
JSS Journal of Statistical Software
January 2012, Volume 46, Code Snippet 2. http://www.jstatsoft.org/

%PROC_R: A SAS Macro that Enables Native R
Programming in the Base SAS Environment

Xin Wei
Roche Pharmaceuticals

Abstract

In this paper, we describe %PROC_R, a SAS macro that enables native R language to be
embedded in and executed along with a SAS program in the base SAS environment under
Windows OS. This macro executes a user-defined R code in batch mode by calling the
unnamed pipe method within base SAS. The R textual and graphical output can be routed
to the SAS output window and result viewer, respectively. Also, this macro automatically
converts data between SAS datasets and R data frames such that the data and results
from each statistical environment can be utilized by the other environment. The objective
of this work is to leverage the strength of the R programming language within the SAS
environment in a systematic manner. Moreover, this macro helps statistical programmers
to learn a new statistical language while staying in a familiar environment.

Keywords: SAS, R, macro, pipe, ODS, batch mode, HTML.

1. Introduction

As the number of data analysis languages and platforms rapidly grows, it is becoming increas-
ingly desirable for programmers to call a language from a different environment. Numerous
efforts in this direction have empowered statistical analysts with the ability to use their favorite
language within their operating environment. The R project, a leading open-source statistical
computing language and environment (R Development Core Team 2011b), has packages to
integrate native C++ (Eddelbuettel and Francois 2011) and SQL code (Grothendieck 2011).
Python programmers have developed various methods that allow rich statistical collections of
the R project to be accessible within the Python environment (Xia, McClelland, and Wang
2010). In the proprietary arena, SAS is a widely used system for data management and statis-
tical analysis. PROC SQL is SAS’s product to enable SQL programmers to efficiently perform
data manipulation within the SAS platform without much base SAS knowledge (SAS Institute

http://www.jstatsoft.org/

2 %PROC_R: Native R Programming in SAS

Inc. 2004). In light of increasing momentum of R in statistical computing, the SAS institute
recently released the interface between R and SAS/IML (Wicklin 2009), the latter being a
specialized SAS module oriented towards matrix computation. However, base SAS, which is
the foundation of all SAS modules and has a much bigger user community than SAS/IML,
lacks a well documented and user-friendly integration for R programming. A programming
interface of base SAS and R is highly desirable because base SAS and SAS/STAT users fre-
quently need to access the novel statistical/visualization tools that have been developed in
the open source R project and not yet been implemented in SAS. In this paper, we present
a SAS programming interface in which R code can be written and executed within a SAS
session and the resulting textual and graphical output of R is accessible from a SAS termi-
nal. This SAS macro constructs a functional R script based upon a built-in R function and a
customer-defined R script. Upon submission, the R code is executed via a batch mode session
by a SAS pipe. From the pipe, textual and graphical R output can be rendered to the proper
SAS terminal. We name this interface %PROC_R in the same spirit as the commercialized SAS
products such as PROC SQL.

2. Interface

sqldf (Grothendieck 2011) is an R package from which SQLite syntax can be submitted in R
code to manipulate R data frame. The following code demonstrates the select clause of SQL
is used in R environment to compute summary statistics of R data frame testdata.

sqldf(" select avg (value) mean from testdata group by treatment")

Similarly, the syntax of PROC SQL from base SAS is as follows:

proc sql;

Select mean (value) as mean from testdata group by treatment;

quit;

We design our SAS/R interface in the similar fashion to sqldf and PROC SQL. Following a
regular SAS program, a R script can be written and embedded in the following approach:

%include "C:\Proc_R.sas";

%Proc_R (SAS2R =, R2SAS =);

Cards4;

Please Enter R Code Here

;;;;

%Quit;

Following a chunk of regular SAS code, %include statement is invoked to execute the source
code of %Proc_R that prepares the proper environment in the current SAS session for R code
construction and execution. Note that the macro %PROC_R has two macro variables SAS2R

Journal of Statistical Software – Code Snippets 3

and R2SAS as input parameters that define the data transfer mechanism between SAS and
R. SAS2R specifies the names of SAS datasets to be used in R session after being converted
to R data frame. R2SAS defines the R data frames resulted from the R session that needs to
be converted to SAS dataset because they may be needed in the remaining SAS session for
additional analysis. Next we use four examples to demonstrate how the workflow of SAS and
R could be seamlessly glued together by this interface.

