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Abstract

Two packages, oro.dicom and oro.nifti, are provided for the interaction with and
manipulation of medical imaging data that conform to the DICOM standard or ANA-
LYZE/NIfTI formats. DICOM data, from a single file or directory tree, may be uploaded
into R using basic data structures: a data frame for the header information and a matrix
for the image data. A list structure is used to organize multiple DICOM files. The S4 class
framework is used to develop basic ANALYZE and NIfTT classes, where NIfTI extensions
may be used to extend the fixed-byte NIfTT header. One example of this, that has been
implemented, is an XML-based “audit trail” tracking the history of operations applied to
a data set. The conversion from DICOM to ANALYZE/NIfTI is straightforward using
the capabilities of both packages. The S4 classes have been developed to provide a user-
friendly interface to the ANALYZE/NIfTI data formats; allowing easy data input, data
output, image processing and visualization.
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1. Introduction

Medical imaging is well established in both the clinical and research areas with numerous
equipment manufacturers supplying a wide variety of modalities. The DICOM (Digital Imag-
ing and Communications in Medicine; http://medical.nema.org/) standard was developed
from earlier standards and released in 1993. It is the data format for clinical imaging equip-
ment and a variety of other devices whose complete specification is beyond the scope of this
paper. All major manufacturers of medical imaging equipment (e.g., GE, Siemens, Philips)
have so-called DICOM conformance statements that explicitly state how their hardware im-
plements DICOM. The DICOM standard provides interoperability across hardware, but was
not designed to facilitate efficient data manipulation and image processing. Hence, additional
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oro.dicom

create3D, create4D Create multi-dimensional arrays from DICOM
header /image lists.

dicom2analyze, dicom2nifti Convert DICOM objects to ANALYZE or
NIfTT objects.

dicomInfo, dicomSeparate Read single or multiple DICOM files into R.

dicomTable, writeHeader Construct data frame from DICOM header list
and write to a CSV file.

extractHeader, header2matrix, Extract information from DICOM headers.

matchHeader

str2date, str2time Convert DICOM date or time entry into an R
object.

oro.nifti

afni, anlz, nifti Class constructors for AFNI, ANALYZE and
NIfTT objects.

as(<obj>, "nifti") Coerce object into class nifti.

audit.trail, aux.file, descrip Extract or replace slots in specific header fields.

fmri2oro, oro2fmri Convert between fmridata (fmri) and nifti
objects.

hotmetal, tim.colors Useful color tables for visualization.

image, orthographic, overlay Two-dimensional visualization methods.

is.afni, is.anlz, is.nifti Logical checks.

readAFNI, readANALYZE, readNIfTI Data input.

writeAFNI, writeANALYZE, writeNIfTI Data otuput.

Table 1: List of functions available in oro.dicom and oro.nifti. Functionality around the
AFNI data format was recently added to the oro.nifti package. Please visit http://afni.
nimh.nih.gov/afni/ for more information about the AFNI data format.

data formats have been developed over the years to accommodate data analysis and image
processing.

The ANALYZE format was developed at the Mayo Clinic (in the 1990s) to store multidi-
mensional biomedical images. It is fundamentally different from the DICOM standard since
it groups all images from a single acquisition (typically three- or four-dimensional) into a
pair of binary files, one containing header information and one containing the image infor-
mation. The DICOM standard groups the header and image information, typically a single
two-dimensional image, into a single file. Hence, a single acquisition will contain multiple

DICOM files but only a pair of ANALYZE files.

The NIfTI format was developed in the early 2000s by the DFWG (Data Format Working
Group) in an effort to improve upon the ANALYZE format. The resulting NIfTI-1 format
adheres to the basic header/image combination from the ANALYZE format, but allows the
pair of files to be combined into a single file and re-defines the header fields. In addition,
NIfTT extensions allow one to store additional information (e.g., key acquisition parameters,
experimental design) inside a NIfTT file.

The material presented here provides users with a method of interacting with DICOM, ANA-
LYZE and NIfTI files in R (R Development Core Team 2010). Real-world data sets, that are
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publicly available, are used to illustrate the basic functionality of the two packages: oro.dicom
and oro.nifti. It should be noted that both packages focus on functions for data input/output
and visualization. S4 classes nifti and anlz are provided for further statistical analysis in
R without losing contextual information from the original ANALYZE or NIfTI files. Images
in the metadata-rich DICOM format may be converted to NIfTI semi-automatically using as
much information from the DICOM files as possible. Basic visualization functions, similar to
those commonly used in the medical imaging community, are provided for nifti and anlz
objects. Additionally, the oro.nifti package allows one to track every operation on a nifti
object in an XML-based audit trail.

The oro.dicom and oro.nifti packages should appeal not only to R package developers, but
also to scientists and researchers who want to interrogate medical imaging data using the
statistical capabilities of R without writing and validating their own basic data input/output
functionality. Table 1 lists the key functions for both packages and groups them according to
common functionality. An example of using statistical methodology in R for the analysis of
functional magnetic resonance imaging (fMRI) data is given in Section 3.7. Packages already
available on the Comprehensive R Archive Network (CRAN, http://CRAN.R-project.org/)
that utilize oro.dicom and oro.nifti include cudaBayesreg (Ferreira da Silva 2010a; Ferreira da
Silva 2011), dcemriS4 (Whitcher and Schmid 2011a,b), dpmixsim (Ferreira da Silva 2010b),
and RNiftyReg (Clayden 2011).

2. oro.dicom: DICOM data input/output in R

The DICOM “standard” for data acquired using a clinical imaging device is very broad and
complex. Roughly speaking each DICOM-compliant file is a collection of fields organized
into two two-byte sequences (group,element) that are represented as hexadecimal numbers
and form a tag. The (group,element) combination establishes what type of information is
forthcoming in the file. There is no fixed number of bytes for a DICOM header. The final
(group,element) tag should be the “pixel data” tag (7FE0,0010), such that all subsequent
information is related to the image(s).

