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Abstract

This paper discusses a Fortran 90 program referred to as BIEMS (Bayesian inequality
and equality constrained model selection) that can be used for calculating Bayes factors
of multivariate normal linear models with equality and/or inequality constraints between
the model parameters versus a model containing no constraints, which is referred to as
the unconstrained model. The prior that is used under the unconstrained model is the
conjugate expected-constrained posterior prior and the prior under the constrained model
is proportional to the unconstrained prior truncated in the constrained space. This re-
sults in Bayes factors that appropriately balance between model fit and complexity for
a broad class of constrained models. When the set of equality and/or inequality con-
straints in the model represents a hypothesis that applied researchers have in, for instance,
(M)AN(C)OVA, (multivariate) regression, or repeated measurements, the obtained Bayes
factor can be used to determine how much evidence is provided by the data in favor of
the hypothesis in comparison to the unconstrained model. If several hypotheses are under
investigation, the Bayes factors between the constrained models can be calculated using
the obtained Bayes factors from BIEMS. Furthermore, posterior model probabilities of
constrained models are provided which allows the user to compare the models directly
with each other.

Keywords: Bayes factors, equality and inequality constrained models, Fortran 90, Gibbs sam-
pler.

1. Introduction

This paper discusses a program that can be used to determine which model (or hypothesis)
receives most evidence from the data given a set of models that contain equality constraints
and/or inequality constraints on the model parameters. This will be done using the Bayes
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factor, a Bayesian model selection criterion. The program BIEMS (Bayesian inequality and
equality constrained model selection) is written in Fortran 90 using IMSL subroutines (Visual
Numerics 2003). A user friendly interface has been developed for practitioners who are not
familiar with the technical details of statistical modeling. The interface allows one to simply
specify equality and inequality constraints on the parameters of interest. From the website
http://tinyurl.com/informativehypotheses, it is possible to download a compiled version
of the program, including the interface. Source codes are available along with this manuscript.

The program is designed for applied researchers, e.g., social or medical, who have specific
expectations that can be formulated in terms of equality and inequality constraints between
the model parameters. Hoijtink et al. (2008) refer to such expectations as informative hy-
potheses in contrast to hypotheses that do not contain any information about the relationship
between the model parameters, such as the standard null and alternative in classical hypoth-
esis testing. For references about the use of Bayes factors to test scientific theories, see Kass
and Raftery (1995) and the references therein. The methodology that is used in BIEMS is
based on Mulder et al. (2010) and Mulder et al. (2009). The first reference contains the
technical details of the method, such as, prior specification. The latter focusses on repeated
measurements and is more accessible for applied researchers.

In Section 2.1, the multivariate normal linear model is discussed. Section 2.2 describes how
time-varying covariates can be included in the model. The formulation of model constraints
is addressed in Section 2.3. Section 3 describes the specification of the unconstrained default
prior which is the conjugate expected-constrained posterior prior (CECPP). In Section 3.1,
two basic properties of this prior are discussed. Section 3.2 describes how linear restrictions are
specified to obtain so-called constrained posterior priors. Subsequently, the hyper-parameters
of the constrained posterior priors are calculated in Section 3.3 and the construction of the
CECPP is given in Section 3.4 including the corresponding posterior distribution. In Sec-
tion 3.5, it is discussed how minimal training samples are sampled which are used to con-
struct the constrained posterior priors. In Section 4.1, it is described how the Bayes factor is
estimated using MCMC (Markov chain Monte Carlo) sampling for an inequality constrained
model versus the unconstrained model. Section 4.2 illustrates how the estimation error of the
Bayes factor is determined. In Section 4.3, the procedure is discussed for estimating Bayes
factors of models containing equality constraints versus the unconstrained model. Section 5
provides several short examples of model implementations for analysis of variance (ANOVA),
linear regression, multivariate analysis of variance (MANOVA), and repeated measures. In
Section 6, a short conclusion is given.

2. Constrained model specification

2.1. The multivariate normal linear model

The multivariate normal linear model can be written as

yi = M>di + A>xi + εi. (1)

In this model, a P -variate dependent variable yi, i = 1, . . . , N , is explained by a vector di of
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size J containing group membership, i.e.,

dij =

{
1 if the ith observation belongs to group j
0 otherwise,

a K-variate explanatory variable xi, and εi a multivariate Gaussian error with εi ∼ N (0,Σ).
Furthermore, M is a J × P matrix with group means where the (j, p)th element µjp denotes
the mean (or intercept) of the pth dependent variable for the jth group and A is a K × P
matrix with regression coefficients where the (k, p)th element αkp denotes the coefficient of
the kth covariate for the pth dependent variable.

For N observations, the model can be written as

Y = XB + E, (2)

where

Y =

 y>1
...

y>N

 , X =

 d>1 x>1
...

...

d>N x>N

 and B =

[
M
A

]
(3)

with

M =

 µ11 · · · µ1P
...

. . .
...

µJ1 · · · µJP

 , and A =

 α11 · · · α1P
...

. . .
...

αK1 · · · αKP

 . (4)

The likelihood of the multivariate normal linear model (2) is given by

g(Y|X,B,Σ) ∝ |Σ|−N/2 exp{−1

2
tr Σ−1(Y−XB)>(Y−XB)}

= exp{−1

2
(β − β̂)>[Σ⊗ (X>X)−1]−1(β − β̂)} ·

·|Σ|−N/2 exp{−1

2
tr Σ−1S}

∝ Nβ|Σ(β̂,Σ⊗ (X>X)−1)inv-WΣ(S, N), (5)

where β is a vector of length D = P (J+K), which is the vectorization of B, i.e., vec(B) = β,
β̂ is the maximum likelihood estimator of β, with

B̂ = (X>X)−1X>Y,

and

S = (Y−XB̂)>(Y−XB̂). (6)

The least squares estimate of Σ, which is provided in the output of BIEMS, equals Σ̂ = S/(N−
J −K). Expression (5) shows that the likelihood is proportional to a normal-inverse-Wishart
distribution. For this reason, a multivariate normal-inverse Wishart prior for {β,Σ} is used
in BIEMS which is generalized natural conjugate (Press 2005, p. 253–256), i.e., π0(β,Σ) =
π0(β)π0(Σ). The unconstrained prior is discussed in Section 3.
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2.2. Modeling time-varying covariates

When modeling repeated measurements using the multivariate normal linear model, time-
varying covariates can be included in (2) according to

X =

 d>1 x>1 w>11 . . . w>1U
...

...
...

. . .
...

d>N x>N w>N1 . . . w>NU

 and B =


M
A
G1
...

GU

 , (7)

with wiu is a vector of length P containing the scores on the uth time-varying covariates of
the ith observation, Gu = diag(γu1, . . . , γuP ), where γup is the regression parameter of the
uth time-varying covariate measured at the pth time point, for u,= 1, . . . , U . The matrices
Gu are diagonal to ensure that the uth time-varying covariate measured at time point p is
not regressed on the outcome variable measured at time point p> 6= p. In the vectorization
of B, i.e., β, which is important when specifying the (in)equality constraints of the model in
(10), the zeros are omitted (see also Section 5.5). Note here that it is also possible to model
more than one dependent variable as repeated measurement.

When time-varying covariates are present, the likelihood of the parameters in the structured
parameter matrix B given Σ can be obtained as follows. First, an unstructured parameter
matrix is substituted for B, which is denoted by

B∗ =


M
A
G∗1
...

G∗U

 ,

where G∗u, for u = 1, . . . , U , are unstructured parameter matrices which replace the diagonal
matrices Gu, for u = 1, . . . , U , B in (7). The vector with all off-diagonal parameters of the
matrices G∗u will be denoted by γ∗ which contains 1

2UP (P − 1) elements. Therefore, the

vectorization of B∗ is a permutation of the parameter vector (β>,γ∗>)>, where β is the
vectorization of B in (7) with zeros omitted. The likelihood of the unstructured parameter
matrix B∗ and Σ is given in (5), and therefore, the likelihood of β,γ∗|Σ is multivariate
normal. Subsequently, the likelihood of β|Σ,γ∗ = 0 is also multivariate normal and given by

N (β̂ − cov(γ∗,β)var(γ∗)−1γ̂∗, var(β) + cov(γ∗,β)var(γ∗)−1cov(β,γ∗)),

where β̂ and γ̂∗ are the maximum likelihood estimates, and cov(γ∗,β), cov(β,γ∗), var(β), and
var(γ∗) are the appropriate submatrices of the covariance matrix Σ⊗(X>X)−1. Subsequently,
the conditional posterior of β|Σ,γ∗ = 0 can be obtained by combining this likelihood with
the multivariate normal prior of β which is discussed in the next section.

An example of a model including a time-varying covariate is given in Section 5.5. More details
about modeling time-varying covariates using the multivariate normal linear model can be
found in Mulder et al. (2009).
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2.3. Equality and inequality constrained multivariate normal linear models

The system of Lt inequality constraints on the parameters β of the inequality constrained
model Mt can be written as

Rtβ > rt, (8)

where Rt is a Lt×D matrix containing inequality coefficients and rt is a vector of length Lt of
constants. The augmented matrix [Rt|rt] should be implemented in the file
inequality_constraints.txt in the stand-alone version of BIEMS (Appendix B). Examples
are provided in Section 5.

For an equality constrained model Mt, the system of equalities is given by

Qtβ = qt, (9)

where Qt is a Ht × D matrix containing Ht equality coefficients and qt is a vector of
length Ht containing constants. The augmented matrix [Qt|qt] should be given in the file
equality_constraints.txt (Appendix B).

When combining (8) and (9), we obtain a constrained model with inequalities and equalities.
The system of constraints of model Mt will be denoted by[

Rt

Qt

]
β ≥t

[
rt
qt

]
⇔ R̃tβ ≥t r̃t, (10)

where ≥t denotes that each constraint of this system is either a “>” or a “=”, depending on
the model Mt.

