covariance matrices are given by the
function mv.1sample.est. One then gets the regular mean vector, the spatial median, or
the multivariate Hodges-Lehmann estimate with outer or inner standardization depending
on the values of the options for score and stand. Choices score = "sign" and stand =

"outer" give the spatial median, and choices score = "sign" and stand = "inner" the
Hettmansperger-Randles estimate, for example. In the one-sample case, the option "rank"

refers to signed-ranks.

The function mv.1sample.est returns a list of class mvloc with a location estimate as a
component location and its estimated covariance matrix as a component vcov. For objects
in this class we provide print, summary and plot methods. For the comparisons of different
location estimates, the function plot produces a simultaneous scatter plot matrix for up to
three different location estimates with their estimated confidence ellipsoids.

The function mv.1sample.test can be used to test the null hypothesis that the observations
come from a distribution symmetric around the origin. The null value can be respecified with
the argument mu. Depending again on the values of the arguments score one gets either
the Hotellings T 2-test, or the spatial sign test, or the spatial signed-ranked test. The choice
stand = "inner" makes the latter two tests affine invariant. Note that the Hotelling’s T 2-
test version implemented here slightly differs from the regular version given in most textbooks
(implemented as HotellingsT2 in the package ICSNP, Nordhausen et al. 2010, for example);
the covariance matrix for the test statistic is here computed with respect to the null value mu.

Main references for the tests and estimates in the one-sample location case are the papers
by Chaudhuri (1992), Möttönen and Oja (1995), Randles (2000), Vardi and Zhang (2000),
Hettmansperger and Randles (2002), and Oja and Randles (2004). See also Chapters 5 to 8
in Oja (2010).

4.3. One-sample shape problem

The function mv.shape.est needs arguments score, estimate, and location. One estimates
Σ satisfying either

Σ−1/2E(T(yi − µ)T(yi − µ)>)(Σ−1/2)> = Ip

or
E(T(Σ−1/2(yi − µ))T(Σ−1/2(yi − µ))>) ∝ Ip

depending on whether estimate = "outer" or estimate = "inner". The observations are
centered by natural companion location estimates µ̂ if not otherwise stated by the argu-
ment location. For example, the choices score = "sign" and estimate = "outer" give
the spatial sign covariances matrix, and score = "rank" and estimate = "outer" the spa-
tial rank covariances matrix. Tyler’s shape matrix is obtained with the choices score =
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"sign" and estimate = "inner", and Dümbgen’s shape matrix with score = "symmsign"

and estimate = "inner". All the shape matrix estimates are rescaled to have trace p. If
score = "identity" one gets just the regular covariance matrix.

The function plotShape can be used for a graphical comparison of different, at most three,
shape matrices. The shape matrix estimates (standardized to have determinant one) are
illustrated with ellipsoids plotted in a scatter matrix. Note that a center for the shape
matrices needs to be specified too.

The function mv.shape.test can be used to test the null hypothesis that the observations
are coming from a spherical distribution. Null hypothesis then implies that the popula-
tion shape matrices (with any scores) are proportional to the identity matrix. The scores
"identity", "sign", and "symmsign" are available. The location center is estimated if
location = "estimate"; it is also possible to choose location = "origin". Naturally, any
null hypothesis for a shape matrix can be tested by first transforming the data to be spherical
under the null hypothesis.

In the elliptic model, all shape matrices are proportional. This means that their eigenvectors
are the same and their eigenvalues are proportional. The function mvPCA can then be used for
principal component analysis (PCA). As the shape matrices are scaled to have trace p, the
eigenvalues are only proportional to the true variances of the principal components. Function
mvPCA returns a list of class mvPCA with methods print, summary, predict, and plot. The
use of mvPCA is made as similar as possible to the use of traditional functions princomp and
prcomp.

Main references for the one-sample shape estimation and testing are Tyler (1987), Dümbgen
(1998), Croux et al. (2002), Sirkiä et al. (2009), and Chapter 9 in Oja (2010).