All attributes in the DICOM standard require different data types for correct representa-
tion. These are known as value representations (VRs) in DICOM, which may be encoded
explicitly or implicitly. There are 27 explicit VRs defined in the DICOM standard. Detailed
explanations of these data types are provided in the Section 6.2 (part 5) of the DICOM
standard (http://medical.nema.org/). Internal functions have been written to manipulate
each of the value representations and are beyond the scope of this article. The functions
str2date and str2time are useful for converting from the DICOM Datetime and Time value
representations to R date and time objects, respectively.

2.1. The DICOM header

Accessing the information stored in a single DICOM file is provided using the dicomInfo
function. The basic structure of a DICOM file is summarized in Figure 1, for both explicit
and implicit value representations. The first two bytes represent the group tag and the second
two bytes represent the element tag, regardless of the type of VR. The third set of two bytes
contains the characters of the VR on which a decision about being implicit or explicit is made.
Explicit VRs of type (0B, OF, OW, SQ, UT, UN) skip bytes six and seven (counting from
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Data element with explicit VR of 0B, OF, OW, SQ, UT or UN:

ol 11 21 31 41 51 61 71 81 91101 11 |
T St s satat S
| <Group-->|<Element> | <VR----- >|<0x0000->|<Length------——--- >|<Value->

| ol 1| 21 31| 41| 51 61 71
Sy S S
| <Group-->|<Element> | <VR----- >|<Length->|<Value->

Data element with implicit VR:
ol 11 21 31 41 51 61 71

e Bt S
| <Group-->|<Element>|<Length----------- >|<Value->

Figure 1: Byte ordering for a single (group,element) tag in the DICOM standard. Explicit
VRs store the VR as text characters in two bytes. More information is provided in Section 7,
Part 3.5-2009 of the DICOM standard (http://medical.nema.org/).

zero), convert the next four bytes into an integer length and read length number of objects
from the DICOM file. All other explicit VRs follow a slightly different path where bytes six
and seven (counting from zero) provide an integer length and all remaining bytes are read
in as the value. If the character string in bytes four and five do not correspond to a known
VR (Figure 1), then the (group,element) tag is declared to be implicit, the length is taken
from bytes four through seven and all remaining bytes contribute to the value.

The basic structure of the resulting object is a list with two elements: the DICOM header
(hdr) and the DICOM image (img). The header information is organized in a data frame
with six columns and an unknown number of rows depending on the input parameters.

R> fname <- system.file(file.path("dcm", "Abdo.dcm"), package = "oro.dicom")
R> abdo <- dicomInfo(fname)
R> names (abdo)

[1] Ilhdrll "imgll
R> head(abdo$hdr)

group element name code length
1 0002 0000 GroupLength UL 4
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2 0002 0001 FileMetalnformationVersion 0B 2
3 0002 0002 MediaStorageSOPClassUID  UI 26
4 0002 0003 MediaStorageSOPInstanceUID  UI 38
5 0002 0010 TransferSyntaxUID UI 20
6 0002 0012 ImplementationClassUID Ul 16
value sequence
1 166
2 skipped
3 1.2.840.10008.5.1.4.1.1.4
4 1.3.46.670589.11.0.4.1996082307380007
5 1.2.840.10008.1.2.1
6 1.3.46.670589.17

R> tail(abdo$hdr)

group element name code length value sequence
79 0028 0101 BitsStored US 2 12
80 0028 0102 HighBit  US 2 11
81 0028 0103 PixelRepresentation US 2 0
82 0028 1050 WindowCenter DS 4 530
83 0028 1051 WindowWidth DS 4 1052
84 TFEO 0010 PixelData 0W 131072

The ordering of the rows is identical to the ordering in the original DICOM file. Hence, the first
five tags in the DICOM header of Abdo.dcm are: GroupLength, FileMetaInformationVersion,
MediaStorageSOPClassUID, MediaStorageSOPInstanceUID and TransferSyntaxUID. The
last five tags in the DICOM header are also shown, with the very last tag indicating the start
of the image data for that file and the number of bytes (131072) involved. When additional
tags in the DICOM header information are queried (via extractHeader)

R> extractHeader (abdo$hdr, "BitsAllocated")
[1] 16

R> extractHeader (abdo$hdr, "Rows")

[1] 256

R> extractHeader (abdo$hdr, "Columns")

[1] 256

it is clear that the data are consistent with the header information in terms of the number of
bytes (256 x 256 x (16/8) = 131072).

The first five columns are taken directly from the DICOM header information (group, element,
code, length and value) or inferred from that information (name). Note, the (group,element)
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values are stored as character strings even though they are hexadecimal numbers. All aspects
of the data frame may be interrogated in R in order to extract relevant information from the
DICOM header; e.g., "BitsAllocated" as above. The sequence column is used to keep track
of tags that are embedded in a fixed-length SequenceItems tag or between a Sequenceltem-
SequenceDelimitationItem pair.

When multiple DICOM files are located in a single directory, or spread across multiple direc-
tories, one may use the function dicomSeparate (applied here to the directory hk-40).

R> fname <- system.file("hk-40", package = "oro.dicom")
R> hk40 <- dicomSeparate(fname, verbose = TRUE, counter = 10)

40 files to be processed!
10 files processed...

20 files processed...

30 files processed...

40 files processed...

R> unlist(lapply (hk40, length))

hdr img
40 40

The object associated with dicomSeparate is now a nested set of lists, where the hdr element
is a list of data frames and the img element is a list of matrices. These two lists are associated
in a pairwise sense; i.e., hdr[[1]] is the header information for the image img[[1]]. Default
parameters recursive = TRUE and pixelData = TRUE (which is actually an input parameter
for dicomInfo) allow the user to search down all possible sub-directories and upload the image
in addition to the header information, respectively. Also, by default all files are treated as
DICOM files unless the exclude parameter is set to the unwanted file extension; e.g., exclude
= "xml".