3. Default prior specification

In order to compute Bayes factors, priors distributions must be specified for β and Σ. Because
all constrained models are nested in the unconstrained model M0 : β ∈ RD, one only needs
to specify a prior under the unconstrained model and use truncations of this prior under the
constrained models, i.e., πt(β,Σ) = c−1t π0(β,Σ)1Mt(β) with ct =

∫∫
β∈Mt

π0(β,Σ)∂β∂Σ,
where π0 denotes the prior under M0 and πt denotes the prior under Mt. This prior choice
has two important advantages. First, only a single prior π0 needs to be specified. Second,
the Bayes factor Bt0 of a constrained model against the unconstrained model can be obtained
without computing the marginal likelihoods of the models. This is discussed in the Section 4.
In this section, it will be described how a default prior under the unconstrained model can
be obtained which results in Bayes factors that are effective for evaluating models containing
equality and inequality constraints on the parameters.

3.1. Properties of the unconstrained prior

In Mulder et al. (2010) and Mulder et al. (2009), a prior specification was proposed that
resulted in Bayes factors with an appropriate Occam’s razor for testing equality and inequality
constrained models due to an effective balance between model fit and model complexity. The
implementation of this method in BIEMS is discussed in this section.

The CECPP is used as unconstrained prior for β (Mulder et al. 2009). The CECPP is based
on constrained posterior priors, which are obtained as follows. For the covariance matrix Σ,
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Jeffreys’ prior is used, i.e., π0(Σ) ∝ |Σ|−(P+1)/2. This noninformative improper prior can be
used because of arguments of orthogonal transformations of scale and location parameters
(Jeffreys 1961).

The CECPP of β has the following three key properties.

1. It is based on minimal training samples which are subsets of the data that contain
minimal information to obtain a proper posterior prior (e.g., Berger and Pericchi 1996).
This property is essential for testing models with equality constraints on the model
parameters. The Bartlett paradox (Bartlett 1957) is then avoided.

2. It is centered on the boundary of the constrained parameter space under investigation.
The boundary of the constrained space under investigation is defined as

B = {β|R̃0β = r̃0} with R̃0 =

 R̃1
...

R̃T

 and r̃0 =

 r̃1
...

r̃T

 . (11)

This property is essential for testing models containing inequality constraints. Note
that B must be nonempty which implies that the models under investigation must be
comparable (Mulder et al. 2010). For instance, M1 : β = 0 and M2 : β > 1 are
not comparable but M1 : β = 0 and M3 : β > 0 are comparable. In this case, the
CECPP of β is centered at β = 0. Note that B = {0} in this case. In the interface of
BIEMS (Appendix A), it is automatically checked whether the constrained models are
comparable when using the default prior specification setting.

3. The parameters that are compared with each other in the constrained models have
equal variances in the CECPP. This is essential for incorporating the complexity of
inequality constrained models with unequal weights on the parameters of interest, e.g.,
M1 : β1 > 2β2 > 0. This will be elaborated in Section 3.3.

In the remaining part of this section, it will be discussed how the CECPP and the corre-
sponding posterior distribution is obtained.

3.2. Linear restrictions for constrained posterior priors

The CECPP can be seen as an average over all constrained posterior priors (CPPs). In con-
trast to standard posterior priors which are obtained by updating a noninformative improper
prior with a minimal training sample, CPPs are obtained by updating a noninformative im-
proper prior with a minimal training sample under certain linear restrictions. The linear
restrictions ensure that the constrained posterior priors are located on the boundary of the
constrained parameter space. Note that standard posterior priors are located around the like-
lihood, and therefore, generally will not satisfy the second property in Section 3.1. Mulder
et al. (2010) showed that the resulting intrinsic Bayes factors may not be effective for testing
inequality constrained models. In this section, it will be discussed how the linear restrictions
are specified to obtain constrained posterior priors that satisfy the second property.

Two sets of linear restrictions will be constructed: One for the CPP means, say [R0,M |r0,M ],
and one for the CPP variances, say [R0,V |r0,V ]. The reason that different sets of restrictions
are needed can for instance be seen when testing M1 : β = 0 versus M0 : β ∈ R1. The
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restriction for the CPP mean will be β = 0 to ensure that the CPP mean of β equals 0 (to
satisfy the second property), while for the CPP variance of β no restriction in needed. Note
that if β = 0 would be a restriction for the CPP variance, the CPP variance of β would
become equal to zero which is undesirable. On the hand, when testing M2 : β1 > β2 > β3
versus M0 : β ∈ R3, the restriction for the CPP means and CPP variances are identical,
namely, [

1 −1 0
0 1 −1

]
β = 0, (12)

so that the CPP means are identical and the CPP variances are identical for β1, β2, and β3,
for every randomly selected minimal training sample.

The restrictions for the CPP means, [R0,M |r0,M ], are identical to the row echelon form of
[R̃0|r̃0] where the zero rows are omitted. This ensures that the CPP means are located on
the boundary B. The use of the row echelon form with zero rows omitted is important for
obtaining the hyperparameter of CPPs which is discussed in the following section.

The restrictions for the CPP variances are obtained from the row echelon form of [R∗0|0]
where the zero rows are removed. Hence, the vector of constants does not play a role when
restricting the CPP variances, i.e., r0,V = 0. The matrix R∗0 is obtained from R̃0 as follows.

1. Rows of R̃0 that are permutations of (wh,1, 0, . . . , 0), with nonzero constants wh,1 ∈ R1,

are removed in R̃
∗
0. This is important for avoiding CPP variances of zero.

2. Rows of R̃0 that are permutations of (wh,1, wh,2, 0, . . . , 0), with nonzero constants wh,1,
wh,2 ∈ R1 where h is the row index, are replaced by the same permutations of the form
(sign(wh,1), sign(wh,2), 0, . . . , 0). These restrictions ensure that the CPP variances of β’s
that are compared with each other have equal variances.

3. Rows of R̃0 that are permutations of (wh,1, . . . , wh,V , 0, . . . , 0) with V > 2, i.e., rows that
contain more than two nonzero elements, are replaced by a set of V −1 rows that ensure
that the corresponding β’s have equal variances. For instance, M1 : β2 − β1 < β3 − β2
results in a CPP mean restriction of [1 − 2 1|0] and CPP variance restrictions given by
(12).

If time-varying covariates are also incorporated in the model, additional restrictions of the
form γ∗ = 0 are automatically added to the mean restrictions [R0,M |r0,M ] and variance re-
strictions [R0,V |0]. The mean and variance restrictions that were used to obtain the CPPs
can be found at “View/Edit Default Prior” in the interface. Via “Specify restrictions

manually”, a user can also specify the linear restrictions for β manually. However, we recom-
mend to use the default setting as specified above.

In the stand-alone version of BIEMS, the restriction matrix for the CPP means can be man-
ually specified in the file restriction_matrix.txt. The restrictions for the CPP variances
are based on the rules stated above. By default, the system of restrictions is equal to the row
echelon form of the system of constraints of the model Mt, i.e., [R̃t|r̃t]. Note that the same
restrictions must be used when computing Bt0. This is automatically done when using the
BIEMS interface.
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3.3. Hyper-parameters of the constrained posterior priors

Based on the linear restrictions for the means and the linear restrictions for the variances,
CPPs are obtained from randomly selected minimal training samples, [Yl|Xl] where l is the
training sample index, using restricted regression (Judge et al. 1980). The CPP of β is
multivariate normally distributed,

πC0 (β|Yl) = Nβ(β̂
R

l , Ψ̂
R
l ), (13)

where β̂
R

l is the restricted maximum likelihood (RML) estimate that is obtained from the

minimal training sample and the restrictions [R0,M |r0,M ] and Ψ̂
R
l is the diagonal covariance

matrix that is obtained from the minimal training sample and the linear restrictions [R0,V |0].

The RML estimate of β maximizes the likelihood of [Yl|Xl] under the system of restrictions
R0,Mβ = r0,M , which yields

β̂
R

l = β̂l + (X̃
>
l X̃l)

−1R>0,M [R0,M (X̃
>
l X̃l)

−1R>0,M ]−1(r0,M −R0,M β̂l), (14)

where X̃l = IP ⊗ Xl and β̂l is the unrestricted ML estimate of β given [Yl|Xl]. This is

explained in more detail in Mulder et al. (2010). Because R0,M β̂
R

l = r0,M holds, for all
training samples, all CPPs are centered on the boundary under investigation B.

Based on the minimal training sample and the restrictions R0,V β = 0, restricted regression
is used to obtain the covariance matrix, which is given by

Ψ̂R
l =

1

N∗l
Ψ̃
R
l

[(
Φ∗l [X̃

∗>
l X̃∗l ]

−1(Φ∗l )
>
)
diag

]−1
, (15)

with

Ψ̃
R
l =

[
Φl(X̃

>
l X̃l)

−1X̃>l

{[
Σ̂
R
l

]
diag
⊗ INl

}
X̃l(X̃

>
l X̃l)

−1Φ>l

]
diag

Σ̂
R
l =

1

Nl

(
Yl −XlB̂

R
l

)> (
Yl −XlB̂

R
l

)
Φl = ID − (X̃>l X̃l)

−1R>0,V [R0,V (X̃>l X̃l)
−1R>0,V ]−1R0,V (16)

Φ∗l = ID − [X̃∗
>
l X̃∗l ]

−1R>0,V [R0,V [X̃∗
>
l X̃∗l ]

−1R>0,V ]−1R0,V

X̃l = IP ⊗Xl

X̃
∗
l = IP ⊗

 d>1 1>K+PU
...

...

d>N 1>K+PU

 ,
where 1K+PU is a vector of length K + PU with ones, ID is an identity matrix of size

D = P (J + K + PU), Σ̂
R
l is the RML estimate of the error covariance matrix Σ, and

vec(B̂R
l ) = β̂

R

l . See Mulder et al. (2010) for a thorough explanation of (15).

In (15), Ψ̃
R
l is the covariance matrix that is obtained when using restricted regression under

the assumption of a diagonal covariance matrix Σ and independent variables in β in the
constrained posterior prior. Because the training sample [Yl|Xl] of size Nl = J + K + PU
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β1

β2

β1

2β  =2

π3

π2

π1

Figure 1: Contours of different priors: π1 represents a uniform prior for (β1, β2), π
2 represents

identical normal priors for (β1, β2), and π3 represents normal priors with var(β1) = 4var(β2).
The complexity of the inequality constrained model M1 : β1 > 2β2 > 0 corresponds to the
relative size of the grey areas. Hence, c11 = 0.0625, c21 = 0.0738, and c31 = 0.125.

is minimal under the unrestricted model, and not under the restricted model, the variances

are rescaled to a single observation by multiplying Ψ̃
R
l with

[(
Φ∗l [X̃

∗>
l X̃∗l ]

−1(Φ∗l )
>
)
diag

]−1
.