4.4. Testing for independence of the subvectors

We assume that the data matrix is decomposed as Y = (Y1,Y2) and we wish to test the
null hypothesis that n× p1 data matrix Y1 and n× p2 data matrix Y2 are independent. The
observation vectors are again replaced by inner centered and standardized scores, (Y1,Y2)→
(T̂1, T̂2) such that

T̂>1 1n = 0, T̂>2 1n = 0, T̂>1 T̂1 ∝ Ip1 , and T̂>2 T̂2 ∝ Ip2 .

The test is then based on the canonical correlations between T̂1 and T̂2. Hence the func-
tion mv.ind.test always uses inner centering and standardization, and the tests are affine
invariant.

The main reference here is Taskinen et al. (2005). See also Chapter 10 in Oja (2010).

4.5. Several-samples location problem

The function mv.Csample.test can be used to test the null hypothesis that all c random
samples come from the same p-variate distribution. The sample membership should be given
by a factor variable (argument g) with at least two levels. The regular MANOVA (slightly
modified) is obtained if score = "identity". Multivariate extensions of Mood’s test and
Kruskal-Wallis test are obtained with choices score = "sign" and score = "rank", respec-
tively. Affine invariance of the tests is again attained if stand = "inner".
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The function mv.2sample.est provides estimates of the location difference with its estimated
covariance matrix in the two-sample case. The sample memberships are again given using
argument g which now must be a factor with exactly two levels. The output is an object of
class mvloc with methods print, summary and plot. The estimates available are then the
difference of the sample means, the difference of the spatial medians, and the two-samples
spatial Hodges-Lehmann estimate. Equivariant estimates are obtained with the choice stand

= "inner".

The main references are Möttönen and Oja (1995), Oja and Randles (2004), and Chapter 11
in Oja (2010).

4.6. Randomized blocks

The blocked design for the comparison of the effects of c treatments is the generalization of
the paired-sample design. In the randomized block design the c subjects in each block are
randomly assigned to all c treatments, c ≥ 2. For an analysis of multivariate data arising
from a randomized complete block design the functions mv.2way.est and mv.2way.test are
available. The block membership is given by argument block, and the treatment by argument
treatment. Both factors then have at least two levels.

The function mv.2way.test tests the null hypothesis of no treatment differences. The regular
balanced two-way MANOVA is obtained with the choice score = "identity", and a multi-
variate extension of the Friedman test with score = "rank". Function mv.2way.est gives a
list of class mvcloc with its own print and summary methods. All pairwise estimates of the
location differences with their estimated covariance matrices are provided. These individual
results are again of class mvloc and hence can be plotted using plot.

The main references here are Möttönen et al. (2003) and Chapter 12 in Oja (2010).

4.7. Multivariate linear regression

A formula object that specifies the model is the main argument in the regression function
mv.l1lm. The left side in the formula must be a numeric matrix with at least two columns.
Working with mv.l1lm is similar to working with other regression functions in R. Note that
the results from lm and from mv.l1lm with the identity score function, however, differ slightly
due to different divisors in the formula for the covariance matrix. For the regular L2 regression
the function lm is computationally more efficient and has more options than mv.l1lm.

The general algorithm in Section 3.3 is in fact a Weiszfeld algorithm modified to the multivari-
ate linear regression case. The original Weiszfeld algorithm is for the one sample location case
and may have problems if the residuals become excessively small (or zero). Vardi and Zhang
(2000) developed a modified version to deal with zero residuals but there is no extension of
their approach to the general linear regression case. In our modified Weisfeld algorithm we
use the modified L1 norm

||e||ε =

{
||e|| ||e|| > ε
ε ||e|| ≤ ε ,

which gives a continuous modified spatial sign function

Uε(e) =

{
||e||−1e ||e|| > ε
ε−1e ||e|| ≤ ε .
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These smoothed versions as approximations of the L1 norm and the spatial sign function have
been used before in the proofs for the asymptotic properties of the tests and estimates, see
Möttönen et al. (1997). In our experience, the smoothed versions work well in the algorithms
and yield reliable results. In the function mv.l1lm ε is called eps.S and has by default a value
of 1e-06.