The list of DICOM header information across multiple files may be converted to a single data
frame using dicomTable, and written to disc for further analysis; e.g., using write.csv.

R> hk40.info <- dicomTable (hk40$hdr)

R> write.csv(hk40.info, file = "hk40_header.csv")

R> sliceloc.col <- which(hk40$hdr[[1]]$name == "SliceLocation")
R> sliceLocation <- as.numeric(hk40.info[, sliceloc.col])

R> head(sliceLocation)

[1] 160.9315 157.8315 154.7315 151.6315 148.5315 145.4315

R> head(diff(sliceLocation))

[1] -3.1 -3.1 -3.1 -3.1 -3.1 -3.1

R> unique(extractHeader (hk40$hdr, "SliceThickness"))

[1] 3.125
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The tag SliceLocation is extracted from the DICOM header information (at the first element
in the list) and processed using the diff function, and should agree with the SliceThickness
tag. Single DICOM fields may also be extracted from the list of DICOM header information
that contain attributes that are crucial for further image processing; e.g., extracting relevant
MR sequences or acquisition timings.

R> head(extractHeader (hk40$hdr, "SliceLocation"))
[1] 160.9315 157.8315 154.7315 151.6315 148.5315 145.4315

R> modality <- extractHeader (hk40$hdr, "Modality", numeric = FALSE)
R> head(matchHeader (modality, "mr"))

[1] TRUE TRUE TRUE TRUE TRUE TRUE
R> (seriesTime <- extractHeader (hk40$hdr, "SeriesTime", numeric = FALSE))

[1] "113751.966000" "113751.966000" "113751.966000" "113751.966000"
[6] "113751.966000" "113751.966000" "113751.966000" "113751.966000"
[9] "113751.966000" "113751.966000" "113751.966000" "113751.966000"
[13] "113751.966000" "113751.966000" "113751.966000" "113751.966000"
[17] "113751.966000" "113751.966000" "113751.966000" "113751.966000"
[21] "113751.966000" "113751.966000" "113751.966000" "113751.966000"
[25] "113751.966000" "113751.966000" "113751.966000" "113751.966000"
[29] "113751.966000" "113751.966000" "113751.966000" "113751.966000"
[33] "113751.966000" "113751.966000" "113751.966000" "113751.966000"
[37] "113751.966000" "113751.966000" "113751.966000" "113751.966000"

R> str2time(seriesTime)

$txt

[1] "11:37:51.96600" "11:37:51.96600" "11:37:51.96600" "11:37:51.96600"

[6] "11:37:51.96600" "11:37:51.96600" "11:37:51.96600" "11:37:51.96600"

[9] "11:37:51.96600" "11:37:51.96600" "11:37:51.96600" "11:37:51.96600"
[13] "11:37:51.96600" "11:37:51.96600" "11:37:51.96600" "11:37:51.96600"
[17] "11:37:51.96600" "11:37:51.96600" "11:37:51.96600" "11:37:51.96600"
[21] "11:37:51.96600" "11:37:51.96600" "11:37:51.96600" "11:37:51.96600"
[25] "11:37:51.96600" "11:37:51.96600" "11:37:51.96600" "11:37:51.96600"
[29] "11:37:51.96600" "11:37:51.96600" "11:37:51.96600" "11:37:51.96600"
[33] "11:37:51.96600" "11:37:51.96600" "11:37:51.96600" "11:37:51.96600"
[37] "11:37:51.96600" "11:37:51.96600" "11:37:51.96600" "11:37:51.96600"

$time
[1] 41871.97 41871.97 41871.97 41871.97 41871.97 41871.97 41871.97
[8] 41871.97 41871.97 41871.97 41871.97 41871.97 41871.97 41871.97
[15] 41871.97 41871.97 41871.97 41871.97 41871.97 41871.97 41871.97
[22] 41871.97 41871.97 41871.97 41871.97 41871.97 41871.97 41871.97
[29] 41871.97 41871.97 41871.97 41871.97 41871.97 41871.97 41871.97
[36] 41871.97 41871.97 41871.97 41871.97 41871.97



8 The DICOM and NIfTI Data Standards in R

Figure 2: Coronal slice of the abdomen viewed in neurological convention (left is right and
right is left).

2.2. The DICOM image

Most DICOM files involve a single slice from an acquisition — the image. A notable exception is
the Siemens MOSAIC format (addressed in Section 2.2.1). The oro.dicom package assumes the
image is stored as a flat file of two-byte integers without compression. A variety of additional
image formats are possible within the DICOM standard; e.g., RGB-colorized, JPEG, JPEG
Lossless, JPEG 2000 and run-length encoding (RLE). None of these formats are currently
available in oro.dicom. Going back to the Abdo.dcm example, the image is accessed via

R> image(t(abdo$img), col = grey(0:64/64), axes = FALSE, xlab = "",
+ ylab = nm)

where the transpose operation is necessary for proper visualization of the image. Figure 2
displays a coronal slice through the abdomen from an MRI acquisition. All information from
the original data acquisition should accompany the image through the DICOM header, and
this information is utilized as much as possible by oro.dicom to simplify the manipulation
of DICOM data. As previously shown, this information is easily available to the user by
matching DICOM header fields with valid strings. Note, the function extractHeader assumes
the output should be coerced via as.numeric but this may be disabled setting the input
parameter numeric = FALSE.