Subsequently, when multiplying this with 1/N∗l , the variances are rescaled according to a
training sample size of size N∗l .

By default, the value of N∗l is chosen equal to the minimal training sample size under the
restricted model, which is equal to the number of free parameters under the restricted model.
This is equal to the number of free parameters in the unrestricted model D minus the number
of pivots in [R0,M |r0,M ], plus the number of diagonal elements of Σ, which equals P . The user
can adjust the scale N∗l to construct more or less informative constrained posterior priors.
This can be changed in the interface under “Scale of prior variance”.

In the CPP covariance matrix Ψ̂R
l , the variances of parameters are equal which are compared

with each other in the constrained models under investigation, i.e., var(βd1) = var(βd2) under
the restriction v1βd1 = v2βd2 for ∀v1, v2 6= 0. Note that this differs from the CPP variance
proposed by Mulder et al. (2010) where v21var(βd1) = v22var(βd2) under the same restriction.
To justify this choice, we consider an example of an inequality constrained model with non-
equal weights on the parameters of interest, e.g.,M1 : β1 > 2β2 > 0. In Mulder et al. (2010),
the complexity of an inequality constrained model was defined as the prior probability mass
in the inequality constrained space assuming a uniform prior on (−`, `) for `→∞. For model
M1, this implies that a measure of complexity that is equal to 1/16 = 0.0625 according to
this definition. In the Bayes factor based on CPPs, model complexity of M1 is incorporated
as the CPP probability mass in the inequality constrained space {β|β1 > 2β2 > 0}. Under the
linear restrictions β1 = β2 = 0 for the CPP means and β1 = β2 for the CPP variances, such
that var(β1) = var(β2) and E(β1) = E(β2) = 0 in the CPP, model complexity is incorporated
as approximately 0.0738. The probabilities 0.0625 and 0.0738 correspond to an appropriate
measure of complexity, based on, respectively, identical uniform priors or identical normal
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priors for β1 and β2 when evaluatingM1 : β1 > 2β2 > 0. This is not the case for the variance
restriction β1 = 2β2 (suggested by Mulder et al. 2010) yielding var(β1) = 4var(β2) and a
substantial different measure for the complexity for M1 : β1 > 2β2 > 0, namely 0.125. This
is illustrated in Figure 1.

Note that when time-varying covariates are also incorporated in the model, the restrictions
γ∗ = 0, which fix the dummy parameters to zero, are also present in [R0,V |0]. As a result, the

variances of the parameters γ∗ are equal to zero in Ψ̂R
l . Therefore, the CECPP covariance

matrix of the parameters β∗, i.e., the full parameter vector β with the dummy parameters
γ∗ omitted, can be obtained by removing the rows and columns in Ψ̂R

l that belong to the
dummy parameters γ∗.

3.4. CECPP and posterior

The CECPP of β, given by
πEC0 (β) = Nβ(βEC0 ,ΨEC

0 ), (17)

is the conjugate form of the empirical expected-posterior prior (Pérez and Berger 2002) when
using constrained posterior priors instead of standard posterior priors. Note here that Jeffreys’
prior is used for the covariance matrix Σ. The hyper parameters of the CECPP of β are
robustly estimated from 1,000,000 draws based on 1,000 draws from the constrained posterior
priors of 1,000 randomly selected training samples according to the scheme in Table 1.

In step (vi), the CECPP means were calculated as the sample means of the RML estimates β̂
R

l

when R0,M contains rows with more than two non-zero elements. The reason is that, although
the medians are more robust to outliers, the vector of medians (medianl β

R
l,1, . . . ,medianl β

R
l,D)>

will generally not satisfy the mean restrictions [R0,M |r0,M ] in this case. Consequently, the
second key property (Section 3.1) would not be satisfied when using the medians. In all other
cases, the CECPP means are calculated as the sample medians. As a result, the CECPP will
be located on the boundary of the constrained space of interest.

Due to sampling fluctuations and restrictions on the mean with unequal weights, e.g., β1 =
2β2, an additional modification of the CECPP standard deviations was performed at the
end of step (vii) which was based on restricted regression as in (14). This ensures that the
parameters that are compared with each other have equal CECPP variances. Consequently,
the CECPP variances will satisfy the third key property (Section 3.1).

The conditional posterior distributions of β|Σ,Y and Σ|β,Y can be determined using Bayes’
law from the CECPP and the likelihood in (5),

π0(β|Σ,Y) = Nβ(βN ,ΨN )

π0(Σ|β,Y) =W−1Σ (ΛN , νN )

(18)

with

βN =
[(

ΨEC
0

)−1
+ Σ−1 ⊗X>X

]−1 [(
ΨEC

0

)−1
βEC0 + (Σ−1 ⊗X>X)β̂

]
ΨN =

[(
ΨEC

0

)−1
+ Σ−1 ⊗X>X

]−1
ΛN = (Y −XB)>(Y −XB)

νN = N + P + 1.
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(i) Initialize the training sample size to Nl = J +K + PU + 1.

(ii) Randomly draw a minimal training sample [Yl|Xl] of size Nl.

(iii) Determine the hyperparameters {β̂Rl , Ψ̂
R
l } of the lth constrained posterior prior

πC0 (β|Yl).

(iv) Sample 1000 draws β
(s)
0,l from the constrained posterior prior of β, for s = 1000(l− 1) +

1, . . . , 1000l.

(v) Repeat steps (ii) to (iv) for l = 1, . . . , 1000.

(vi) The CECPP mean of β is calculated as βEC0 = L−1
∑

l β̂
R

l if R0,M contains rows with

more than 2 non-zero elements, or as βEC0,d = medianl β̂
R

l,d, for d = 1, . . . , D,
elsewhere.

(vii) Robust estimates (Huber 1981) are used for the CECPP covariance matrix of β:

Ψ̃
EC
0 [d1, d2] =

σ̂2(βd1 + βd2)− σ̂2(βd1 − βd2)

σ̂2(βd1 + βd2) + σ̂2(βd1 − βd2)
σ̂(βd1)σ̂(βd2), for d1, d2 = 1, . . . , D

where σ̂(βd) = medians,l(|β
(s)
0,l,d − β

EC
0,d |)/Φ−1(.75), for s = 1, . . . , 1000

with Φ−1(·) the inverse of the cdf of the standard normal distribution

The standard deviations and the correlation matrix of Ψ̃
EC
0 are separated according to

Ψ̃
EC
0 = diag(s̃EC0 )CEC

0 diag(s̃EC0 ). Subsequently, ΨEC
0 = diag(sEC0 )CEC

0 diag(sEC0 ) with
sEC0 = (ID −R>0,V (R0,V R>0,V )−1R0,V )s̃EC0 .

Table 1: CECPP construction scheme.

3.5. Issues with minimal training samples

Because the β’s are modeled independently in the constrained posterior prior (Ψ̂
R
l is diagonal),

training samples of size J +K +PU + 1 generally result in appropriate constrained posterior
priors. However, in some cases, e.g., data with many identical observations, the diagonal
elements of these matrices may be (approximately) zero. This problem can be overcome
by increasing the training sample size such that the variance in the training data increases.
In BIEMS, the training sample size is increased by 1 after 5 training samples have been
sequentially selected for which the estimate of the generalized error variance based on the

training sample, i.e., det(Σ̂
R
l /Nl), is smaller than 0.05 times the estimate of the generalized

error variance of the complete data matrix, i.e., det(S/N), where Σ̂
R
l is the estimate of Σ

based on the RML estimate of B of the lthe training sample given in (16). Therefore, the
scheme in Table 2 is used where the roman numbers refer to the steps in Table 1. Note that the
constrained posterior prior variance of β is not influenced by the size of the minimal training
sample because the constrained posterior prior variances of the β’s are scaled according to
the number of free parameters under the restriction [R0,M |r0,M ], which remains unchanged.
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1. Initialize Nl = J +K + PU , and calculate det(S/N) with S = (Y −XB̂)>(Y −XB̂).

2. Set Nl = Nl + 1, V = 0, and the training sample counter to 1.

3. Do steps (ii), and (iii), and determine det(Σ̂
R
l ).

4. If det(Σ̂
R
l /Nl) < 0.05·det(S/N), then “bad training sample”, set V = V + 1, go to 5.

Else, go to 6.

5. If V < 5, go to 3. Else, discard all constrained posterior prior draws and go to 2.

6. Set V = 0. Do step (v). If l < 1, 000, go to 2, else, do step (vii).

Table 2: Training sample size adjustment scheme.

4. Calculating Bayes factors

When the CECPP is used as prior under the unconstrained model M0 and the prior under
the inequality constrained modelMt is equal to the CECPP truncated in the parameter space
of the constrained model Mt, denoted by Mt, the Bayes factor of model Mt against model
M0 can be be expressed by

Bt0 =
ft
ct

=

∫
β∈Mt

π0(β|Y)∂β∫
β∈Mt

πEC0 (β)∂β
, (19)

where π0(β|Y) is the marginal posterior of β that is based on the CECPP and the complete
data Y. The derivation can be found in Klugkist and Hoijtink (2007). They refer to the
unconstrained prior as the encompassing prior.

BIEMS automatically computes all Bayes factors Bt0 of each constrained model Mt against
the unconstrained model M0. Because the same CECPP is used for calculating the Bayes
factors Bt0, for t = 1, . . . , T , the Bayes factor between two constrained models M1 and M2

can be computed by

B12 =
B10

B20
.

For an inequality constrained modelMt, BIEMS automatically computes the Bayes factor of
model Mt versus its complement, i.e., Mt′ : β 6∈Mt, which equals

Btt′ =
ft

1− ft
1− ct
ct

.