3. Examples

3.1. Compute eigenvalue and eigenvectors for a numeric SAS dataset

R is a matrix oriented language while the base SAS is designed more toward the handling
of tabular dataset. In this example, we first use SAS to create a SAS dataset “test” which
mimics a 10 X 10 numeric matrix. In the %PROC_R macro argument, we specify this test SAS
dataset as the input data for R session. This SAS dataset is converted to an R data frame
on the backend of %PROC_R. Since data frame is the default R object to which SAS dataset is
converted, one needs to explicitly convert the data frame to a matrix object in the user-defined
R script. Finally eigen() function of R is invoked to compute the eigenvalue and vectors.

data test;

do x=1 to 4;

array a[4] a1-a4;

do i=1 to 4;

a[i] = rannor(100);

end;

output;

end;

drop i x;

run;

%include "C:\Proc_R.sas";

%Proc_R (SAS2R = test, R2SAS =);

cards4;

R> testm <- as.matrix(test)

R> eigen(testm)

;;;;

%quit;

The R log and result page are displayed on the SAS output window(Figure 1).

3.2. Conduct regular statistical analysis with R from SAS

This example uses R example from Venables and Ripley (2002). As seen below, several lines
of example R codes are executed by %PROC_R macro.

4 %PROC_R: Native R Programming in SAS

Figure 1: R matrix computation result is displayed in SAS output window.

%include "C:\Proc_R.sas";

%Proc_R (SAS2R =, R2SAS =) ;

cards4;

R> x <- seq(1, 25, 0.5)

R> w <- 1 + x / 2

R> y <- x + w * rnorm (x)

R> dum <- data.frame (x, y, w)

R> fm <- lm (y ~ x, data = dum)

R> summary (fm)

R> fm1 <- lm(y ~ x, data = dum, weight = 1 / w ^ 2)

R> summary (fm1)

R> lrf <- loess(y ~ x, dum)

R> plot (x, y)

R> lines(spline(x, fitted(lrf)), col = 2)

R> abline(0, 1, lty = 3, col = 3)

R> abline(fm, col = 4)

R> abline(fm1, lty = 4, col = 5)

;;;;

%quit;

R session on the backend creates the graphics for linear fit, loess smoothing and resistant
regression that are displayed on either SAS graph editor or result viewer. The statistical
outputs are printed on the SAS output window(Figure 2).

Journal of Statistical Software – Code Snippets 5

Figure 2: R statistical result and graphics are displayed in SAS platform.

3.3. Creation of R animation in base SAS environment

R wiki page provides a simple piece of code using the caTools package (Tuszynski 2011)
that produces a flashy animation for Mandelbrot set (Tuszynski 2010). This code can be
executed from %PROC_R interface without any modification and the resulting gif animation
can be viewed from SAS result viewer (Figure 3).

%include "C:\Proc_R.sas";

%Proc_R(SAS2R=,R2SAS=);

cards4;

R> library("caTools")

R> jet.colors <- colorRampPalette(c("#00007F", "blue", "#007FFF", "cyan",

"#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000"))

R> m <- 1200

R> C <- complex(real = rep(seq(-1.8, 0.6, length.out = m), each = m),

imag = rep(seq (-1.2, 1.2, length.out = m), m))

R> C <- matrix(C, m, m)

R> Z <- 0

R> X <- array(0, c (m, m, 20))

R> for (k in 1: 20) {

Z <- Z^2 + C

X [, ,k] <- exp(-abs(Z))

}

R> write.gif (X, "Mandelbrot.gif", col = jet.colors, delay = 100)

6 %PROC_R: Native R Programming in SAS

Figure 3: R gif animation is produced and displayed in SAS platform.