The function mv.l1lm returns an object of class mvl1lm. If score = "rank" then the estimate
of the intercept parameter is the Hodges-Lehmann estimate of the residuals and must be
computed separately. The returned object is then also made different for score = "rank".
Function mv.l1lm with score = "rank" can not be used in the one-sample location problem.
The returned objects from mv.l1lm can be treated with methods print, summary, coef, vcov,
fitted, residuals, and predict in a regular way. Method plot provides a joint scatter plot
matrix for the fitted values and the residuals from the estimated model.

The method anova for the objects of class mvl1lm works as follows. If only object (and no
object2) is provided anova returns the results from the test for the null hypothesisH0 : β = 0
(testing problem I in Section 3.2). In this case the test argument is ignored. In testing
problem II (Section 3.4) both arguments, object and object2, are used. Argument object

is a fit from a full unrestricted model (with explaining variables in X1 and X2) and object2

is the output for a restricted model (with explaining variables in X1 only). The test can be
based either on the score test statistic (default, test = "Score") or on the Wald-type test
statistic (test = "Wald"). Naturally the fits in object and in object2 must be based on the
same data set, same score function (identity/sign/rank), and same way of standardization
(outer/inner).

Note that the one-sample and c-sample location problems are special cases of the multivariate
regression problem. The results from mv.l1lm and from specialized functions for one-sample
and several-sample cases may differ slightly, however, as the covariance matrices of the esti-
mates may be calculated in a different way and for estimation the stabler algorithm of Vardi
and Zhang (2000) is used. In general we recommend the use of the specialized functions if
available.

The main references are Bai et al. (1990), Arcones (1998), Chakraborty (2003), and Zhou
(2010). The theory is explained also in Chapter 13 of Oja (2010).

Besides the functions mentioned above the package offers also some other auxiliary functions
like affines.trans, pairs2, rmvpowerexp or runifsphere. For details, see the help pages.
The plan is that in the future the package will include functions for canonical correlation
analysis and the analysis of clustered data.

5. Examples for multivariate analysis using MNM

In this section we illustrate the use of MNM for different problems and designs discussed
earlier. For the output the option options(digits = 4) in R 2.13.0 (R Development Core
Team 2011) is used. We also use the packages MNM 1.0-0, mvtnorm 0.9-99 (Genz et al.
2011), robustbase 0.7-3 (Rousseeuw et al. 2011; Todorov and Filzmoser 2009) and DAAG 1.0-6
(Maindonald and Braun 2011).

In all examples, random seeds are provided for reproducibility of the results. In a few cases
the output was slightly modified to fit into the text.
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5.1. One-sample location problem

Outer vs. inner standardization

We first use MNM to illustrate the comparison of estimates using outer and inner standardiza-
tion. The estimates to be compared are the sample mean vector, the regular spatial median,
and the spatial median with inner standardization (affine equivariant Hettmansperger-Randles
estimate). For the comparison, we generate 300 observations from a N3(0, diag(1, 1, 100)) dis-
tribution.

The data are then generated as follows.

R> library("MNM")

R> set.seed(1234)

R> X <- rmvnorm(300, c(0, 0, 0), diag(c(1, 1, 100)))

R> names(X) <- c("x_1", "x_2", "x_3")

The three estimates are computed with the following function calls.

R> Est.X1 <- mv.1sample.est(X)

R> Est.X2 <- mv.1sample.est(X, score = "s", stand = "o")

R> Est.X3 <- mv.1sample.est(X, score = "s", stand = "i")

The best way to have a first look at the estimation results is to use the summary function.
For the third estimate, for example, we get the following summary.