In the BIEMS interface (Appendix A), the posterior model probabilities can be computed by
pressing the “Compute” button in the “Posterior model probabilities” frame. These are
calculated according to

P (Mt|Y) =
Bt0∑T
t=0Bt0

. (20)
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4.1. Estimating ft and ct for an inequality constrained model

The quantities ft and ct are estimated using a Gibbs sampler (e.g., Gelman et al. 2004). The
complexity ct can be estimated by sampling S draws from the multivariate normal CECPP
of β in (17). The estimate is equal to the proportion of draws satisfying the inequality
constraints of model Mt, i.e.,

ĉt = S−1I(β
(s)
0 ∈Mt), (21)

where β
(s)
0 is the sth draw from the CECPP, for s = 1, . . . , S (S = 20, 000 by default,

modifiable in the interface, see Appendix A, or in the file input_BIEMS.txt, see Appendix B),
and I(·) is the identity function. Similarly, ft can be estimated as the proportion of draws
from the unconstrained posterior in (18) that satisfy the inequality constraints of modelMt,
i.e.,

f̂t = S−1I(β
(s)
N ∈Mt), (22)

where β
(s)
N is the sth draw from the unconstrained posterior. Based on the posterior condi-

tionals of β|Σ,Y and Σ|β,Y in (18), a sample from the unconstrained posterior is obtained
using the MCMC procedure in Table 3.

In the first step, the initial value of Σ is obtained using the posterior estimate B̂N , with

vec(B̂N ) = β̂N =
[(

ΨEC
0

)−1
+ Σ̂

−1 ⊗X>X
]−1 [(

ΨEC
0

)−1
βEC0 + (Σ̂

−1 ⊗X>X)β̂
]
, which is

a weighted average of the prior mean of BEC
0 (with vec(BEC

0 ) = βEC0 ) and the ML estimate
B̂ (with vec(B̂) = β̂).

More efficient estimation for small ct

Estimating ct and ft using the above described method can be computationally intensive for
models with small values for these probabilities. For example, for c1 = 1/10! ≈ 2.76e−7
corresponding to a model M1 : β1 > . . . > β10 based on the CECPP with identical priors
for each β. A sample of at least 1e9 draws is needed to obtain a fair estimate of c1. For this
reason, ct and ft are estimated in steps of two inequalities. For model M1, the probabilities

1. Set the initial value Σ(0) = N−1(Y −XB̂N )>(Y −XB̂N ).

2. Draw β
(s)
N from π0(β|Σ(s−1),Y) in (18).

3. Draw Σ(s) from π0(Σ|β(s),Y) in (18).

4. Repeat steps 2 and 3 for s = 1, . . . , S.

Table 3: MCMC sampling from the posterior scheme.
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ct and ft can be expressed stepwise as

P (β1 < . . . < β10) = P (β1 < β2 < β3)P (β3 < β4 < β5|β1 < β2 < β3) ·
P (β5 < β6 < β7|β1 < . . . < β5)P (β7 < β8 < β9|β1 < . . . < β7)

P (β9 < β10|β1 < . . . < β9)

= c1,1 · . . . · c1,5 for the prior (23)

= f1,1 · . . . · f1,5 for the posterior, (24)

where the second index of c and f denotes the step.

Based on the CECPP, these (conditional) probabilities are equal to 1
6 , 1

20 , 1
42 , 1

72 , and 1
10 , re-

spectively. The first probability P (β1 < β2 < β3) can be estimated by directly sampling from
the unconstrained CECPP and posterior and the proportion of draws satisfying β1 < β2 < β3
are the estimates c1 and f1, respectively. The estimates of the conditional probabilities are
equal to the proportion of draws satisfying each pair of inequality constraints based on a
sample from the conditional distributions of βd|β−d,Σ, where β−d is the vector of β’s with
βd omitted. If βd is constrained by β−d, the conditional distribution is truncated normal, i.e.,
βd|β−d,Σ ∼ N (mβd , s

2
βd

;βL, βU ) where mβd and s2βd are the conditional mean and variance
of βd, respectively, and βL and βU are the lower and upper bound of βd, respectively. If
βd is unconstrained, i.e., βd|β−d,Σ ∼ N (mβd , s

2
βd

), the conditional distribution is normal.
Sampling from the truncated normal distribution can be done using inverse probability sam-
pling (Gelfand et al. 1992). The number of draws to estimate these conditional probabilities
is 20,000 by default. Thus, the total number of draws to estimate c1 is 100,000. The same
methodology is used to calculate the posterior probability f1.

Burn-in and convergence

BIEMS does not provide explicit MCMC output because sampling the mean parameter vector
β and the covariance matrix Σ is relatively straightforward in the multivariate normal linear
model using the Gibbs sampler presented in Table 3. By starting at the posterior expectation
of Σ, no burn-in period is needed for obtaining a posterior sample, and consequently, conver-
gence is not an issue. The same holds for obtaining a sample from the CECPP of β which is
multivariate normal and independent of Σ.

When sampling under inequality constraints as was discussed above, the starting values for
β are equal to the ML estimates. When the starting values are not located in the allowed
parameter space, e.g., the ML estimate equals (β̂1, . . . , β̂5) = (1, 1, 1, 1, 0) when calculating
P (β3 < β4 < β5|β1 < β2 < β3), a burn-in period of 1,000 iterations is used to obtain a starting
value for β and Σ in the highest probability density region under the restrictions at hand.
The length of this burn-in period was always sufficient during the debugging of the program,
also in extreme situations.

Furthermore, by default different seeds are used for every MCMC run which always resulted
in accurate estimates of the Bayes factor during the debugging of the program. If necessary,
the user can increase the MCMC sample size to obtain an estimate of the Bayes factor with
higher accuracy. The computation of the sampling error of the Bayes factor is discussed later
in this section.
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Inverse probability sampling when the normal density is approximately zero

If the posterior density of βp is approximately zero in the allowed parameter space, say
(βL, βU ), inverse probability sampling (Gelfand et al. 1992), according to β(s) = Φ−1(u(s)),
with u(s) ∼ U(Φ(βL),Φ(βU )) where Φ is the conditional posterior cdf of β, does not work
because Φ(βL) ≈ Φ(βU ) ≈ 0 or 1. This occurs for instance when the constraints badly fit the
data.

When the allowed parameter space is an interval (βL, βU ) with approximately zero density,
which is the case when the conditional posterior is β ∼ N(mβ, s

2
β) with mβ � βL or mβ � βU ,

the conditional posterior of β in the interval (βL, βU ) is approximated using an exponential
distribution, i.e., π(β) = λ exp(−λβ). If mβ � βL, the parameter λ is obtained by first
determining the distance ξ from the lower bound βL for which the posterior density is halved,
i.e.,

φ(βL + ξ;mβ, s
2
β)

φ(βL;mβ, s
2
β)

=
1

2
⇒ ξ = mβ − βL +

√
(βL −mβ)2 + 2 log(2)s2β.

Because the exponential density is halved at log(2)/λ, it holds that λ = log(2)/ξ with ξ
given above. Based on this λ, a draw is obtained from the exponential distribution, β(e) ∼
exp(λ;βU ) truncated in the interval [0, βU − βL]. Subsequently, β(s) = βL + β(e). In the case
of mβ � βU , the procedure is similar.

4.2. Sampling error of the estimate of the Bayes factor

The estimation of the probabilities ft and ct as proportions of, respectively, the posterior and
prior draws that satisfy the inequality constraints results in an estimation error of the Bayes
factor. This estimation error is proportional to the reciprocal of the sample size. In BIEMS,
this estimation error is reported in the output file. In this section, it is illustrated how the
standard error of the estimate is calculated.

Again, we consider the inequality constrained modelM1 : µ1 < . . . < µ10. Based on (23) and
(24), the Bayes factor of M1 versus M0 is estimated as

B̂10 =
f̂1,1 · . . . · f̂1,5
ĉ1,1 · . . . · ĉ1,5

. (25)

In BIEMS, the estimates of these probabilities are obtained as the proportion of hits in the
CECPP and posterior, for c1,h and f1,h, h = 1, . . . , 5, respectively, satisfying the inequality
constraints. Hence, each probability has a beta distribution given by beta(`h− 1, S − `h− 1),
where `h is the number of draws satisfying the inequality constraints in step h from a total
of S draws from CECPP or posterior. Subsequently, a sample of the Bayes factor B10 can
be obtained by sampling from these beta-distributions. The standard error of the estimated
Bayes factor B10 is equal to the standard deviation of this sample.

A small simulation study was conducted to determine the relationship between the sample size
per two inequalities and the estimation error of the Bayes factor. A data set of size N = 10
was generated from a population with means β = (0, 0, 0, 1, 1, 1, 2, 2, 2, 2) and covariance
matrix Σ = I10. The Bayes factor of M1 : β1 < . . . < β10 versus M0 : β ∈ R10 was equal
to 2.0e6. In Figure 2, a graph is displayed where the standard error of the Bayes factor is
plotted versus the sample size per two inequalities. Given the large outcome of the Bayes
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Figure 2: Regression line of the sample size per two inequality constraints versus the standard
error of the Bayes factor. The dots are the actual measurements of the standard errors. The
Bayes factor of this data set is equal to 2.0e6.

factor, these standard errors are reasonably low. The default sample size is equal to 20,000
iterations per two inequalities. The sample size can be adjusted in the interface (Appendix A)
and in the file input_BIEMS.txt (Appendix B) if a more accurate estimate is needed.

4.3. Equality constrained models

For constrained models with equality constraints between the model parameters (possibly in
addition to inequalities), ft and ct cannot be estimated by directly using the above described
method because sampled values are never exactly equal. In this section, it is described how
the Bayes factor of such models versus the unconstrained model is estimated in BIEMS based
on the methodology given in the previous section. The idea was suggested by (Laudy 2006,
p. 115).

First, the equality constraints in model Mt are replaced by approximate equalities, e.g.,

β1 = β2 ⇒ β1 ≈ β2 ⇔
{
β1 − β2 > −δ0
β2 − β1 > −δ0.