R> extractHeader (abdo$hdr, "Manufacturer", numeric = FALSE)

[1] "Philips"



Journal of Statistical Software

R> extractHeader (abdo$hdr, "RepetitionTime")
[1] 2000

R> extractHeader (abdo$hdr, "EchoTime")

(1] 100

The basic DICOM file structure does not encourage the analysis of multi-dimensional imaging
data (e.g., 3D or 4D) commonly acquired on clinical scanners. Hence, the oro.dicom package
has been developed to access DICOM files and facilitate their conversion to the NIfTI or
ANALYZE formats in R. The conversion process requires the oro.nifti package and will be
outlined in Section 4.

Siemens MOSAIC format

Siemens multi-slice EPI (echo planar imaging) data may be collected as a “mosaic” image;
i.e., all slices acquired in a single TR (repetition time) frame of a dynamic run are stored
in a single DICOM file. The images are stored in an M xN array of images. The function
create3D will try to guess the number of images embedded within the single DICOM file
using the AcquisitionMatrix field. If this doesn’t work, one may enter the (M, N) doublet
explicitly.

R> fname <- system.file(file.path("dcm", "MR-sonata-3D-as-Tile.dcm"),
+ package = "oro.dicom")

R> dcm <- dicomInfo(fname)

R> dim(dcm$img)

[1] 384 384

R> dcmImage <- create3D(dcm, mosaic = TRUE)
R> dim(dcmImage)

[1] 64 64 36

Figure 3a is taken from the raw DICOM file, in mosaic format, and displayed with the default
margins in R. Figure 3b is displayed after re-organizing the original DICOM file into a three-
dimensional array (it was also converted to the NIfTI format for ease of visualization using
the overloaded image function in oro.nifti).

3. oro.nifti: NIfTI-1 data input/output in R

Although the industry standard for medical imaging data is DICOM, another format has
come to be heavily used in the image analysis community. The ANALYZE format was orig-
inally developed in conjunction with an image processing system (of the same name) at the
Mayo Foundation. A common version of the format, although not the most recent, is called
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Figure 3: (a) Single MOSAIC image as read in from dicomInfo. (b) Lightbox display of
three-dimensional array of images after processing via create3D.

ANALYZE 7.5. A copy of the file ANALYZE75.pdf has been included in oro.nifti (accessed via
system.file("doc/ANALYZE75.pdf", package = "oro.dicom")) since it does not appear
to be available from http://wuw.mayo.edu/ any longer. An ANALYZE 7.5 format image is
comprised of two files, the “.hdr” and “. img” files, that contain information about the acquisi-
tion and the acquisition itself, respectively. A more recent adaption of this format is known as
NIfTI-1 and is a product of the Data Format Working Group (DFWG) from the Neuroimag-
ing Informatics Technology Initiative (NIfTI; http://nifti.nimh.nih.gov/). The NIfTI-1
data format is almost identical to the ANALYZE format, but offers a few improvements:

e Merging of the header and image information into one file (.nii).
e Re-organization of the 348-byte fixed header into more relevant categories .
e Possibility of extending the header information.

There are several R packages that also offer input/output functionality for the NIfTI and
ANALYZE data formats in addition to image analysis capabilities for specific MRI acquisition
sequences; e.g., AnalyzeFMRI (Marchini and Lafaye de Micheaux 2009; Bordier et al. 2011),
fmri (Tabelow and Polzehl 2011) and tractor.base (Clayden 2010; Clayden et al. 2011). The
Rniftilib package provides access to NIfTI data via the nifticlib library (Granert 2010).

3.1. The NIfTI header

The NIfTT header inherits its structure (348 bytes in length) from the ANALYZE data format.
The last four bytes in the NIfTT header correspond to the “magic” field and denote whether
or not the header and image are contained in a single file (magic = "n+1\0") or two separate
files (magic = "ni1\0"), the latter being identical to the structure of the ANALYZE data
format. The NIfTT data format added an additional four bytes to allow for “extensions” to
the header. By default these four bytes are set to zero.
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The first example of reading in, and displaying, medical imaging data in NIfTT format
avgl52T1_LR_nifti.nii.gz was obtained from the NIfTT website (http://nifti.nimh.
nih.gov/nifti-1/). Successful execution of the commands

R> fname <- system.file(file.path("nifti", "mnilR.nii.gz"),

+ package = "oro.nifti")
R> (mnilR <- readNIfTI(fname))

NIfTI-1 format

Type : niftiAuditTrail
Data Type 2 (UINT8)
Bits per Pixel 8

Slice Code 0 (Unknown)
Intent Code : 0 (None)
Qform Code 0 (Unknown)
Sform Code 4 (MNI_152)
Dimension : 91 x 109 x 91
Pixel Dimension : 2 x 2 x 2
Voxel Units : mm

Time Units 1 sec

R> aux.file(mniLR)

[1] "nomne "
R> descrip(mniLR)

[1] "FSL3.2beta"

produces an S4 "nifti" object (or "niftiAuditTrail" if the audit trail option is set). Two
accessor functions are also provided: aux.file and descrip. The former is used to access
the original name of the file (if it has been provided) and the latter is the name of a valid
NIfTT header field used to hold a “description” (up to 80 characters in length).

3.2. The NIfTT image

Image information begins at the byte position determined by the voxoffset slot. In a single
NIfTTI file (magic = "n+1\0"), this is by default after the first 352 bytes. Header extensions
extend the size of the header and come before the image information leading to a consequent
increase of voxoffset for single NIfTI files. The split NIfTI (magic = "ni1\0") and ANA-
LYZE formats contain pairs of files, where the header and image information are separated,
and do not have this problem. In this case voxoffset is set to 0.

