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Abstract

This paper presents the R package HDclassif which is devoted to the clustering and the
discriminant analysis of high-dimensional data. The classification methods proposed in the
package result from a new parametrization of the Gaussian mixture model which combines
the idea of dimension reduction and model constraints on the covariance matrices. The
supervised classification method using this parametrization is called high dimensional
discriminant analysis (HDDA). In a similar manner, the associated clustering method is
called high dimensional data clustering (HDDC) and uses the expectation-maximization
algorithm for inference. In order to correctly fit the data, both methods estimate the
specific subspace and the intrinsic dimension of the groups. Due to the constraints on
the covariance matrices, the number of parameters to estimate is significantly lower than
other model-based methods and this allows the methods to be stable and efficient in high
dimensions. Two introductory examples illustrated with R codes allow the user to discover
the hdda and hddc functions. Experiments on simulated and real datasets also compare
HDDC and HDDA with existing classification methods on high-dimensional datasets.
HDclassif is a free software and distributed under the general public license, as part of
the R software project.

Keywords: model-based classification, high-dimensional data, discriminant analysis, cluster-
ing, Gaussian mixture models, parsimonious models, class-specific subspaces, R package.

1. Introduction

Classification in high-dimensional spaces is a recurrent problem in many fields of science, for
instance in image analysis or in spectrometry. Indeed, the data used in these fields are often
high-dimensional and this penalizes most of the classification methods. In this paper, we
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focus on model-based approaches. We refer to Bock (1996) for a review on this topic. In this
context, popular classification methods are based on the Gaussian mixture model (McLachlan
and Peel 2000) and show a disappointing behavior when the size of the dataset is too small
compared to the number of parameters to estimate. This well-known phenomenon is called
the curse of dimensionality and was first identified by Bellman (1957). We refer to Pavlenko
(2003) and Pavlenko and Rosen (2001) for a theoretical study of the effect of dimension in
the model-based classification. To avoid over-fitting, it is necessary to find a balance between
the number of parameters to estimate and the generality of the model. Recently, Bouveyron,
Girard, and Schmid (2007a,b) have proposed a new parametrization of the Gaussian mixture
model which takes into account the specific subspace around which each group is located.
This parametrization therefore limits the number of parameters to estimate while proposing
a flexible modeling of the data. The use of this re-parametrization in discriminant analy-
sis yielded a new method called high dimensional discriminant analysis (HDDA, Bouveyron
et al. 2007b) and the associated clustering method has been named high dimensional data
clustering (HDDC, Bouveyron et al. 2007a).

The R (R Development Core Team 2011) package HDclassif (currently in version 1.2.1) im-
plements these two classification methods for the clustering and the discriminant analysis of
high-dimensional data. This paper briefly reviews in Section 2 the methodology of the HDDA
and HDDC methods. Section 3 focuses on technical details of the learning and predicting
routines. The practical use of the package is illustrated and compared to well-established clas-
sification packages in Section 4 on introductory and real-world datasets. Section 5 presents
applications of the package to optical character recognition and to mass-spectrometry. Fi-
nally, some concluding remarks are provided in Section 6. The package is available from the
Comprehensive R Archive Network at http://CRAN.R-projects.org/package=HDclassif.

2. Gaussian models for high-dimensional data classification

Classification is a statistical field which includes two techniques: supervised and unsupervised
classifications. Supervised classification, also called discriminant analysis, aims to associate a
new observation x with one of K known classes through a learning set of labeled observations.
Conversely, unsupervised classification aims to segment a set of unlabeled observations into
K homogeneous groups. Unsupervised classification is also known as clustering. We refer
to McLachlan (1992) for more details on the general classification framework.

In both contexts, a popular approach is the use of the Gaussian mixture model which relies
on the assumption that each class can be represented by a Gaussian density. This approach
assumes that the observations {z1,...,z,} are independent realizations of a random vec-
tor X € R? with density:

K
Fla,0) = meo(x; g, Si), (1)
k=1

where 7 is the mixture proportion of the kth component and ¢ is the Gaussian density
parametrized by the mean pu; and the covariance matrix ;. This model gives rise in the
supervised context to the well-known quadratic discriminant analysis (QDA). Unfortunately,
this method requires the estimation of a very large number of parameters (proportional to
p?) and therefore faces numerical problems in high-dimensional spaces. Hopefully, due to
the empty space phenomenon (Scott and Thompson 1983), it can be assumed that high-
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dimensional data live around subspaces with a dimension lower than p. Recently, Bouveyron
et al. (2007a,b) have introduced a new parametrization of the Gaussian mixture model which
takes into account the specific subspace around which each cluster is located and therefore
limits the number of parameters to estimate.