The evaluation bound δ0 is chosen equal to the CECPP standard error of β1. Thus, the
constrained modelMt is approximated by an inequality constrained model, which is denoted
by Mt,δ0 . The Bayes factor of model Mt,δ0 versus M0, i.e., B(t,δ0)0, can be estimated using
the method of the previous section.

Subsequently, the Bayes factor is estimated between the inequality constrained model Mt,δ1

and the inequality constrained model Mt,δ0 , with δ1 = δ0/2, as the ratio of proportion of
draws from the posterior and CECPP truncated at the inequality constraints of modelMt,δ0

that satisfy the inequality constraints of model Mt,δ1 . CECPP and posterior samples under
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Figure 3: Draws from the unconstrained posterior of (β1, β2) (black), and subsequent con-
strained posteriors by |β1− β2| < δw, with δa+1 = δa/2, δ0 = 0.9. The dashed line is β1 = β2.
The data was generated for two groups of size 100 each with means β = (0, 1.5)> and error
variance σ2 = 1.

the inequality constrained model Mt,δ0 can be obtained using inverse probability sampling
(Gelfand et al. 1992) and the method described in Section 4.1.

Then, the Bayes factor is estimated between the inequality constrained model Mt,δa and the
inequality constrained model Mt,δa−1 , with δa = δa−1/2, for a = 2, . . . , A until the Bayes

factor is approximately one, i.e., |B̂(t,δA)(t,δA−1) − 1| < 0.01. The Bayes factor of model Mt

versus M0 is then estimated as

B̂t0 = B̂(t,δ0)0

A∏
a=1

B̂(t,δa)(t,δa−1).

As an example, data was generated of size 100 for each of two groups with means µ = (0, 1.5)>

and covariance matrix Σ = I2. The model M1 : β1 = β2 was tested against M0 : β ∈ R2. In
Figure 3, a sample is displayed from the unconstrained posterior of (β1, β2) (black) and from
the subsequent posteriors of (β1, β2) under the constraint |β1−β2| < δa, for a = 0 and 1. The
resulting Bayes factor of M1 : β1 = β2 against the unconstrained model was equal to 0.

The Savage-Dickey density ratio

Consider the simple selection problem of an equality constrained model M1 : β = m versus
the unconstrained model M0 : β ∈ R1. The Bayes factor in (19) is then equal to the Savage-
Dickey density ratio (Dickey, 1971), which is given by

B10 =
π0(β = m|x)

π0(β = m)
. (26)
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Figure 4: Prior (dashed line) and posterior (solid line) sample density plots of a data set of
size N = 30 and N (0, 1) (left panel) and a data set of size N = 15 and N (.7, 1) (right panel).
Using the Savage-Dickey density ratio, the Bayes factors of M1 : β = 0 versus M0 : µ ∈ R1

equal B10 ≈ 2.1
0.4 = 5.25 (left panel) and B10 ≈ 0.07

0.29 = 0.24 (right panel).

Hence, the Bayes factor is given by the unconstrained posterior density of β evaluated at m
divided by the unconstrained prior density of β evaluated at m. Wetzels et al. (2010) provide
a proof that (19) converges to the Savage-Dickey density ratio for the selection problem
M1,δ : |β| < δ (for some value δ > 0) versus M0 : β ∈ R1 as δ ↓ 0.

Two data sets were generated of size N = 30 with N (0, 1) and of size N = 15 with N (.7, 1).
The sample density plots of the CECPP and the posterior are displayed in Figure 4. Further-
more, consider the model selection problemM1 : β = 0 versusM0 : µ ∈ R1. From the figure,
it can be concluded that the Bayes factor of modelM1 versusM0 is equal to B10 ≈ 2.1

0.4 = 5.25
(left panel) and B10 ≈ 0.07

0.29 = 0.24 (right panel) using the Savage-Dickey density ratio in (26).
The Bayes factors provided by BIEMS using the above described mechanism were equal to
B10 = 5.35 (with sampling error 7.4e−2) for the first data set and B10 = 0.24 (with sampling
error 4.6e−3). Hence, the true Bayes factors lie well within the confidence intervals provided
by BIEMS from which it can be concluded that the methodology can also be used for models
containing equality constraints between the parameters. The effectiveness of this procedure
was also shown by van Wesel et al. (2011).

5. Short examples

In this section several commonly used models are briefly discussed including two constrained
models of interest. In each example, the parameter matrix B, the vector β, and differ-
ent constrained models are given. Also the specification of the restriction matrix is dis-
cussed in each example. In Section 5.6, five empirical studies are briefly discussed which
were analyzed using BIEMS. The analyses of these studies can be found on the internet site
http://tinyurl.com/informativehypotheses.

5.1. 2 by 3 ANOVA

Consider an ANOVA design with two factors a = 1, 2 and b = 1, 2, 3. The model can be

http://tinyurl.com/informativehypotheses
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implemented in BIEMS as

B = β = (µ11, µ21, µ12, µ22, µ13, µ23)
>.

Note here that the order of the µ’s in B and β depends on the coding of the groups 1 to 6
in data.txt. Subsequently, the following model selection problem tests the presence of an
interaction effect in a specific direction

M1 : µ11 − µ21 > µ12 − µ22 > µ13 − µ23
M2 : µ11 − µ21 = µ12 − µ22 = µ13 − µ23.

The constraints of each model needs to be separately specified in the interface. For instance
for M1, the inequality constraints are µ11 − µ21 > µ12 − µ22 and µ12 − µ22 > µ13 − µ23. The
set of model constraints is then

M1 : R̃1β >t r̃1 ⇒
[

1 −1 −1 1 0 0 0
0 0 1 −1 −1 1 0

]
β >

[
0
0

]
.

ForM2, the inequality “>” is replaced by an equality sign “=”. The default set of restrictions
for the specification of the prior distribution are equal to the row echelon forms of

R0,Mβ = r0,M ⇒
[

1 −1 −1 1 0 0 0
0 0 1 −1 −1 1 0

]
β =

[
0
0

]
for the CPP means and

R0,V β = 0⇒


1 −1 0 0 0 0 0
0 1 −1 0 0 0 0
0 0 1 −1 0 0 0
0 0 0 1 −1 0 0
0 0 0 0 1 −1 0

β =


0
0
0
0
0


for the CPP variances. The resulting CECPP means and variances also satisfy these restric-
tions.

5.2. Regression 1: Inequality constrained models

Consider a univariate regression model with five covariates, i.e.,

B = β = (µ, α1, α2, α3, α4, α5)
>,

and the following inequality constrained models

M1 : α1 > α2 > α3 > α4 > α5

M2 : α1 > (α2, α3, α4, α5).

The (in)equality constraints in each model must be separately specified in the model, e.g.,
α1 > α2, α1 > α3, α1 > α4, and α1 > α5 for model M2. The default set of restrictions are
obtained by taking the row echelon form of the combination of the constraints of both models.
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This results in an identical set of restrictions for the CPP means and variances which is given
by 

0 1 0 0 0 −1 0
0 0 1 0 0 −1 0
0 0 0 1 0 −1 0
0 0 0 0 1 −1 0

β = 0.

Based on these restrictions, the CECPP of α1, . . . , α5 are identical. After obtaining the
Bayes factors B10 and B20, the Bayes factor between these two models is equal to B12 =
B10/B20. The posterior model probabilities can also be computed in the interface of BIEMS
(Appendix A).

When the data is not standardized, the constraints of models M1 and M2 are evaluated for
unstandardized regression coefficients. Generally this is not recommendable because covari-
ates may be measured on different scales. For this reason, it is recommended to standardize
the data which can be specified in Step 2 in the interface (Appendix A) and in the file
input_biems.txt (Appendix B). As a result, the model constraints are evaluated for stan-
dardized regression coefficients.

5.3. Regression 2: Variable selection

Again, consider the regression model above with five exploratory variables and the following
model selection problem

M1 : α2 = 0, α3 = 0, α4 = 0, α5 = 0

M2 : α3 = 0, α5 = 0.

This is a variable selection problem where model M1 only incorporates the first covariate to
explain the dependent variable, modelM2 incorporates the first, second, and fourth covariate,
and the unconstrained modelM0 incorporates all five covariates. Similarly as in the previous
section, we recommend to standardize the data.

In the interface where both models are simultaneously implemented, the default set of restric-
tions for the CPP means are given by

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

β = 0.

In the stand-alone version where each model is separately evaluated, this set of restrictions
must be manually set for model M2 (for M1, these restrictions correspond with the default
setting). There are no restrictions for the CPP variances in the default setting, and therefore
the CECPP variances will generally differ between the α’s.

5.4. MANCOVA

Consider an experiment where three outcome variables are measured for two different groups
with one covariate, i.e.,

B =

 µ11 µ12 µ13
µ21 µ22 µ23
α11 α12 α13

 ,



Journal of Statistical Software 21

and β = (µ11, µ21, α11, . . . , α13)
>, and the following models

M1 : µ11 > µ21, µ12 < µ22, µ13 > 2µ23 > 0

M2 : µ 6∈ M1.

Under model M1, the third measurement mean of the first group µ13 is more than twice as
large as the measurement mean of the second group µ23, which is larger than zero. Such
constraints can occur in practice when the µ’s are the means of measurement differences.

The default set of restrictions for the CPP means are equivalent with
1 −1 0 0 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0 0
0 0 0 0 0 0 1 −2 0 0
0 0 0 0 0 0 0 1 0 0.

β = 0,

and for the CPP variances, the restrictions yield 1 −1 0 0 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0.

β = 0,

We also recommend to standardize the explanatory variables in a MANCOVA. The Bayes fac-
tor of modelM1 against its complementM2 is automatically calculated, which can be viewed
by pressing the button “Detailed output” after the Bayes factors have been calculated.

5.5. Repeated measurements

A model with five repeated measurements and one time-varying covariate is modeled as

B =



µ1 µ2 µ3 µ4 µ5
γ1,1 0 0 0 0
0 γ1,2 0 0 0
0 0 γ1,3 0 0
0 0 0 γ1,4 0
0 0 0 0 γ1,5

 ,

and β = (µ1, γ1,1, µ2, γ1,2, µ3, γ1,3, µ4, γ1,4, µ5, γ1,5)
>. As an example, we consider two models

with constraints on the measurement adjusted means µ (constraints between the γ’s can be
specified in a similar way)

M1 : µ1 > µ2 > µ3 > µ4 > µ5

M2 : µ1 ≈ µ2 ≈ µ3 ≈ µ4 ≈ µ5 with δ = 0.5.