The image function has been overloaded so that it behaves differently when dealing with
medical image objects (nifti and anlz). The command

R> image(mniLR)
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Figure 4: (a) Axial slices of MNI volume mniLR_nifti stored in the neurological convention
(right-is-right), but displayed in the radiological convention (right-is-left). (b) Axial slices of
MNI volume mniRL_nifti stored and displayed in the radiological convention.

produces a three-dimensional array of the MNI brain, with the default NIfTT axes, and is
displayed on a 10x10 grid of images (Figure 4a). The image function for medical image
S4 objects is an attempt to balance minimal user input with enough flexibility to customize
the display when necessary. For example, single slices may be viewed by using the option
plot.type = "single" in conjunction with the option z = to specify the slice.

The second example of reading in and displaying medical imaging data in the NIfTI format
avgl52T1_RL_nifti.nii.gz was also obtained from the NIfTT website (http://nifti.nimh.
nih.gov/nifti-1/). Successful execution of the commands

R> fname <- system.file(file.path("nifti", "mniRL.nii.gz"),
+ package = "oro.nifti")
R> (mniRL <- readNIfTI(fname))

NIfTI-1 format

Type : niftiAuditTrail
Data Type 2 (UINT8)
Bits per Pixel 8

Slice Code : 0 (Unknown)
Intent Code : 0 (None)
Qform Code 0 (Unknown)
Sform Code : 4 (MNI_152)
Dimension : 91 x 109 x 91
Pixel Dimension : 2 x 2 x 2
Voxel Units : mm

Time Units : sec

R> image (mniRL)
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Figure 5: Orthographic display of the MNI volume mniRL_nifti. By default the mid-axial,
mid-sagittal and mid-coronal planes are chosen.

produces a three-dimensional array of the MNI brain that is displayed in a 10x10 grid of
images (Figure 4b). The two sets of data in Figure 4 are stored in two different orientations,
commonly referred to as the radiological and neurological conventions. The neurological
convention is where “right is right” and one is essentially looking through the subject. The
radiological convention is where “right is left” and one is looking at the subject. An additional
graphical display function has been added for nifti and anlz objects that allows a so-called
orthographic visualization of the data.

R> orthographic (mniRL)

As seen in Figure 5 the mid-axial, mid-sagittal and mid-coronal planes are displayed by
default. The slices used may be set using xyz = ¢(I,J,K), where (I, J, K) are appropriate
indices, and the crosshairs will provide a spatial reference in each plane relative to the other
two.

3.3. A note on axes and orientation

The NIfTI format contains an implicit generalized spatial transformation from the data co-
ordinate system (i, j, k) into a real-space “right-handed” co-ordinate system. In this real-space
system, the (x,y, z) axes are usually set such that x increases from left to right, y increases
from posterior to anterior and z increases from inferior to superior.

13
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At this point in time the oro.nifti package cannot apply an arbitrary transform to the imaging
data into (x,y, z) space — such a transform may require non-integral indices and interpolation
steps. The package does accommodate straightforward transformations of imaging data; e.g.,
setting the i-axis to increase from right to left (the neurological convention). Future versions
of oro.nifti will attempt to address more complicated spatial transformations and provide
functionality to display the (z,y, z) axes on orthographic plots.

3.4. NIfTI and ANALYZE data in $4

A major improvement in the oro.nifti package is the fact that standard medical imaging
formats are stored in unique classes under the S4 system (Chambers 2008). Essentially, NIfT1
and ANALYZE data are stored as multi-dimensional arrays with extra slots created that
capture the format-specific header information; e.g., for a nifti object

R> slotNames (mniRL)

[1] ".Data" "trail" "extensions" "sizeof_hdr"
[6] "data_type" "db_name" "extents" "session_error"
[9] "regular" "dim_info" "dim_" "intent_p1"
[13] "intent_p2" "intent_p3" "intent_code" "datatype"

[(17] "bitpix" "slice_start" "pixdim" "vox_offset"
[21] "scl_slope" "scl_inter" "slice_end" "slice_code"
[25] "xyzt_units" "cal_max" "cal_min" "slice_duration"
[29] "toffset" "glmax" "glmin" "descrip"

[33] "aux_file" "gform_code" "sform_code" "quatern_b"
[37] "quatern_c" "quatern_d" "qoffset_x" "qoffset_y"
[41] "qoffset_z" "srow_x" "srow_y" "srow_z"

[45] "intent_name" "magic" "extender" "reoriented"

R> c(mniRL@cal_min, mniRL@cal_max)

[1]

0 255

R> range (mniRL)

[1]

0 255

R> mniRL@datatype

[1] 2
R> convert.datatype (mniRL@datatype)

[1] "UINT8"

Note, an ANALYZE object has a slightly different set of slots. Slots 447 are taken verbatim
from the definition of the NIfTT format and are read directly from a file. The slot .Data is
the multidimensional array (since class nifti inherits from class array) and the slots trail,
extensions and reoriented are used for internal bookkeeping. In the code above we have
accessed the min/max values of the imaging data using the "cal_min" and "cal_max" slots
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and matches a direct interrogation of the .Data slot using the range function. Looking at
the datatype slot provides a numeric code that may be converted into a value that indicates
the type of byte structure used (in this case an 8-bit or 1-byte unsigned integer).

As introduced in Section 3.1 there are currently only two accessor functions to slots in the
NIfTT header (aux.file and descrip) — all other slots are either ignored or used inside of
functions that operate on ANALYZE/NIfTI objects. The NIfTI class also has the ability
to read and write extensions that conform to the NIfTI data format. Customized printing
and validity-checking functions are available to the user and every attempt has been made to
ensure that the information from the multi-dimensional array is in agreement with the header
values.

The constructor function nifti produces valid NIfTI objects, including a consistent header,
from an arbitrary array.