2.1. The Gaussian model [a;;b,Qrd;] and its submodels

As in the classical Gaussian mixture model framework (McLachlan 1992), we assume that
class conditional densities are Gaussian N (px, Xx) with means g, and covariance matrices
Yp,fork=1,... K. Let Q be the orthogonal matrix with the eigenvectors of ¥ as columns
and Ay be the diagonal matrix which contains the eigenvalues of X; such that:

Ap = Q1Tk Qs (2)

The matrix Ay is therefore the covariance matrix of the kth class in its eigenspace. It is
further assumed that A; can be divided into two blocks:

a1 0

0 Aledy,
Ay = i 0 (3)

. | o)

0 by

with ay; > by, j = 1,...,di, and where d; € {1,...,p — 1} is unknown. This Gaussian
model will be denoted to by [ay;bpQrdr] in the sequel. With these notations and from a
practical point of view, one can say that the parameters ay, ..., agq, model the variance of
the actual data of the kth class and the unique parameter by can be viewed as modeling the
variance of the noise. The dimension dj can be considered as well as the intrinsic dimension
of the latent subspace of the kth group which is spanned by the dj first column vectors of
Q- Let us remark that if we constrain dj to be equal to (p — 1) for all k = 1,..., K, the
model [akjkakdk] then reduces to the classical Gaussian mixture model with full covariance
matrices for each mixture component which yields QDA in the supervised framework.

By fixing some parameters to be common within or between classes, it is possible to obtain
particular models which correspond to different regularizations. Fixing the dimensions dy
to be common between the classes yields the model [ax;brQrd] which is the model proposed
in Tipping and Bishop (1999) in the unsupervised classification framework. As a consequence,
the modeling presented above encompasses the mixture of probabilistic principal component
analyzers introduced in Tipping and Bishop (1999) and extended in McLachlan, Peel, and
Bean (2003). It is also important to notice that this modeling is closely related with the
recent works of McNicholas and Murphy (2008a,b); Back, McLachlan, and Flack (2009) and
Bouveyron and Brunet (2012). Moreover, our approach can be combined with a “parsimonious
model” strategy to further limit the number of parameters to estimate. It is indeed possible
to add constraints on the different parameters to obtain more regularized models. Fixing the
first dj eigenvalues to be common within each class, we obtain the more restricted model
[akbrQrdr]. The model [arbrQrdy] often gives satisfying results, i.e., the assumption that
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Model Number of Asymptotic  Number of parameters

parameters order K=4,d=10,p=100
[akjkakdk] p+7T+2K+D Kpd 4231
[akijkdk] p+T+K+D+1 Kpd 4228
[akkakdk] p+T7+3K Kpd 4195
[akakdk] p+T+2K+1 Kpd 4192
[akbQdy] p+T+2K+1 Kpd 4192
[abQp.dy] p+T+K+2 Kpd 4189
[akjkakd] p+K(r+d+1)+1 Kpd 4228
[akijkd] p+ K(T + d) + 2 Kpd 4225
[akkakd] p+ K(T + 2) Kpd 4192
[abrQpd] p+K(r+1)+ Kpd 4189
[akakd] p+ K( ) Kpd 4189
[abQprd] p+K1+3 Kpd 4186
[a;bQd] p+T+d+2 pd 1360
[abQd] p+7+3 pd 1351
Ful-GMM  p+ Kp(p+1)/2 Kp?/2 20603
Com-GMM  p+p(p+1)/2 p%/2 5453
Diag-GMM  p+ Kp 2Kp 803
Sphe-GMM p+ K Kp 407

Table 1: Properties of the HD models and some classical Gaussian models: K is the number
of components, d and dj are the intrinsic dimensions of the classes, p is the dimension of the
observation space, p = Kp+ K — 1 is the number of parameters required for the estimation of
means and proportions, 7 = Zle di[p— (dx +1)/2] and 7 = d[p — (d+ 1) /2] are the number
of parameters required for the estimation of orientation matrices Qg, and D = Zszl dy,. For
asymptotic orders, the assumption that K < d < p is made.