In model M2, the maximal difference between subsequent measurement means is δ = 0.5,
i.e., |µp − µp+1| < 0.5⇔ µp − µp+1 > −0.5, − µp + µp+1 > −0.5, for p = 1, . . . , 4. Therefore,
8 inequality constraints need to be specified for M2, namely, µ1 − µ2 > −0.5, µ2 − µ1 >
−0.5, . . . , µ4−µ5 > −0.5, µ5−µ4 > −0.5. It is important that pairs of inequality constraints
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that form an approximately equality must be specified next to each other. This is essential
in order to obtain proper default restrictions for the CPPs, which, in this case, are given by

1 0 −1 0 0 0 0 0 0 0 0
0 0 1 0 −1 0 0 0 0 0 0
0 0 0 0 1 0 −1 0 0 0 0
0 0 0 0 0 0 1 0 −1 0 0

β = 0,

for both the CPP means and CPP variances.

The time-varying covariate needs to be standardized, each response wi,1,p is standardized
based on the sample mean w̄1 = (NP )−1

∑
i,pwi1p and sample standard deviation sw1 =√

(NP )−1
∑

i,p(wi1p − w̄1)2 of the time-varying covariate.

5.6. Empirical studies

Here, we briefly discuss five empirical studies which were analyzed using BIEMS. Replication
materials are available along with the manuscript and the data sets can also be found on the
website http://tinyurl.com/informativehypotheses. The first data set was discussed by
Kammers et al. (2009), the second data was discussed by Mulder et al. (2009), and the third,
fourth, and fifth data sets were discussed by Mulder et al. (2010).

Repeated measurements 1: Rubber hand illusion

In an experiment discussed by Kammers et al. (2009b), the occluded right index finger and
the visible index finger of a rubber hand were stroked either synchronously (illusion condition)
or asynchronously (control condition). After this stimulation period, one of five perceptual
localization responses was collected for N = 14 subjects. The following constrained models
were of interest

� M1 : µ1 = µ2 = µ3 = µ4 = µ5

� M2 : µ1 = µ2 < µ3 = µ4 = µ5

� M3 : µ1 = µ2 < µ3 = µ4 < µ5,

where µp is the measurement mean of the perceived location of the occluded hand, for p =
1, . . . , 5. Under model M1, the location of the occluded hand is unaffected by the amount
of new proprioceptive information. Under model M2, the perceived location of the occluded
hand is affected when moving the occluded hand, although it is independent of the amount of
movements. Under modelM3, the perceived location of the hand is influenced by the number
of movements of the occluded hand.

Repeated measurements 2: CONAMORE

The conflict and management of relationships study (CONAMORE; Meeus et al. 2004) is an
ongoing longitudinal study in the Netherlands. The goal of the study is to asses relationships
of adolescents with parents and best friend as well as the emotional states of the participants.
In this example, the data consisted of N = 340 Dutch participants who were measured once

http://tinyurl.com/informativehypotheses
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a year in a period of five years (from the age of 13 until 17). This was a part of a larger data
set described in Selfhout et al. (2009).

The outcome variable was self-reported satisfaction with peer relations. There were two
groups: boys and girls (coded by j = 1 and 2 in data.txt, respectively) and one time-varying
covariate “generalized anxiety disorder” which was measured at each wave. Four models were
analyzed,

� M1 : µg13=µb13, µg14=µb14, µg15=µb15, µg16=µb16, µg17=µb17

� M2 : µg13>µb13, µg14>µb14, µg15>µb15, µg16>µb16, µg17>µb17

� M3 : 0 < µg13−µb13 < µg14−µb14 < µg15−µb15 < µg16−µb16 < µg17−µb17

� M4 : µg13=µb13, µg14=µb14, 0<µg15−µb15<µg16−µb16<µg17−µb17,

where µgp and µbp is the mean of self-reported satisfaction of girls and boys at the age of
p adjusted for generalized anxiety disorder, respectively. Model M1 states that there is no
difference in self-reported satisfaction between boys and girls at each wave. ModelM2 states
that girls score their satisfaction with peer higher than boys at each wave. Model M3 states
that girls score higher on self-reported satisfaction than boys and that the difference increases
at each wave. Finally, model M4 states that that there is no difference between boys and
girls at the age of 13 and 14, but from the age of 15 girls score higher than boys and the
difference increases at each wave.

Multivariate one-sided testing: Cell counts of HIV-positive newborn infants

In this example, researchers were interested whether ritonavir therapy had a positive effect on
the immunoreconstruction of 36 HIV-positive newborn infants (Sleasman et al. 1999). The
analysis was limited to the cell counts of CD45RA T and CD45RO T, which were measured
at birth and after 24 weeks of therapy (Larocque & Labarre, 2004). The models under
investigation were

� M1 : µ = 0

� M2 : µ > 0

where µ = (µ1, µ2)
> which contain the mean differences between the cell counts (after 24

weeks minus at birth) of the two cell types, and 0 = (0, 0)>.

Multivariate analysis of variance: Does vinylidene fluoride cause liver damage?

Vinylidene fluoride is suspected of causing liver damage. To investigate this, 4 groups of 10
male Fischer-344 rats received different dosages of this substance by inhalation. Three serum
enzyme levels (SDH, SGOT, and SGPT), which often indicate liver damage, were measured
for each rat. The data, printed in (Silvapulle and Sen 2005, p. 10), appeared in a report of
Litton Bionetics Inc. (1984).

The data can be analyzed with a MANOVA model. When denoting µj = (µj1, µj2, µj3)
>

with µjp the mean of the pth serum level of the jth group, for j = 1, . . . , 4, where the dosage
of vinylidene fluoride increases from group 1 to 4, the following two models were of interest:
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� M1 : µ1 = µ2 = µ3 = µ4

� M2 : µ1 < µ2 < µ3 < µ4

ModelM1 assumes that vinylidene fluoride has no influence on the three serum levels. Model
M2 assumes that each serum level increases when increasing the dosage of vinylidene fluoride.

Multivariate regression: Cigarette burn and sugar percentage

The data that was provided by (Anderson and Bancroft 1952, p. 205) consisted of chemical
components of 25 tobacco leaf samples consisting of six explanatory variables: nitrogen (x1),
chlorine (x2), potassium (x3), phosphorus (x4), calcium (x5), and magnesium (x6), and two
dependent variables: rate of cigarette burn in inches per 1,000 seconds (y1) and per cent sugar
in the leaf (y2). After standardizing the dependent variables and covariates, the following
models with inequality and equality constraints on the standardized regression coefficients
αkp with k = 1, . . . , 6 and p = 1, 2 (inspired by the results of Bedrick and Tsai 1994) were
analyzed

� M1 : α11 = . . . = α61, α12 = . . . = α62

� M2 : 0 < (α11, α31,−α41, α51,−α61) < −α21, and
0 < (α12, α32, α42, α52,−α62) < α22,

� M3 : 0 = α11 = α41 = α51 = α61 < α31 < −α21,
0 = α32 = α42 = α52 = α62 < −α12 < α22.

ModelM1 assumes all standardized regression coefficients corresponding to a dependent vari-
able to be equal, modelM2 assumes that chlorine dominates the other explanatory variables
in predicting the two dependent variables and that all standardized regression coefficients are
either smaller than zero or larger than zero, and model M3 assumes that each dependent
variable is explained by only two specific explanatory variables where chlorine is dominant
over the other explanatory variable.

6. Conclusions

The program that was discussed in this paper can be used to determine the Bayes factor
of a multivariate normal linear model with equality and/or inequality constraints between
the parameters against the unconstrained model. The outcome can be interpreted as the
relative amount of evidence that is provided by the data in favor of the constrained model
versus the unconstrained model. Due to the use of the CECPP (Mulder et al. 2009), which is
based on certain linear restrictions and minimal training samples, the obtained Bayes factors
appropriately balance between model fit and complexity for a broad class of equality and
inequality constrained models.

A user-friendly interface (Appendix A) can be downloaded from the website http://tinyurl.
com/informativehypotheses, which will allow researchers who are not familiar with the
technical details of statistical modeling to use the proposed methodology. Also a stand-alone
version (Appendix B) can be downloaded from this website. Because the Bayes factor of each

http://tinyurl.com/informativehypotheses
http://tinyurl.com/informativehypotheses
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constrained model against the unconstrained model is computed separately in the stand-alone
version, it is important that the same set of restrictions (Section 3.2, Appendix B), and there-
fore the same CECPP, is used for each computation. In the interface, this is automatically
done. The interface also provides posterior model probabilities of all models under investi-
gation. Based on the posterior model probabilities, the constrained models can be compared
directly with each other concerning the amount of evidence provided by the data for each
constrained model.
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A. User manual of the BIEMS interface

The BIEMS interface can be obtained from http://tinyurl.com/informativehypotheses.
After downloading and unzipping the folder containing this software package, the executable
BIEMS.exe will be found after opening the folder. The purpose of this appendix is to describe
how to use the interface. Only a data file data.txt needs to be provided, all the other
information can be entered using the the BIEMS Windows interface. Execution of BIEMS
will render output that can be viewed within the Windows interface and will be placed in the
subfolder BIEMS_calfBF.

A.1. Data

The data in data.txt should be formatted as whitespace- or tab-separated values without
header and with no missing values, where each column corresponds to a variable. BIEMS
uses all variables in the data file, so only the variables of interest should be included. In
addition, the variables in the data file need to be in the correct order. Consider an example
with three dependent variables, one explanatory variable, one time-varying covariate, and
two groups (i.e., using the notation introduced in Section 2, P = 3, K = 1, U = 1, J = 2).
As was described in Sections 2.1 and 2.2, the observed variables in the data must ordered in
data.txt as follows

yi1 yi2 yi3 xi1 wi11 wi12 wi13 group

8.3 8.6 12.2 2.0 2.7 2.5 2.3 1
3.0 5.4 −1.0 −0.3 3.0 1.3 −0.5 2
7.0 9.1 9.6 1.7 2.7 2.2 1.4 1
...