;;;;

%quit;

3.4. Programmatically integrate SAS and R output

In this example, I demonstrate that an R graphs is first produced by %PROC_R interface and
then seamlessly written into an HTML report created by SAS ODS. The following ODS
statement produce a sample HTML report:

ODS HTML FILE="c:\example.html" STYLE=minimal gpath= "c:\" GTITLE GFOOTNOTE;

proc print data=sashelp.company(obs=10); run;

ods _all_ close;

What follows is the R code that we copied from Ruckstuhl and Locher (2011), using packages
IDPmisc (Locher, Ruckstuhl et al. 2011) and SwissAir (Locher 2011), and submitted in the
%PROC_R interface.

%include "C:\Proc_R.sas";

%Proc_R(SAS2R=,R2SAS=);

cards4;

R> setwd("c:/RINSAS")

R> library("IDPmisc")

Journal of Statistical Software – Code Snippets 7

Figure 4: R graph is integrated in a SAS HTML report.

R> library("SwissAir")

R> Ox <- AirQual[, c ("ad.O3", "lu.O3", "sz.O3")] +

AirQual[, c ("ad.NOx", "lu.NOx", "sz.NOx")] -

AirQual[, c ("ad.NO", "lu.NO", "sz.NO")]

R> names(Ox) <- c ("ad", "lu", "sz")

R> ipairs(Ox, ztransf = function(x) { x [x < 1] <- 1; log2 (x) })

;;;;

%quit;

As we may see in the next sections, the resulting R scatter plot is saved to either the default
or user defined location. The following SAS code post-processes the example SAS HTML file
so that R graphics is integrated in it (Figure 4).

data html;

infile "c:\example.html" truncover lrecl = 256;

input raw $ 1-200;

run;

data html;

set html;

output;

if raw = "
" then do;

8 %PROC_R: Native R Programming in SAS

output;

raw = '<div align="center">'; output;

raw = ""; output;

end;

run;

data _null_;

set html;

file "c:\example.html";

put raw;

run;

4. Implementation

The %PROC_R program accomplishes R analysis in the base SAS via six steps:

� Write a draft R program based on user supplied R code and system built-in R function.

� The draft R script is interrogated and modified by SAS macro so that it can be executed
in SAS environment

� The data exchange mechanism between SAS and R is implemented in both SAS code
and R code.

� The completed R script is submitted to a backend R session via batch mode by base
SAS pipes.

� The automatically produced text file containing R statistical output and log is trans-
formed to SAS data and printed on the the base SAS output window.

� The R graphics is either explicitly or implicitly saved to a default or customer specified
directory and routed to SAS graph window or result viewer via HTML format.

4.1. R code construction

This SAS program enables users to enter R script via infile and cards4 statement in SAS
data step. %PROC_R is a very simple macro that only specifies that R code is saved at the
default SAS workspace and provide the first several lines of data step. Cards4 (or datalines4)
statement is used here because it allows semicolon as the part of input data when semicolon
is recognized as the end of statement by both SAS and R. The four consecutive semicolons at
the end mark the end of user define R scripts. While this manuscript is under development,
we noticed that this technique has also been discussed in some techinical blogs (Xie 2011).
The run statement of this data step is provided in the %Quit macro which is the main body
of this interface and will be described in more details below.

4.2. R code refinement

In the %Quit macro, SAS program will inspect the resulting R program to determine what
change needs to be made in order for the R program to be submitted from SAS environment.

Journal of Statistical Software – Code Snippets 9

First of all, the users are encouraged to define their own user space to store the log, graphics
and intermediate datasets by setwd() function. If setwd() is not detected in user defined R
code or is commented out, SAS program will add one line of setwd() function in the R code
that set the R workspace to the current SAS temporary directory. Secondarily, if users do not
explicitly write the graphics as a permanent file and instead intend to view them on fly, SAS
program would add the lines to start R graphics device, save the figure and close the device.
Later I will show how the saved R graphics can be viewed from SAS end.