each matrix Ay contains only two different eigenvalues, ap and by, seems to be an efficient
way to regularize the estimation of Aj. The good practical behavior of this specific model
can be explained by the fact that the variance in the estimation of ag, which is the mean
of the a1, ..., akq,, is less than the variance in the separate estimations of the a1, ..., axq, .
Therefore, the bias introduced by this assumption on the model seems to be balanced by the
limited variance in the estimation of model parameters. Another type of regularization is to
fix the parameters b, to be common between the classes. This yields the models [a;bQdk]
and [axbQrdx] which assume that the variance outside the class specific subspaces is common.
This can be viewed as modeling the noise outside the latent subspace of the group by a single
parameter b which could be appropriate when the data are obtained in a common acquisition
process. Among the 28 models proposed in the original articles (Bouveyron et al. 2007a,b),
14 models have been selected to be included in the package for their good behaviors in practice.
Table 1 lists the 14 models available in the package and their corresponding complexity (i.e.,
the number of parameters to estimate). The complexity of classical Gaussian models is also
provided in a comparison purpose. The Full-GMM model refers to the classical Gaussian
mixture model with full covariance matrices, the Com-GMM model refers to the Gaussian
mixture model for which the covariance matrices are assumed to be equal to a common
covariance matrix (S = S, Vk), Diag-GMM refers to the Gaussian mixture model for which
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Y = diag(s%l, ceey szp) with s% € Rﬁ and Sphe-GMM refers to the Gaussian mixture model

for which ¥j = silp with 8,% € R;. Remark that the Com-GMM model is the model of the
popular linear discriminant analysis (LDA) in the supervised context.

2.2. High dimensional discriminant analysis

The use of the models presented in the previous paragraph has given birth to a method for
high-dimensional discriminant analysis called HDDA (Bouveyron et al. 2007b). HDDA is
made of a learning step, in which model parameters are estimated from a set of learning ob-
servations, and a classification step which aims to predict the class belonging of new unlabeled
observations. In the context of supervised classification, the learning data are complete, i.e.,
a label z; indicating the class belonging is available for each observation z; of the learning
dataset. The estimation of model parameters is therefore direct through the maximum like-
lihood method and parameter estimators are closed-form. Estimators for model parameters
can be found in Bouveyron et al. (2007b). Once the model parameters learned, it is possible
to use HDDA for predicting the class of a new observation x using the classical mazimum a
posteriori (MAP) rule which assigns the observation to the class with the largest posterior
probability. Therefore, the classification step mainly consists in computing, for each class

E=1,....K,P(Z = k|X =x) = 1/25:1 exp (3(Cx(z) — Ty(z))) where the cost function
Tik(x) = —2log(mro(x; uk, X)) has the following form in the case of the model [axbrQrdk]:

L(z) = alk||ﬂk — P(2)|I” + blkfﬂﬁ — Py(a)|1? + dg log(ar) + (p — di,) log(bg) — 2log(my), (4)

where Py is the projection operator on the latent subspace of the kth class. Let us notice that
't () is mainly based on two distances: the distance between the projection of  on the latent
subspace and the mean of the class and the distance between the observation and the latent
subspace. This function favors the assignment of a new observation to the class for which it
is close to the subspace and for which its projection on the class subspace is close to the mean
of the class. The variance terms a; and by balance the importance of both distances.

2.3. High dimensional data clustering

In the unsupervised classification context, the use of the models presented above yielded a
model-based clustering method called HDDC (Bouveyron et al. 2007b). Conversely to the
supervised case, the data at hand in the clustering context are not complete (i.e., the labels
are not observed for the observations of the dataset to cluster). In such a situation, the direct
maximization of the likelihood is an intractable problem and the expectation-maximization
(EM) algorithm (Dempster, Laird, and Rubin 1977) can be used to estimate the mixture
parameters by iteratively maximizing the likelihood. The EM algorithm alternates between
the following E and M steps at each iteration g:

e The E step computes the posterior probabilities tEZ) = P(Z = k|X = x;) through
Equation (4) using the model parameters estimated at iteration ¢ — 1,

e The M step updates the estimates of model parameters by maximizing the expectation of

the complete likelihood conditionally to the posterior probabilities tz(g). Update formulas
for model parameters can be found in Bouveyron et al. (2007b).
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The EM algorithm stops when the difference between the estimated values of the likelihood
at two consecutive iterations is smaller than a given threshold.