...
...

...
...

...
...

...
3.3 −2.8 1.3 −1.3 3.8 −0.1 1.5 2

that is, first the dependent variables, then the explanatory variables, than the time-varying
explanatory variables and finally the variable containing group membership. The group col-
umn is required, although it does not need to be sorted. If there is no grouping in the data,
it should contain all 1’s.

A.2. Step 1: Data selection

After clicking on BIEMS.exe the opening screen (Figure 5) will unfold. Clicking the button
Select or Generate that can be found under the label Step 1 in the upper left hand corner
of the screen, renders the choice to generate data (which is discussed in the last section
of this manual) or to import your own data. After importing your own data, these will
be displayed in a new screen (Figure 6). In this screen you have to provide the Number of

dependent variables, Number of explanatory variables and Number of time varying

explanatory variables. After pressing Ok, a screen (Figure 7) will pop up that allows you
to specify the constrained models of interest. This screen will be discussed in the next section.

A.3. Step 2: Specifying models

In the upper left hand corner of the model specification screen (Figure 7) you find a frame
which is entitled 1: Compose. The tool in this section allows you to specify model constraints.

http://tinyurl.com/informativehypotheses
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Figure 5: Opening screen.

If a model of interest is, for example, µ(1, 1) > µ(2, 1) > µ(3, 1) > µ(4, 1) with respect to four
means in a one-way ANOVA, this can be specified by subsequently entering:

� µ(1,1) > µ(2,1) followed by a click on Add to list,

� µ(2,1) > µ(3,1) followed by a click on Add to list,

� µ(3,1) > µ(4,1) followed by a click on Add to list.

In the bottom left hand corner of the screen displayed in Figure 7, there is a frame 2:

List of Inequalities and Equalities. Clicking on Define as Model places the com-
posed model in the top right hand corner in the frame List of Models. Once this has been
done, another model can be specified using the tool in the frame 1: Compose. To provide
some examples of inequality and equality constraints one can specify:

� µ(1, 1)− µ(2, 1) = µ(3, 1)− µ(4, 1),

� µ(1, 1)− 2 ∗ µ(2, 1) + µ(3, 1) > 0,

� µ(1, 1)− µ(2, 1) > 2.5,

� 3 ∗ µ(1, 1)− µ(2, 1) + 2 > 0.
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Figure 6: Data file selector screen. The model must be specified be setting the appropriate
number of dependent variables, number of explanatory variables, and number of time-varying
explanatory variables.

Note that the Edit and Delete buttons in the frames 2: List of Inequalities and

Equalities and 3: List of Models can be used to modify or delete constraints in frame
2 and models in frame 3, respectively. As soon as the models of interest are specified the
default prior distribution can be generated by clicking the button Generate Default Prior

which can be found in the top of the screen. Before discussing this, some additional features
in the model specification screen will be elaborated.

A.4. Additional features in the model specification screen

In the bottom right hand corner of the model specification screen (Figure 7), the frame 4:

Settings can be found. Here the following default values for the computation of Bayes factors
and posterior model probabilities can be modified:

� Ticking the circle in front of Specify restrictions manually allows manual specifi-
cation of the restrictions used to construct the prior distribution using the tool in frame
1: Compose that was previously used to compose models. The restrictions that are
used to specify the prior distribution are discussed in Section 3.2 of the paper.
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Figure 7: Screen where the equality and inequality constrained models can be specified.

� The scale of the prior variance can manually be adjusted by ticking the circle in front of
Manually. The desired scale can be entered in the box located on the right of Manually.
The default value of the scale of the prior distribution is discussed in Section 3.3.

� The default MCMC sample size can be adjusted. The MCMC sample size is discussed
in Section 4.1 and in Section 4.2.

� The default number of Max BF steps can be adjusted. This number of steps is denoted
by A in Section 4.3.

The last item, which can be found in the lower right hand corner of this screen, is impor-
tant. Here it can be indicated whether or not the dependent variables and the (time-varying)
explanatory variables should be standardized. Note that regression coefficients in a (multivari-
ate) multiple regression are only comparable if both the dependent and independent variables
are standardized (Section 5.2). Note also that in the context of an (M)ANCOVA, i.e., there
are groups and continuous explanatory variables in the model, the continuous predictors have
to be standardized (Section 5.4).

The button Step Back brings you back to the previous screen and deletes the information in
the current screen. The button Close will end the current session with BIEMS.
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Figure 8: Default prior view which displays the properties and hyperparameters of the con-
jugate expected constrained posterior prior (CECPP).

A.5. Step 3: Generate the default prior distribution

As soon as the models of interest are specified, the default prior distribution can be generated
by clicking the button Generate Default Prior which can be found in the top of the screen
under Step 3. A screen will open (Figure 8) showing the prior means and covariance matrix,
prior scale and training sample size, and matrices containing the restrictions used for the
computation of the prior means and variances. More information with respect to the content
of this screen can be found in Sections 3.3 and 3.4. The screen can be closed by clicking the
Ok button. Note however that it is possible to change the prior means and prior covariance
matrix by typing new values for the old values.

A.6. Step 4: View/edit default prior

Pressing the button View/Edit Default Prior which can be found in the top of the screen
under Step 4, renders a return to the screen discussed in the previous section.
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Figure 9: Screen where Bayes factors and posterior model probabilities are computed.

A.7. Step 4: Calculate Bayes factors

Pressing the button Calculate Bayes factors, which can be found in the top of the screen
under Step 4, leads to a screen (Figure 9) where the Bayes factors are calculated. These will
be displayed when the MCMC computation is done. For each model, detailed output can be
inspected by clicking the buttons Detailed output. Furthermore, by pressing (In)equality

constraints, the (in)equality constraints of each model can be viewed. The main features
of the output will be discussed in the next section. Finally, the posterior model probabilities
will be computed after pressing Calculate in the appropriate frame. These will be displayed
in the frame below.

A.8. Output

The results of an analysis are given in the file output_BIEMS.txt. At the top of the file under
the label ***Bayes factor***, the Bayes factor for the constrained model Mt against the
unconstrained model M0 is given (Section 4), along with its standard error (Section 4.2):

Bayes factor of the constrained model M_t versus the unconstrained model M_0:

BF_{t,0} = 69.76646

standard error BF = 5.669907
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If equality constraints are used for the specification ofMt, the Bayes factors for the sub steps
(Section 4.3) are given as well. The values in the subBFs column are the Bayes factors for
the constrained model in each step relative to the constrained model in the previous step.
The current BF values are the estimated Bayes factors B̂t0 at that particular step. In the
example below, the subBF values can be seen to gradually approach the number 1.0 which
implies that convergence is established.

subBFs current BF

15.56523 15.56523

2.633227 40.98678
...

...
1.064050 69.54861

1.018774 70.85430

0.9846468 69.76646

If a model only contains inequality constraints, the estimated model complexity ct and esti-
mated model fit ft (Section 4.1) are provided, as well as the Bayes factor for the model against
its complement (Section 4). Under the label ***hits/BF in substeps***, the details of the
computation of ft, ct and the Bayes factor in each substep are provided (Section 4.1 under
the label ‘More efficient estimation for small ct’).

In the output under the label ***Descriptive Statistics***, the maximum likelihood es-
timate of the parameter matrix B and the least squares estimate of Σ are given (Section 2.1).
Under the label ***posterior***, the posterior means and variances of B are displayed.
Under the label ***Prior***, the CECPP mean βEC0 is displayed in its matrix form BEC

0 ,
followed by CECPP variances which are the diagonal elements of the prior covariance matrix
ΨEC

0 in (17), and finally the complete covariance matrix ΨEC
0 is provided. These hyperpa-

rameters are ordered in essentially the same way as the matrix B, e.g.,

CECPP mean of B

1.294 1.294 1.294 (group 1)
1.294 1.294 1.294 (group 2)
4.038 4.692 4.557 (covariate 1)
1.354 2.134 2.808 (time-varying covariate 1)

in the case of three dependent variables, two groups, one explanatory variable and one time
varying covariate. Note that the row containing the estimates for the regression coefficients
of the time-varying covariate correspond with the estimates of the diagonal elements of the
matrix G1 in Section 2.2. Finally, under the label ***Prior Restrictions***, the restric-
tions that were used for the computation of the hyperparameters of the constrained posterior
priors (CPPs) are presented. First, the restrictions for the CPP means are presented, followed
by the restrictions for the CPP variances. These restrictions are elaborated in Sections 3.2
and 3.3.

A.9. Step 1: Data generation

After clicking on BIEMS.exe, the opening screen (Figure 5) will unfold. Clicking the button
Select or Generate renders the choice to generate data or to import your own data. If
Generate is chosen, a screen will open (Figure 10) that allows the specification of a population
from which data will be generated. The population is described by the multivariate normal
linear model presented in Equation 1 in this paper, extended with a multivariate normal
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Figure 10: Data generator screen.

distribution for the explanatory variables in each group.

In the opening screen, the Number of dependent variabels, Number of Groups and Number

of explanatory variables have to be given. By clicking the button Use Settings, a frame
will be opened where the following characteristics must be given:

� The sample size of each group;

� The error covariance matrix Σ which is introduced a few lines below Equation 1;

� The group means M and the regression coefficients A which can be found in Equation 1
in this paper;

� The means and covariance matrix of the explanatory variables in each group.

After all parameters are specified, two options are available: simulate a data set from this
population or generate a data set from the population that has sample parameters of the error
covariance matrix, group means, regression coefficients, means and covariance matrix of the
explanatory variables that are equal to the population parameters. If the latter is desired,
the box labeled Generate exact data has to be ticked before clicking the button Generate.