4.3. Data exchange between R and SAS using CSV as intermediate format

We made conscious decision to make the macro arguments as simple as possible in order to
allow less experienced SAS user to utilize this interface when they need to operate in SAS
environment. The only arguments for this macro are to define the SAS and R datasets that
are to be utilized by their counterpart. One or multiple SAS dataset names can be assigned
to macro variable SAS2R. The presence of these SAS dataset names triggers a compilation
of SAS do loop to sequentially write the listed SAS datasets to CSV files saved under user
specified folder or SAS temporary directory. Then the proper R function like read.csv will
be added to the current R codes to read these tab delimited files into R data frames with the
same names. Therefore, users can directly call the corresponding R data frames using the
SAS names defined in SAS2R argument without any change. Finally, if the value of macro
variable R2SAS is not null, then its value, a list of names for R data frames, will be written
into csv files by write.csv function which will be appended to the end of R codes. These csv
files from R data frames are again read into SAS so that they can be used in the remaining
the SAS program. Note that the naming convention for SAS datasets and variables need to
be enforced throughout this process because not all R data or variable names are legitimate
in SAS.

4.4. R submission in batch mode via pipe

Unnames pipe is a powerful SAS tool that execute a foreign program outside of SAS. Here we
used it to execute the batch mode R scripts in parallel to the current SAS session (Wei 2009;
R Development Core Team 2011a). As shown below, this pipe defines both the source R codes
and export output/log file in ASCII format. NOXWAIT options force SAS session to suspend
until the completion of the piped R process. I create a SAS macro variable &rpath to store
the full path for R executable files. Currently, the paths for various R versions from 2.11.0 to
2.14.0 are provided so that users could easily adopt this macro to their own R version.

options noxwait xsync;

filename proc_r pipe "&rpath CMD BATCH

--vanilla --quiet

&source_r_code &output_r_log";

data _null_;

infile proc_r;

run;

4.5. Display of R log and graphics on SAS terminal

One primary motivation for SAS user to call R function from within SAS environment is

10 %PROC_R: Native R Programming in SAS

probably the state-of-art graphical capability of R. Therefore, it is priority of this interface
to have a mechanism that channels the saved R graphics back to SAS session so that users
can conveniently view the graphical output in real time. This can be achieved in two ways.
First is to use the GSLIDE procedure to display the saved R figure on the SAS graph editor as
shown in the following code:

goptions reset = all device = win iback = "&rdirec\&fgname"

imagestyle = fit;

proc gslide; run; quit;

(Holland 2008) proposed another rather creative solution that is to create an HTML file with
the link to the saved R graphics. The following SAS code creates an empty HTML, adds a
link to the saved R graphics and render the HTML file to SAS result viewer. This means
that one does not even need SAS/GRAPH installed to produce high quality graphics in SAS
environment. We adopt this approach in our implementation. However, I do notice rare
occasions where the graphics is not properly displayed in HTML page due to the excessively
long string of file path and name particularly when the R results are stored in SAS temporary
workspace. The remedy of this problem is to use setwd function in R script to save R result
to a user defined destination with short path or simply SAS graph viewer instead of HTML
reviewer to display R graphics.

ODS html file = "&sasdirec\rhtml_&nowtime..html" STYLE=minimal

GPATH="&sasdirec\" GTITLE GFOOTNOTE;

ods listing close;

%global inhtml;

%let inhtml=%bquote("&sasdirec\&fgname");

DATA _NULL_;

FILE PRINT;

PUT "";

run;

ods html close;

ods listing;

Similarly, since R log file has been saved under the R batch mode, it is straightforward to
print this ASCII file on SAS output window after converting it to SAS dataset.