3. Learning and predicting routines

This section first focuses on technical issues related to the inference in HDDA and HDDC. In
a second part, details are given about the inputs and outputs of both methods.

3.1. Implementation issues

We discuss here the implementation issues related to the determination of the hyper-parameters
and to the case where the number of observations n is smaller than the space dimension p.

Estimation of the hyper-parameters

The use of maximum likelihood or the EM algorithm for parameter estimation makes the
methods HDDA and HDDC almost automatic, except for the estimation of the hyper-parameters
di,...,d; and K. Indeed, these parameters cannot be determined by maximizing the likeli-
hood since they both control the model complexity. The estimation of the intrinsic dimensions
dy,...,dy is a difficult problem with no unique technique to use. In Bouveyron et al. (2007b),
the authors proposed a strategy based on the eigenvalues of the class conditional covariance
matrix Y of the kth class. The j-th eigenvalue of ¥ corresponds to the fraction of the full
variance carried by the j-th eigenvector of Y. The class specific dimension di, k =1,..., K,
is estimated through Cattell’s scree-test (Cattell 1966) which looks for a break in the eigenval-
ues scree. The selected dimension is the one for which the subsequent eigenvalue differences
are smaller than a threshold. The threshold can be provided by the user, selected through
cross-validation in the supervised case or using BIC (Schwarz 1978) in the unsupervised case.
In the clustering case, the number of clusters K may have to be estimated as well and can be
chosen thanks to the BIC criterion. In the specific case of the models [axbrQrdk], [arbrQrd],
[abQdy] and [abQrd], it has been recently proved by Bouveyron, Celeux, and Girard (2011)
that the maximum likelihood estimate of the intrinsic dimensions dj is asymptotically con-
sistent.

Case ny < p

Furthermore, in the special case where the number of observations of a class, ny, is smaller than
the dimension p, the parametrization presented in the previous section allows to use a linear
algebra trick. Since the data do not live in a subspace larger than the number of observations
it contains, the intrinsic dimension dj cannot be larger than the number of observations
of the class. Then, there is no need to compute all the eigenvalues and eigenvectors of the
empirical covariance matrix Wy, = X,ﬁé\,’k, where &}, is the nj X p matrix containing the centered
observations of the k-th class. Indeed, it is faster and more numerically stable to calculate,
when ny < p, the eigenvalues and eigenvectors of the inner product matrix XX} which is a
ny X nj matrix. Let vy; be the eigenvector associated to the j-th eigenvalue Ai; of the matrix
Xk?{,z, then for j =1,...,dg:
Xk-)(]zvkj = )\kjl/kj-

Therefore, the eigenvector of W, associated to the eigenvalue Ai; can be obtained by multi-
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Free dimensions Common dimensions
Variances  Class specific noise Common noise Class specific noise Common noise
Free [akjkakdk] [akijdk] [akjkakd] [akijkd]
Isotropic  [agbrQrdy] [arbQrdy] [arbrQrd] [arbQpd]
Homosced. [abpQrdy] [abQpdy] [aby Qd] [abQrd]

Table 2: Models with class specific orientation matrix.

plying v; by X,ﬁ. Using this computational trick, it has been possible to classify a dataset
of 10 classes with 13 observations in each class and described in a 1024-dimensional space.
Furthermore, it has been noticed in this case a reduction by a factor 500 of the computing
time compared to the classical approach.

3.2. Input options

The main routines hdda and hddc have the following common options:

e model: 14 models can be used in those functions: 12 models with class specific orienta-
tion matrix (summarized in Table 2) and two models with common covariance matrix:
the models [a;0Qd] and [abQd]. The list of all available models is given on Table 1. The
most general model is [ay;brQrdy], all the parameters are class-specific and each class
subspace has as many parameters as its intrinsic dimension, it is the default model.

Both hdda and hddc can select, among all possible models, the most appropriate one
for the data at hand. The model with the largest BIC value is kept. It is possible to
run all 14 models (see Table 1) using the option model = "ALL".

e d: This parameter specifies how the choice of the intrinsic dimensions is done:

— Cattell: Cattell’s scree-test is used to find the intrinsic dimension of each class.
This is the default value of d. If the model is with common dimensions, the scree-
test is done on the covariance matrix of the whole dataset.