R> summary(Est.X3)

The equivariant spatial median of X is:

[1] -0.0159 -0.0172 -0.3695

And has the covariance matrix:

[,1] [,2] [,3]

[1,] 0.0040 0.0000 0.0035

[2,] 0.0000 0.0041 -0.0020

[3,] 0.0035 -0.0020 0.3185

The three location estimates now are

R> rbind(Est.X1$location, Est.X2$location, Est.X3$location)

[,1] [,2] [,3]

[1,] 0.013028 -0.05559 -0.2352

[2,] -0.005535 -0.04049 -0.5057

[3,] -0.015895 -0.01717 -0.3695

For a visual comparison of the estimates and their 95% confidence we can write
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Figure 1: Comparison of the mean vector, the regular spatial median, and the affine equiv-
ariant spatial median (Hettmansperger-Randles estimate) for a random sample coming from
a multivariate normal distribution.

R> plot(Est.X1, Est.X2, Est.X3, lty.ell = c(1, 2, 4), pch.ell = 15:17,

+ lwd.ell = c(2, 2, 2), alim = "e", labels = names(X))

Figure 1 then shows, as expected, that the mean vector has the smallest confidence ellip-
soid for the data coming from a multivariate normal distribution. The affine equivariant
spatial median (Hettmansperger-Randles estimate) seems better than the regular spatial me-
dian. The regular spatial median seems efficient in the direction of the largest scale (third
component) but has otherwise a poor efficiency. In general we recommend the use of inner
standardization if the scales of the marginal variables differ a lot.

Comparison of the estimates for a heavy-tailed distribution

We next compare location estimates that are based on identity, sign, and signed-rank scores
and use inner standardization. We compare the behavior of the estimates using a random
sample from a spherical power exponential distribution with shape parameter β = 0.4 (The
power exponential distribution is an elliptical distribution that has light or heavy tails de-
pending on the value of the shape parameter β. Special cases are, for example, a multivariate
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normal distribution (β = 1) or a multivariate Laplace distribution (β = 0.5). The limiting
case as β → ∞ is a multivariate generalization of the uniform distribution in a sphere. See
Gómez et al. (1998) for details).

The dataset is generated as follows.

R> set.seed(4321)

R> Y <- rmvpowerexp(150, c(0, 0, 0), Beta = 0.4)

R> names(Y) <- c("y_1", "y_2", "y_3")

The three estimates are obtained using the following function calls.

R> Est.Y1 <- mv.1sample.est(Y)

R> Est.Y2 <- mv.1sample.est(Y, score = "r", stand = "i")

R> Est.Y3 <- mv.1sample.est(Y, score = "s", stand = "i")

The observed values of the estimates are

R> rbind(Est.Y1$location, Est.Y2$location, Est.Y3$location)

[,1] [,2] [,3]

[1,] 0.3110 -0.08433 0.1616

[2,] 0.2408 -0.10970 0.1301

[3,] 0.1317 -0.11474 0.1353

A visual comparison of the estimates and their confidence ellipsoids is obtained as before.

R> plot(Est.Y1, Est.Y2, Est.Y3, lty.ell = c(1, 2, 4), pch.ell = 15:17,

+ lwd.ell = c(2, 2, 2), alim = "e", labels = names(Y))

Figure 2 shows that the sample mean vector is poor in its efficiency for heavy tailed distribu-
tion. As expected, the affine equivariant spatial median has the smallest confidence ellipsoid
in this case.

5.2. One-sample shape problem

In this section we show how the shape matrices can be estimated with the package MNM. We
use the dataset salinity with 28 observations and four variables. The dataset is available
in the package robustbase. We consider the first three variables only with two clearly visible
outliers.

First we load the data and extract the variables of interest.

R> library("robustbase")

R> data("salinity")

R> sal.X <- salinity[, 1:3]

Then we compute three different scatter/shape matrices, the regular covariance matrix,
Tyler’s shape matrix and Dümbgen’s shape matrix as follows.