4.6. File management of SAS/R working space

The source R script, R log message and R graphical output are all saved under SAS temporary
folder unless users defined otherwise. It is preferable to assign session specific names to these
files so that the code and output from previous session would not be mistakenly called by
the current session which may abort and produce no result due to syntax error. This can
be achieved by appending a 12 digit number representing SAS system time to the end of file
name. In one SAS session the users may explicitly write graphics to a permanent file or let
SAS program do that on the backend. Thus the name of graphics could be either user defined
or system assigned. In order to intelligently determine what the proper file is to visualize
from SAS end, we again use SAS pipe function to scan the working space of the current

Journal of Statistical Software – Code Snippets 11

SAS/R session. The name of files in the directory is listed in a SAS dataset according to the
descending order of the creation time, as demonstrated by the following code (Wei 2009).

FileName MyDir Pipe "dir &_sasdirec /a:-d";

data file;

infile MyDir lrecl=300 truncover;

input @1 file $100. @;

format file $100.;

crtime = substr (file, 1, 20);

if trim (left (scan (lowcase (file), 2, '.')))

in ('gif', 'png', 'jpeg', 'jpg', 'ps')

then do;

_crtime = input (crtime, mdyampm.);

temp = tranwrd (file, trim (left (crtime)), '*') ;

temp = scan (temp, 1, '*') ;

filename = trim (left (scan (temp, 2, ' ')));

end;

run;

proc sort data=file; by descending _crtime descending filename;

where trim (left (scan (lowcase (file), 2, '.')))

in ('gif','png','jpeg','jpg','ps');

run;

Because the system time prior to and after the submission of the current R batch mode can
be recorded and compared to the creation time of image file, it is easy to parse out the name
of the newly created image in the last R session with the following SAS code. If new graphics
is produced during the latest SAS/R session, then the macro varialbe &fgsw is set to one and
SAS code from sction 4.5 will be conditionally run to display the figure in SAS graph window
or HTML. Otherwise, if no new figures are detected then no further action is taken.

data _null_;

call symput

('beforetm', trim (left (put (datetime (), datetime19.))));

run;

data _null_;

set file;

if _n_ = 1 then do;

call symput ('fgsw', put (input ("&beforetm", datetime19.)

< (input (crtime, mdyampm.) + 60), best.));

temp = tranwrd (file, trim (left (crtime)), '*');

temp2 = scan (temp, 1, '*');

fgname = scan (temp2, 2, ' ');

call symput ('fgname', trim (left (fgname)));

end;

run;

%put &fgname;

12 %PROC_R: Native R Programming in SAS

5. Discussion

Nowadays data analyst very often needs access to various tools/languages to accomplish
complex task. Perl and Python is widely used to pre-process dataset prior to the advanced
statistical analysis and visualization in R. Many SAS users are also very keen to learn R
language in order to test novel statistical methodology developed in open source R that is
outside the horizon of SAS/STAT. It is not rare for a multilingual data analyst to perform some
analysis in one environment, save the intermediate datasets and continue the rest of analysis
in a different environment. However, it would be difficult to keep track of analysis workflow
if multiple computing environments are involved. Switching platform also adds to difficulties
for others to repeat one’s research. In this work, we developed the SAS macro that allows R
analysis to proceed along with SAS program without moving out of SAS environment. We
also show the way to integrate R analysis result into a SAS statistical report programmatically.
There are several issues worth of note. First of all, it is not possible to embed this interface
into other SAS macro because cards or datalines statement for R code input is not allowed
within a SAS macro. We also believe that it is a good practice to keep SAS and R code block
clearly separate even when they are in one program. Secondly, the whole chunk of R scripts
written by users will be executed from start to end in one R batch mode. It is not feasible
to test the R code piece by piece in this interface because the intermediate results would be
lost at the end of each batch mode. Therefore this interface is suitable to test or run a small
task or execute a large project that has been well developed in a more suitable R interactive
development environment.

Acknowledgments

I appreciate Dr. Luis Tari’s help with using LATEX and Dr. Mick Kappler for his review of
manuscript.

References

Eddelbuettel D, Francois R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. URL http://www.jstatsoft.org/v40/i08/.

Grothendieck G (2011). sqldf: Perform SQL Selects on R Data Frames. R package version 0.4-
6.1, URL http://CRAN.R-project.org/package=sqldf.

Holland P (2008). www.hollandnumerics.co.uk/pdf/SAS2R2SAS_presentation.pdf.