R> n <- 100
R> (random.image <- nifti(array(runif(a * n), c(un, n, 1))))

NIfTI-1 format

Type : niftiAuditTrail
Data Type 2 (UINT8)
Bits per Pixel 8

Slice Code : 0 (Unknown)
Intent Code 0 (None)
Qform Code 0 (Unknown)
Sform Code 0 (Unknown)
Dimension : 100 x 100 x 1
Pixel Dimension : 1 x 1 x 1
Voxel Units : Unknown

Time Units : Unknown

R> random.image@dim_

[11 3100100 1 1 1 1 1
R> dim(random.image)

(1] 100 100 1

The function writeNIfTI outputs valid NIfTT class files, which can be opened in other medical
imaging software. Files can either be stored as standard .nii files or compressed with gnuzip
(default).

R> writeNIfTI(random.image, "random")
R> list.files(pattern = "random")

[1] "random.nii.gz"

15
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R> audit.trail (mniLR)

<audit-trail xmlns="http://www.dcemri.org/namespaces/audit-trail/1.0">
<created>
<workingDirectory>/home/guest/dicom_nifti</workingDirectory>
<filename>/home/bwhitcher/R/x86_64-unknown-linux-gnu-library/2.13/
oro.nifti/nifti/mnilR.nii.gz</filename>
<call>readNIfTI(fname = fname)</call>
<system>
<r-version.version.string>R version 2.13.1 (2011-07-08)
</r-version.version.string>
<date>Sun Aug 21 09:29:36 2011 BST</date>
<user>bwhitcher</user>
<package-version.Version>0.2.7</package-version.Version>
</system>
</created>
</audit-trail>

Figure 6: XML-based audit trail obtained via audit.trail (mniLR).

3.5. The audit trail

Following on from the S4 implementation of both the NIfTT and ANALYZE data formats,
the ability to extend the NIfTT data format header is utilized in the oro.nifti package. First,
extensions are properly handled when reading and writing NIfTT data. Second, users are al-
lowed to add extensions to newly-created NIfTT objects by casting them as niftiExtension
objects and adding niftiExtensionSection objects to the extensions slot. Third, by de-
fault all operations that are performed on a NIfTI object will generate what we call an audit
trail that consists of an XML-based log (Temple Lang 2010). Each log entry contains infor-
mation not only about the function applied to the NIfTT object, but also various system-level
information; e.g., version of R, user name, date, time, etc. When writing NIfTI-class objects
to disk, the XML-based NIfTI extension is converted into plain text and saved using ecode
= 6 to denote plain ASCII text only. The user may control the tracking of data manipulation
via the audit trail using a global option. For example, please use the command

R> options(niftiAuditTrail = FALSE)

to turn off the “audit trail” option in oro.nifti. Figure 6 displays output from the accessor
function audit.trail (mnilR), the XML-based audit trail that is stored as a NIfTT header
extension.

3.6. Interactive visualization

Basic visualization of nifti and anlz class images can be achieved with any visualization
for arrays in R. For example, the EBImage package provides functions display and animate
for visualization (Sklyar and Huber 2006; Sklyar et al. 2010). Please note that functions in
EBImage expect grey-scale values in the range [0, 1], hence the display of nifti data may be
performed using
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R> mnilR.range <- range(mniLR)
R> display((mnilLR - min(mniLR))/diff (mniLR.range))

Interactive visualization of multi-dimensional arrays, stored in NIfTT or ANALYZE format, is
however best performed outside of R at this point in time. Popular viewers, especially for neu-
roimaging data, include FSLView (Analysis Group, FMRIB, Oxford 2011), MRIcron (Rorden
2011), ITKSnap (Yushkevich et al. 2006), and VolView (Kitware, Inc. 2011). The mritc pack-
age provides basic interactive visualization of ANALYZE/NIfTI data using a Tcl/Tk interface
(Whitcher et al. 2011; Feng and Tierney 2011).

3.7. An example using functional MRI data

This is an example of reading in, and displaying, a four-dimensional medical imaging data set
in NIfTI format filtered_func_data obtained from the FSL evaluation and example data
suite (Analysis Group, FMRIB, Oxford 2008). Successful execution of the commands

R> (ffd <- readNIfTI("filtered_func_data"))

NIfTI-1 format

Type : niftiAuditTrail
Data Type : 16 (FLOAT32)
Bits per Pixel : 32

Slice Code : 0 (Unknown)
Intent Code : 0 (None)

Qform Code : 0 (Unknown)
Sform Code : 0 (Unknown)
Dimension : 64 x 64 x 21 x 180
Pixel Dimension : 4 x 4 x 6 x 3
Voxel Units : mm

Time Units 1 sec

R> image(ffd, zlim = range(ffd) * 0.85)

produces a four-dimensional (4D) array of imaging data that may be displayed in a 5x5 grid
of images (Figure 7a). The first three dimensions are spatial locations of the voxel (volume
element) and the fourth dimension is time for this functional MRI (fMRI) acquisition. As seen
from the summary of object, there are 21 axial slices of fairly coarse resolution (4x4x6 mm)
and reasonable temporal resolution (3 s). Figure 7b depicts the orthographic display of
the filtered_func_data using the axial plane containing the left-and-right thalamus to
approximately center the crosshair vertically.

R> orthographic(ffd, xyz = c(34, 29, 10), zlim = range(ffd) * 0.85)

Statistical analysis

The R programming environment provides a wide variety of statistical methodology for the
quantitative analysis of medical imaging data. For example, fMRI data are typically analyzed

17
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Figure 7: (a) Axial slices of the functional MRI data set filtered_func_data from the first
acquisition. (b) Orthographic display of the first volume from the functional MRI data set
filtered_func_data.
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Figure 8: Visual (30 seconds on/off) and auditory (45 seconds on/off) stimuli, convolved
with a parametric haemodynamic response function, used in the GLM-based fMRI analysis.

by applying a multiple linear regression model, commonly referred to in the literature as a
general linear model (GLM), that utilizes the stimulus experiment to construct the design
matrix. Estimation of the regression coefficients in the GLM produces a statistical image;
e.g., Z statistics for a voxel-wise hypothesis test on activation in fMRI experiments (Friston
et al. 1994, 1995).