Journal of Statistical Software 17

y_1

−0.4 −0.2 0.0 0.2

●

−0.2 0.0 0.2 0.4

0.
0

0.
2

0.
4

0.
6

●

−
0.

4
−

0.
2

0.
0

0.
2

● y_2

−
0.

4
−

0.
2

0.
0

0.
2

●

0.0 0.2 0.4 0.6

−
0.

2
0.

0
0.

2
0.

4

●

−0.4 −0.2 0.0 0.2

●
y_3

●

sample mean vector
equivariant spatial Hodges−Lehmann estimator
equivariant spatial median

Figure 2: Comparison of the mean vector, the affine equivariant Hodges-Lehmann estimate,
and the affine equivariant spatial median (Hettmansperger-Randles estimate) for a random
sample coming from a heavy-tailed power-exponential distribution.

R> covSal <- mv.shape.est(sal.X)

R> tylerSal <- mv.shape.est(sal.X, score = "si", estimate = "i")

R> dumbgenSal <- mv.shape.est(sal.X, score = "sy", estimate = "i")

These three matrices are not directly comparable, however, since they are not scaled in the
same way. For a visual comparisons, we again plot ellipsoids based on shape matrices and
centered using suitable location estimates (the mean vector and the affine equivariant spa-
tial median). The affine equivariant spatial median (Hettmansperger-Randles estimate) is
obtained with

R> HR.median <- mv.1sample.est(sal.X, score = "s", stand = "i")$location

We then combine the shape matrices and location centers and give the combinations the
names as follows.

R> EST1 <- list(location = colMeans(sal.X), scatter = covSal,

+ est.name = "regular cov")
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Figure 3: Comparison of the regular covariance matrix, Tyler’s shape matrix, and Dümbgen’s
shape matrix for the salinity dataset.

R> EST2 <- list(location = HR.median, scatter = tylerSal,

+ est.name = "Tyler's shape")

R> EST3 <- list(location = HR.median, scatter = dumbgenSal,

+ est.name = "Duembgen's shape")

For the comparison of different approaches, the function plotShape then plots estimated 50%
tolerance ellipsoids based on different combinations with the following function call.

R> plotShape(EST1, EST2, EST3, X = sal.X, lty.ell = c(1, 2, 4),

+ pch.ell = 15:17, lwd.ell = c(2, 2, 2))

As we can see in Figure 3, Tyler’s shape matrix and Dümbgen’s shape matrix give for this data
similar ellipsoids. The ellipsoid based on the covariance matrix and mean vector is attracted
by the two outliers.

At first sight, the figure seems to suggest that the first two variables X1 and X2 come from a
spherical distribution. This may not be true, however, as in the plot the variables are rescaled
in a different way. We next call the test functions for testing for sphericity using the identity
score, the sign score, and the symmetrized sign score.
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R> mv.shape.test(sal.X[, 1:2])

Mauchly test for sphericity

data: sal.X[, 1:2]

L = 0.0186, df = 2, p-value = 0.01864

R> mv.shape.test(sal.X[, 1:2], score = "si")

Test for sphericity based on UCOV

data: sal.X[, 1:2]

Q2 = 2.326, df = 2, p-value = 0.3126

R> mv.shape.test(sal.X[, 1:2], score = "sy")

Test for sphericity based on TCOV

data: sal.X[, 1:2]

Q2 = 13.15, df = 2, p-value = 0.001397

The tests based on identity scores and symmetrized signs scores reject the null hypothesis. In
the figure the ellipsoid based on the sign score seems different from the others.

5.3. Two-sample location problem

In the two-sample location problem and in the multivariate regression we use the Australian
athletes dataset available as data("ais") in the package DAAG. We are mainly interested
in the differences between male and female athletes when the response variables are the
hematocrit percentage (variable hc) and the hemaglobin concentration (variable hg).

The data can be loaded as follows.

R> library("DAAG")

R> data("ais")

A scatter plot for a visual comparison of males and females is given by the following call.