Data generated from a population with known properties can be useful to run tests with
BIEMS, for example, to get an impression of the sample sizes needed in order to be able to
evaluate the models of interest.
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B. User manual of BIEMS (stand-alone version)

The purpose of this appendix is to describe the practical details of the stand-alone
version of BIEMS which can be downloaded from the web site http://tinyurl.com/

informativehypotheses. Unlike the interface, this version only computes the Bayes fac-
tor of one constrained model against the unconstrained model. It is not possible to specify
multiple constrained models. For this reason, when more than one model is under investi-
gation, say M1 and M2, it is important that the same linear restrictions and therefore the
same CECPP is used when computing the Bayes factors of each constrained model against
the unconstrained model, B10 and B20. Subsequently, the two constrained models can di-
rectly be compared with each other by calculating the Bayes factor of M1 against M2 by
B12 = B10/B20.

A running example will be used throughout this appendix for illustration. The BIEMS
program consists of one executable file biems.exe, a data file data.txt, a settings file
input_BIEMS.txt and three further input files containing the constraints of the model and the
restrictions on the prior necessary for calculating the Bayes factor of the constrained model
against the unconstrained model (equality_constraints.txt, inequality_constraints

.txt and restriction_matrix.txt). To calculate the Bayes factors of a model, set the
model specification by modifying these text files with a plain text editor and run biems.exe.
This will generate a file output_BIEMS.txt containing the output for the model. Note that
this will overwrite previous versions of output_BIEMS.txt when present.

B.1. Data

The data in data.txt should be formatted as whitespace- or tab-separated values without
header and with no missing values, where each column corresponds to a variable. BIEMS
uses all variables in the data file, so only the variables of interest should be included. In
addition, the variables in the data file need to be in the correct order. Throughout this
appendix we consider an example with three dependent variables, one explanatory variable,
one time-varying covariate, and two groups (i.e., P = 3, K = 1, U = 1, J = 2 when using
the notation of Section 2.1 and 2.2). The observed variables in the data must ordered in
data.txt as follows

yi1 yi2 yi3 xi1 wi11 wi12 wi13 group

8.3 8.6 12.2 2.0 2.7 2.5 2.3 1
3.0 5.4 −1.0 −0.3 3.0 1.3 −0.5 2
7.0 9.1 9.6 1.7 2.7 2.2 1.4 1
...

...
...

...
...

...
...

...
3.3 −2.8 1.3 −1.3 3.8 −0.1 1.5 2

The group column is required, although it does not need to be sorted. If there is no grouping
in the data, it should contain all 1’s.

B.2. General settings

The general settings for BIEMS are specified in input_BIEMS.txt, which is divided into five
input lines. On the first input line, the main properties of the data are defined:

http://tinyurl.com/informativehypotheses
http://tinyurl.com/informativehypotheses
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Input 1: #DV #cov #Tcov N iseed

3 1 1 80 629535

These are the number of dependent variables, the number of explanatory variables, the number
of time-varying covariates and the number of observations, P , K, U and N respectively
(Sections 2.1 and 2.2). The iseed value is the seed of the random number generator, which
can be set to any positive integer. It can also be set to -1. In that case a different random
seed is used each time.

The second input line contains the number of constraints and restrictions that are placed
on the model. We consider a model with 3 inequality constraints and 4 equality constraints
(given in the next section), i.e.,

Input 2: #inequalities #equalities #restrictions

3 4 -1

These values should correspond to the number of equality constraints and inequality con-
straints of the model defined in the files equality_constraints.txt and
inequality_constraints.txt, respectively. When the value for #restrictions is set to
-1, the default set of restrictions on the prior is used which is equivalent to the row ech-
elon form of the set of model constraints (see also Section 3.2). When the restrictions are
manually specified in the file restriction_matrix.txt (discussed in the following section),
for instance when multiple constrained models are under investigation and the default sets
of restrictions are not identical across the models, the number of restrictions should then be
stated in #restrictions.

The third input line allows the user to change some default values used by BIEMS:

Input 3: sample size maxBF steps scale of CPP variance

-1 -1 -1

Each of these options are set to -1, in which case the program’s defaults are used. The first
option specifies the number of draws used to estimate the (conditional) probabilities for each
set of two inequality constraints, which defaults to 20,000 (see also Section 4.1 and 4.2). The
second option gives the maximum number of steps used to approximate the Bayes factor for
equality constraints (Section 4.3). By default, BIEMS uses as many steps as it takes for the
Bayes factors between adjacent steps to become approximately one. The third option gives
the scale of the variances of the constrained posterior prior for β. By default this is equal to
the number of free parameters under the restricted model (Section 3.3).

The fourth and fifth input lines allow the user to standardize the dependent and explanatory
variables:

Input 4: standardize DV/IV

0 2

Input 5: covariates to standardize (if standardize IV = 2)

1 0

The first value on input line 4 indicates whether to standardize the dependent variables, the
second value whether to standardize the explanatory variables and time-varying covariates
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(0 = no, 1 = yes). The second value can also be set to 2, to indicate that only some of the
explanatory variables and/or time-varying covariates should be standardized. This is specified
on input line 5, which should then contain a line of 0’s and 1’s of length K + U , indicating
for each explanatory variable and time-varying covariate whether it should be standardized
or not. As specified above for the example, only the explanatory variable is standardized.
When testing constraints on the regression coefficients, it is recommendable to standardize
the dependent variable(s) and the (tim-varying) explanatory variable(s), so that actually the
constraints on the standardized regression coefficients are evaluated. Also in the case of a
(M)ANCOVA, we recommend to standardize the explanatory variables.

B.3. Constraints and restrictions

The constraints of the model and restrictions on the prior are set in the files
equality_constraints.txt, inequality_constraints.txt and restriction_matrix.txt.
If #restrictions is set to −1 in input_BIEMS.txt, the latter file does not need to be spec-
ified. The first two of these files contain the matrices [Qt|qt] and [Rt|rt], as defined in Sec-
tion 2.3. All three files have the same structure, with each row corresponding to a constraint
or restriction.

For the example we have

B =



DV 1 DV 2 DV 3

µ11 µ12 µ13
µ21 µ22 µ23
α11 α12 α13

γ11 0 0
0 γ12 0
0 0 γ13


group 1
group 2
expl. var. 1}

time-var. cov. 1.

The vectorization of this matrix along its columns results in the following parameter vector

β> = (µ11, µ21, α11, γ11, µ12, µ22, α12, γ12, µ13, µ23, α13, γ13).

The model under evaluation has the following constraints:

µ11 = µ12 = µ13
∧ ∧ ∧
µ21 = µ22 = µ23.

Thus, it is expected that the group means do not change over time and the mean of group 2
is higher than the mean of group 1 at each time point. This is specified in the input files as
follows (parameter names have been added here for convenience):

equality_constraints.txt

µ11 µ21 α11 γ11 µ12 µ22 α12 γ12 µ13 µ23 α13 γ13
1 0 0 0 -1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 -1 0 0 0 0

0 1 0 0 0 -1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 -1 0 0 0
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and

inequality_constraints.txt

µ11 µ21 α11 γ11 µ12 µ22 α12 γ12 µ13 µ23 α13 γ13
-1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 -1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 -1 1 0 0 0

In this example, the default set of restrictions (i.e., #restrictions = -1 in input_BIEMS.txt)
can be used for constructing the construct the conjugate expected-constrained posterior
prior (CECPP). This is equal to the row echelon form of the combination of inequality and
equality constraints of the model under evaluation. When the constraints in inequality_

constraints.txt and equality_constraints.txt are combines and row operations are per-
formed, the system is containing two rows with zeros. After removing these two rows, the
following set of restrictions is used

restriction_matrix.txt

µ11 µ21 α11 γ11 µ12 µ22 α12 γ12 µ13 µ23 α13 γ13
1 0 0 0 0 0 0 0 0 -1 0 0 0

0 1 0 0 0 0 0 0 0 -1 0 0 0

0 0 0 0 1 0 0 0 0 -1 0 0 0

0 0 0 0 0 1 0 0 0 -1 0 0 0

0 0 0 0 0 0 0 0 1 -1 0 0 0,

which results in equal prior distributions for µ11, . . . , µ23 (Section 3).

B.4. Output

The results of an analysis are given in the file output_BIEMS.txt. At the top of the file the
Bayes factor for the constrained model against the unconstrained model is given, along with
its standard error (see Section 4.2):

Bayes factor of the constrained model M_t versus the unconstrained model M_0:

BF_{t,0} = 69.76646

standard error BF = 5.669907

If equality constraints were used, the Bayes factors for the substeps (see Section 3.3) are
given as well. The values in the subBF column are the Bayes factors for the model in that
step, relative to the model in the previous step. The current BF values are the estimated
Bayes factors B̂t0 for that step. For the example, the subBF values can be seen to gradually
approach the final Bayes factor of 69.8.

subBFs current BF

15.56523 15.56523

2.633227 40.98678
...

...
1.064050 69.54861

1.018774 70.85430

0.9846468 69.76646
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If only inequality constraints were used, the estimated model complexity ct and estimated
model fit ft are provided, as well as the Bayes factor for the model against its complement
(Section 4). Following this are some more details for each of the substeps.

At the bottom of the file some descriptive statistics are given: the maximum likelihood (ML)
estimate of the parameter matrix B (when time-varying covariates are present the restricted
ML estimate of B is provided given that γ∗ = 0 (Section 2.2)), the posterior means and
variances of B, as well as the means, variances and covariances for the conjugate expected-
constrained posterior prior. The values given under ***prior*** correspond to the symbols
in equation (5.15) as follows: under CECPP means of B are the values of βEC0 (in matrix form
B), CECPP variance of B contains the CECPP variances of the elements in B, and CECPP

covariance matrix of beta represents the prior covariance matrix ΨEC
0 of β. Parameters

for these and the earlier descriptive statistics are ordered in essentially the same way as the
matrix B, e.g.,

CECPP mean of B

1.294 1.294 1.294 (group 1)
1.294 1.294 1.294 (group 2)
4.038 4.692 4.557 (covariate 1)
1.354 2.134 2.808 (time-varying covariate 1)

where the columns represent the measurements at three different time points. As a result of
the CECPP restrictions, the prior means of the adjusted measurement means µ are identical
in the above matrix. The complete matrix ΨEC

0 is given as CECPP covariance matrix of

beta, and the order of the elements in B is identical to the order of the elements in β = vec(B).
Finally under ***Prior Restrictions***, the restriction matrices are given that were used
to obtain the CECPP means and the CECPP variances of β.
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