The 4D volume of imaging data in filtered_func_data was acquired in an experiment with
a repetition time TR = 3 s, using both visual and auditory stimuli. The visual stimulus was
applied using an on/off pattern for a duration of 60 seconds and the auditory stimulus was
applied using an on/off pattern for a duration of 90 seconds. A parametric haemodynamic
response function (HRF), with mean ;1 = 6 and standard deviation o = 3, is utilized here
which is similar to the default values in FSL (Smith et al. 2004). We construct the experimen-
tal design and HRF in seconds, perform the convolution and then downsample by a factor of
three in order to obtain columns of the design matrix that match the acquisition of the MRI
data.

R> visual <- rep(c(-0.5, 0.5), each = 30, times = 9)

R> auditory <- rep(c(-0.5, 0.5), each = 45, times = 6)
R> hrf <- c(dgamma(1:15, 4, scale = 1.5))

R> hrf0 <- c(hrf, rep(0, length(visual) - length(hrf)))
R> visual.hrf <- convolve(hrf0, visual)

R> hrf0 <- c(hrf, rep(0, length(auditory) - length(hrf)))
R> auditory.hrf <- convolve(hrf0, auditory)

R> index <- seq(3, 540, by = 3)

R> visual.hrf <- visual.hrf[index]

R> auditory.hrf <- auditory.hrf[index]

Figure 8 depicts the visual and auditory stimuli, convolved with the HRF, in the order of
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acquisition. The design matrix is than used in a voxel-wise GLM, where the 1sfit function
in R estimates the parameters in the linear regression. At each voxel t statistics and their
associated p values are computed for the hypothesis test of no effect for each individual
stimulus, along with an F' statistic for the hypothesis test of no effect of any stimuli using the
1s.print function.

R> voxel.lsfit <- function(x, thresh) {
if (max(x) < thresh) return(rep(NA, 5))
output <- 1sfit(cbind(visual.hrf, auditory.hrf), x)
output.t <- ls.print(output, print.it = FALSE)$coef.table[[1]][2:3,3:4]
output.f <- ls.print(output, print.it = FALSE)$summary[3]
c(output.t, as.numeric(output.f))
}
R> ffd.glm <- apply(ffd, 1:3, voxel.lsfit, thresh = 0.1 * max(ffd))

+ + + + + +

Given the multidimensional array of output from the GLM fitting procedure, the t statistics
are separated and converted into Z statistics to follow the convention used in FSL. For the
purposes of this example we have not applied any multiple comparisons correction procedure
and, instead, use a relatively large threshold of Z > 5 for visualization.

R> dof <- ntim(ffd) - 1

R> Z.visual <- nifti(qnorm(pt(ffd.gim[1, , , ], dof, log.p = TRUE),

+ log.p = TRUE), datatype = 16)

R> Z.auditory <- nifti(qnorm(pt(ffd.glm[2, , , ], dof, log.p = TRUE),

+ log.p = TRUE), datatype = 16)

R> overlay(ffd, ifelse(Z.visual > 5, Z.visual, NA),

+ zlim.x = range(ffd) * 0.85, zlim.y = range(Z.visual, na.rm = TRUE))
R> overlay(ffd, ifelse(Z.auditory > 5, Z.auditory, NA),

+ zlim.x = range(ffd) * 0.85, zlim.y = range(Z.auditory, na.rm = TRUE))

Statistical images in neuroimaging are commonly displayed as an overlay on top of a reference
image (one of the dynamic acquisitions) in order to provide anatomical context. The overlay
command in oro.nifti allows one to display the statistical image of voxel-wise activations
overlayed on one of the original EPI (echo planar imaging) volumes acquired in the fMRI
experiment. The 3D array of Z statistics for the visual and auditory tasks are overlayed on
the original data for “anatomical” reference in Figure 9. The Z statistics that exceed the
threshold appear to match know neuroanatomy, where the visual cortex in the occipital lobe
shows activation under the visual stimulus (Figure 9a) and the primary auditory cortex in
the temporal lobe shows activation under the auditory stimulus (Figure 9b).

4. Converting DICOM to NIfTI

The oro.dicom and oro.nifti packages have been specifically designed to use as much infor-
mation as possible from the metadata-rich DICOM format and apply that information in the
construction of the NIfTI data volume. The function dicom2nifti converts a list of DICOM
images into an nifti object, and likewise dicom2analyze converts such a list into an anlz
object.
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(b)

Figure 9: (a) Axial slices of the functional MRI data with the statistical image from the
visual stimulus overlayed. (b) Axial slices of the functional MRI data with the statistical
image from the auditory stimulus overlayed. Both sets of test statistics were thresholded at
Z > 5 for all voxel.
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Historically, data conversion from DICOM to NIfTT (or ANALYZE) has been provided outside
of R using one of several standalone software packages: XMedCon (Nolf 2003), FreeSurfer
(Athinoula A. Martinos Center for Biomedical Imaging 2011), MRIConvert (Smith 2011).
This is by no means an exhaustive list of software packages available for DICOM conversion.
In addition there are several other R packages with the ability to process DICOM data: fmri
(Tabelow and Polzehl 2011), tractor.base (Clayden 2010; Clayden et al. 2011, part of the
tractor project http://code.google.com/p/tractor).

4.1. An example using a single-series data set

Using the 40 images from the hk40 object (previously defined in Section 2.1) it is straightfor-
ward to perform DICOM-to-NIfTT conversion using only default settings and plot the results
in either lightbox or orthographic displays.

R> args(dicom2nifti)

function (dcm, datatype = 4, units = c("mm", "sec"), rescale = FALSE,
reslice = TRUE, gqform = TRUE, sform = TRUE, DIM = 3,
descrip = "SeriesDescription", aux.file = NULL, ...)