R> with(ais, pairs(cbind(hc, hg), col = sex))

Figure 4 shows a clear difference in location. For this two-sample location problem we can
use the function mv.Csample.test. If we use the sign score and inner standardization we get

R> with(ais, mv.Csample.test(cbind(hc, hg), sex, score = "s", stand = "i"))

Equivariant several samples location test using spatial signs

data: cbind(hc, hg) by sex

Q.2 = 113.6, df = 2, p-value < 2.2e-16

alternative hypothesis: true location difference between some groups is not

equal to c(0,0)
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Figure 4: Hematocrit percentage (variable hc) and hemaglobin concentration (variable hg) of
the athletes. The males are marked with red color.

The test clearly shows that there is a difference between the genders. Also the sample size
of n = 202 leaves no doubt about the accuracy of the χ2 approximation. For small sample
sizes one should rather use the permutation version of the test which gives in this case the
following result.

R> with(ais, mv.Csample.test(cbind(hc, hg), sex, score = "s", stand = "i",

+ method = "p"))

Equivariant several samples location test using spatial signs

data: cbind(hc, hg) by sex

Q.2 = 113.6, replications = 1000, p-value < 2.2e-16

alternative hypothesis: true location difference between some groups is not

equal to c(0,0)

and as expected no disagreement here. To get an estimate of the difference we use next the
function mv.2sample.est:

R> summary(with(ais, mv.2sample.est(cbind(hc, hg), sex, score = "s",

+ stand = "i")))

The difference between equivariant spatial medians of cbind(hc, hg) by sex is:

[1] -5.314 -2.012
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And has the covariance matrix:

[,1] [,2]

[1,] 0.1330 0.0507

[2,] 0.0507 0.0233

5.4. Multivariate linear regression

As mentioned earlier, the two-sample location case is a special case of the multivariate linear
model. The results for the two-sample location problem can therefore be obtained using the
function mv.l1lm as well.

The estimate of the location difference between males and females with the sign score and
inner standardization can be obtained by fitting the following model.

R> model.sex <- mv.l1lm(cbind(hc, hg) ~ sex, data = ais, score = "s",

+ stand = "i")

R> summary(model.sex)

Multivariate regression using spatial sign scores and inner standardization

Call:

mv.l1lm(formula = cbind(hc, hg) ~ sex, scores = "s", stand = "i", data = ais)

Testing that all coefficients = 0:

Q.2 = 197.7 with 4 df, p.value < 2.2e-16

Results by response:

Response hc :

Estimate Std. Error

(Intercept) 40.27 0.259

sexm 5.31 0.365

Response hg :

Estimate Std. Error

(Intercept) 13.51 0.108

sexm 2.01 0.153

The estimate for the location difference is as obtained when using mv.2sample.est. For the
p value for testing the null hypothesis of no difference, we fit the model with the intercept
term only and compare the resulting fit to the fit coming from the previous model.

R> model.int <- mv.l1lm(cbind(hc, hg) ~ 1, data = ais, score = "s",

+ stand = "i")

R> anova(model.sex, model.int)
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Comparisons between multivariate linear models

Full model: mv.l1lm(formula = cbind(hc, hg) ~ sex, scores = "s",

stand = "i", data = ais)

Restricted model: mv.l1lm(formula = cbind(hc, hg) ~ 1, scores = "s",

stand = "i", data = ais)

Score type test that coefficients not in the restricted model are 0:

Q.2 = 113.6 with 2 df, p.value < 2.2e-16

The variables red blood cell count (rcc), body mass index (bmi) and the percentage of body
fat (pcBfat) are good explaining factors for our response variables hc and hg. They are also
variables with location differences between males and females. See Figure 5 produced by the
following call.

R> with(ais, pairs(cbind(hc, hg, rcc, bmi, pcBfat), col = sex))

To see whether the differences between males and females are due to differences in rcc, bmi,
and pcBfat, we first fit the full model (now with the rank score and inner standardization).