Locher R (2011). SwissAir: Air Quality Data of Switzerland for One Year in 30min Reso-
lution. R package version 1.1.01, URL http://CRAN.R-project.org/package=SwissAir.

Locher R, Ruckstuhl A, et al. (2011). IDPmisc: Utilities of Institute of Data Analyses and
Process Design. R package version 1.1.16, URL http://CRAN.R-project.org/package=

IDPmisc.

R Development Core Team (2011a). An Introduction to R. Vienna, Austria. ISBN 3-900051-
12-7, URL http://www.R-project.org/.

http://www.jstatsoft.org/v40/i08/
http://CRAN.R-project.org/package=sqldf
www.hollandnumerics.co.uk/pdf/SAS2R2SAS_presentation.pdf
http://CRAN.R-project.org/package=SwissAir
http://CRAN.R-project.org/package=IDPmisc
http://CRAN.R-project.org/package=IDPmisc
http://www.R-project.org/

Journal of Statistical Software – Code Snippets 13

R Development Core Team (2011b). R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
http://www.R-project.org/.

Ruckstuhl A, Locher R (2011). “Image Scatter Plot Matrix.” http://addictedtor.free.

fr/graphiques/RGraphGallery.php?graph=159.

SAS Institute Inc (2004). SAS 9.1 SQL Procedure User’s Guide. Cary, NC. URL http:

//www.sas.com/.

Tuszynski J (2010). http://en.wikipedia.org/wiki/R_(programming_language).

Tuszynski J (2011). caTools: Tools, Moving Window Statistics, GIF, Base64, ROC, AUC,
etc. R package version 1.12, URL http://CRAN.R-project.org/package=caTools.

Venables W, Ripley B (2002). Modern Applied Statistics with S. 4th edition. Springer-Verlag,
New York.

Wei X (2009). “Dynamically Allocating Exported Datasets by the Combination of Pipes and
X statement.” In SAS Global Forum 2009 Proceedings.

Wicklin R (2009). “Rediscovering SAS/IML Software: Modern Data Analysis for the Practicing
Statistician.” In SAS Global Forum 2009 Proceedings.

Xia XQ, McClelland M, Wang Y (2010). “PypeR, A Python Package for Using R in Python.”
Journal of Statistical Software, Code Snippets, 35(2), 1–8. URL http://www.jstatsoft.

org/v35/c02/.

Xie L (2011). www.sas-programming.com/2010/04/conduct-r-analysis-within-sas.

html.

Affiliation:

Xin Wei
Pharmaceutical Research and Early Development Informatics
Roche Pharmaceuticals
340 Kingsland Street
Nutley, NJ, United States of America
E-mail: xin.wei@roche.com, xinwei@stat.psu.edu

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 46, Code Snippet 2 Submitted: 2011-05-17
January 2012 Accepted: 2011-12-31

http://www.R-project.org/
http://addictedtor.free.fr/graphiques/RGraphGallery.php?graph=159
http://addictedtor.free.fr/graphiques/RGraphGallery.php?graph=159
http://www.sas.com/
http://www.sas.com/
http://en.wikipedia.org/wiki/R_(programming_language)
http://CRAN.R-project.org/package=caTools
http://www.jstatsoft.org/v35/c02/
http://www.jstatsoft.org/v35/c02/
www.sas-programming.com/2010/04/conduct-r-analysis-within-sas.html
www.sas-programming.com/2010/04/conduct-r-analysis-within-sas.html
mailto:xin.wei@roche.com
mailto:xinwei@stat.psu.edu
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Interface
	Examples
	Compute eigenvalue and eigenvectors for a numeric SAS dataset
	Conduct regular statistical analysis with R from SAS
	Creation of R animation in base SAS environment
	Programmatically integrate SAS and R output

	Implementation
	R code construction
	R code refinement
	Data exchange between R and SAS using CSV as intermediate format
	R submission in batch mode via pipe
	Display of R log and graphics on SAS terminal
	File management of SAS/R working space

	Discussion