NULL

R> (hk40n <- dicom2nifti (hk40))

NIfTI-1 format

Type : niftiAuditTrail
Data Type : 4 (INT16)

Bits per Pixel : 16

Slice Code : 0 (Unknown)
Intent Code : 0 (None)

Qform Code : 2 (Aligned_Anat)
Sform Code : 2 (Aligned_Anat)
Dimension : 256 x 256 x 40
Pixel Dimension : 1.56 x 1.56 x 3.12
Voxel Units : mm

Time Units : sec

R> image (hk40n)
R> orthographic (hk40n, col.crosshairs = "green")

By default dicom2nifti takes all image data from the DICOM list and creates a 3D image.
Four-dimensional image volumes (three in space plus one in time) are also converted automat-
ically by specifying DIM = 4, where slice positions are taken from the ImagePositionPatient
DICOM header field. For example, using DIM = 4 on the hk40 DICOM data,

R> (hk40n <- dicom2nifti(hk40, DIM = 4))


http://code.google.com/p/tractor
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(b)

Figure 10: (a) Lightbox display of three-dimensional array of images. (b) Orthographic
display of the same three-dimensional array (using the default settings for orthographic).

23
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NIfTI-1 format

Type : niftiAuditTrail
Data Type : 4 (INT16)

Bits per Pixel : 16

Slice Code : 0 (Unknown)
Intent Code : 0 (None)

Qform Code : 2 (Aligned_Anat)
Sform Code : 2 (Aligned_Anat)
Dimension : 256 x 256 x 40
Pixel Dimension : 1.56 x 1.56 x 3.12
Voxel Units : mm

Time Units : sec

will also produce a three-dimensional volume of images, since the ImagePositionPatient
field is unique for each single slice of the volume.

The functions dicom2nifti and dicom2analyze will fail when the dimensions of the indi-
vidual images in the DICOM list do not match. However, they do not check for different
series numbers or patient IDs so caution should be exercised when scripting automated work
flows for DICOM-to-NIfTT conversion. In cases where a DICOM file includes images from
more than one series, the corresponding slices have to be chosen before conversion, using
dicomTable, extractHeader, and matchHeader.

4.2. An example using a multiple-volume data set

The National Biomedical Imaging Archive (NBIA; http://cabig.nci.nih.gov/tools/NCIA)
is a searchable, national repository integrating in vivo cancer images with clinical and genomic
data. The NBIA provides the scientific community with public access to DICOM images, im-
age markup, annotations, and rich metadata. The multiple MRI sequences processed here
were downloaded from the “RIDER Neuro MRI” collection at http://wiki.nci.nih.gov/
display/CIP/RIDER. A small for loop has been written to operate on a subset of the DI-
COM directory structure, where the SeriesInstanceUID DICOM header field is assumed to
be 100% accurate in series differentiation.

R> subject <- "1086100996"
R> DCM <- dicomSeparate(subject, verbose = TRUE, counter = 100)

564 files to be processed!
100 files processed...
200 files processed...
300 files processed...
400 files processed...
500 files processed...

R> seriesInstanceUID <- extractHeader (DCM$hdr, "SeriesInstanceUID",

+ FALSE)

R> for (uid in unique(seriesInstanceUID)) {

+ index <- which(unlist(lapply(DCM$hdr, function(x) uid 7inj, x$value)))


http://cabig.nci.nih.gov/tools/NCIA
http://wiki.nci.nih.gov/display/CIP/RIDER
http://wiki.nci.nih.gov/display/CIP/RIDER
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reslice <- TRUE
}
uid.nifti <- dicom2nifti(uid.dcm, DIM = D, reslice = reslice,
descrip = c("PatientID", "SeriesDescription"))
writeNIfTI(uid.nifti, fname)

+ uid.dcm <- list(hdr = DCM$hdr[index], img = DCM$img[index])

+ patientsName <- extractHeader (uid.dcm$hdr, "PatientsName", FALSE)

+ studyDate <- extractHeader (uid.dcm$hdr, "StudyDate", FALSE)

+ seriesDescription <- extractHeader(uid.dcm$hdr, "SeriesDescription",
+ FALSE)

+ fname <- paste(gsub("[~0-9A-Za-z]", "", unique(c(patientsName,

+ studyDate, seriesDescription))), collapse = "_")

+ cat("## ", fname, fill = TRUE)

+ if (gsub("["0-9A-Za-z]", "", unique(seriesDescription)) == "axtensor") {
+ D <-4

+ reslice <- FALSE

+ } else {

+ D <-3

+

+

+

+

+

+

## 281949_19040720_axtensor
##  281949_19040720_ax30flip
##  281949_19040720_ax15flip
##  281949_19040720_ax25bflip
##  281949_19040720_ax20flip
##  281949_19040720_ax10flip
##  281949_19040720_axbflip

Note, the diffusion tensor imaging (DTI) data axtensor is assumed to be four dimensional
and all other series (the multiple flip-angle acquisitions) are assumed to be three dimensional.
There is always a balance between what information should be pre-specified versus what can
easily be extracted from the DICOM headers or images.

5. Conclusion

Medical image analysis depends on the efficient manipulation and conversion of DICOM data.
The oro.dicom and oro.nifti packages have been developed to provide the user with a set of
functions that mask as many of the background details as possible while still providing flexible
and robust performance.

The future of medical image analysis in R will benefit from a unified view of the imaging data
standards: DICOM, NIfTT and ANALYZE. The existence of a single package for handling
imaging data formats would facilitate interoperability between the ever increasing number of
R packages devoted to medical image analysis. We do not assume that the data structures
in oro.dicom or oro.nifti are best-suited for this purpose and we welcome an open discussion
around how best to provide this standardization to the end user.
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