R> model.full <- mv.l1lm(cbind(hc, hg) ~ rcc + bmi + pcBfat + sex,

+ data = ais, score = "r", stand = "i")

R> summary(model.full)

Multivariate regression using spatial rank scores and inner standardization

Call:

mv.l1lm(formula = cbind(hc, hg) ~ rcc + bmi + pcBfat + sex, scores = "r",

stand = "i", data = ais)

Inner HL-estimator for the residuals (intercept):

hc hg

(Intercept) 11.0 3.27

Testing that all coefficients = 0:

Q.2 = 124.8 with 8 df, p.value < 2.2e-16

Results by response:

Response hc :

Estimate Std. Error

rcc 6.4467 0.2747

bmi 0.1132 0.0436

pcBfat -0.0766 0.0263

sexm 0.2585 0.3598

Response hg :
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Figure 5: Hematocrit percentage (variable hc) and hemaglobin concentration (variable hg),
red blood cell count (rcc), body mass index (bmi), and the percentage of body fat (pcBfat)
of the athletes data. The males are marked with red color.

Estimate Std. Error

rcc 2.0882 0.1229

bmi 0.0778 0.0195

pcBfat -0.0334 0.0118

sexm 0.2353 0.1609

As mentioned earlier the output for the rank score differs slightly from that of the other scores
- the intercept parameter is here reported separately and not in the table of other coefficients.

To test the null hypothesis that there is no difference between males and females, we find the
fit from a restricted model (without gender) and then use anova to compare the full model
and restricted model.

R> model.res <- mv.l1lm(cbind(hc,hg) ~ rcc + bmi + pcBfat,

+ data = ais, score = "r", stand = "i")
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Figure 6: A plot of residuals coming from the estimated model model.res.

R> anova(model.full, model.res)

Comparisons between multivariate linear models

Full model: mv.l1lm(formula = cbind(hc, hg) ~ rcc + bmi + pcBfat + sex,

scores = "r", stand = "i", data = ais)

Restricted model: mv.l1lm(formula = cbind(hc, hg) ~ rcc + bmi + pcBfat,

scores = "r", stand = "i", data = ais)

Score type test that coefficients not in the restricted model are 0:

Q.2 = 2.496 with 2 df, p.value = 0.2871

Hence the data provides no evidence for a difference between males and females. For model
checking one could still check the residuals for any hidden structures as follows.

R> plot(model.res)

Figure 6 then suggests that the fit model.rest is satisfactory.

6. Summary

The package MNM provides functions for most standard inference problems in multivariate
analysis. In most cases, the user can choose between the scores identity, sign or rank.
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The identity score is optimal in a multivariate normal model but the performance becomes
poor for data with heavy-tailed distributions or with outliers. In those cases sign and rank

scores are better choices. A problem with rank score is that the procedures are based on
pairwise differences and/or pairwise sums of the observations. The computation is then slow
if the dimension is large and memory consuming when the number of observations is huge.
The usefulness of rank scores depends heavily on the user’s hardware. The use of sign

score is much less demanding and have also other properties that make it attractive in high
dimensions.

Methods based on sign and rank scores have usually an option for their outer or inner
standardization. Using outer standardization means that the methods are not affine invari-
ant/equivariant under linear transformations but can be used when the marginal variables
are similarly scaled. For coordinate-free tests and estimates, inner standardization is needed.

Test functions in MNM often give the user the possibility to compute p values based on
(i) the limiting distribution of the test statistic or based on (ii) permutation and sign-change
arguments. For small sample sizes, a good practise is to compute both and then decide which
one to choose and report. Spatial sign and rank methods have been applied in Behseta and
Chenouri (2011) or Tahvanainen et al. (2009), for example.

The package provides estimation and testing procedures for independent and identically dis-
tributed observations only. Extension for clustered data are planned to be added to MNM as
well. For the theory, see Nevalainen et al. (2010). Long term plans include also to write some
parts of the code in C or C++ and develop new estimation algorithms for the multivariate
regression problem.
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