— BIC: The intrinsic dimensions are selected with the BIC criterion. See also Bou-
veyron et al. (2011) for a discussion of this topic.

— CV: For hdda only. A V-fold cross-validation (CV) can be done in order to select the
best threshold or the best common dimension (for models with common dimension
only). The V-fold CV is done for each dimension (respectively threshold) in the
argument cv.dim (resp. cv.threshold), then the dimension (resp. threshold) that
gives the best good classification rate is kept. The dataset is split in cv.vfold
(default is 10) random subsamples, then CV is done for each sample: each of them
is used as validation data while the remaining data is used as training data. If
cv.vfold is equal to the number of observations, then this CV is equivalent to a
leave-one-out.

e cv.dim, cv.threshold and cv.vfold: These parameters are only used if d = "CV".
The first two are vectors that specify the different dimensions (default is {1,...,10})
or thresholds (default is {0.001,0.005,0.01,0.05,0.1,0.2,...,0.9}) for which the cross-
validations have to be done. The last one specifies the number of samples used in the
V-fold CV, its default value is 10.
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e com_dim: It is used only for common dimensions models. The user can specify the
common dimension he wants. If used, it must be an integer. Its default value is set to
NULL.

e threshold: The threshold used in Cattell’s scree-test. The default value is 0.2, which
corresponds to 0.2 times the highest difference between two successive eigenvalues.

e scaling: Logical: whether to center and standardize the variables of the dataset or
not. By default, the data are not scaled (scaling = FALSE).

e graph: This option is only there for the sake of comparison, when several estimations are
run at the same time (either when using several models, or when using cross-validation
to select the best dimension/threshold). If graph = TRUE, the plot of the results of all
estimations is displayed. Default value is FALSE.

e L0O: For hdda only. If TRUE, it returns results (classes and posterior probabilities) for
leave-one-out cross-validation.

The routine hddc has the additional following options:

e K: It designates the number of clusters for which the classification has to be done. The
algorithm selects the result with the maximum BIC value. Default is 1:10 which means
that the clustering is done for one to ten classes and then the solution with the largest
BIC value is kept.

e itermax: The maximum number of iterations, default is 60.

e eps: Defines the threshold value of the stopping criterion. The algorithm stops when
the difference between two successive log-likelihoods is below this threshold, default is
1073

e algo: Three algorithms can be used:

— EM: The default value. The standard EM algorithm is used.

— CEM: Classification EM (Celeux and Govaert 1992) is used to have a faster conver-
gence: at each step, a cluster is allocated to each observation using the mazimum
a posteriori rule.

— SEM: Stochastic EM (Celeux and Diebolt 1985) is used to avoid initialization prob-
lems and to try not to stop in a local maximum of the log-likelihood. At each
iteration, it allocates each observation to a cluster using a multinomial distribu-
tion of probability ¢;; (the posterior probability that the observation i belongs to
the group k).

e init: There are five initialization:

— kmeans: The initial class of each observation is provided by the k-means algorithm;
it is done using the function kmeans with 50 maximum iterations, 4 starts and the
default algorithm. This is the default initialization of hddc. Note that the user
can parametrize kmeans using the ... argument in hddc.
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— param: This is an initialization of the parameters. It was proposed by McLachlan
and Peel (2000), they suggest to set the proportions 7 of the mixture to 1/K and
generate the means yu; accordingly to a multivariate Gaussian distribution A (m, S)
where m and S are respectively the empirical mean and the covariance matrix of
the whole dataset. The covariance matrices ¥ are finally initialized to S.

— mini-em: This is the initialization procedure proposed in Biernacki, Celeux, and
Govaert (2003). The algorithm is run m times, doing each times nb iterations with
a random initialization; the default is 5 times with 10 iterations. Then the result
with the highest log-likelihood is kept as the initialization of the algorithm. The
parameters m and nb can be set with the mini.nb argument.

— random: The group memberships are randomly sampled using a multinomial dis-
tribution with equal prior probabilities.

— A prior class vector: The user can also provide his own initialization by giving a
vector of group memberships.

e mini.nb: This parameter settles the mini-em initialization, it is a vector of length 2,
containing m and nb, its default value is c(5, 10).

The function predict.hdc, which computes the class prediction of a dataset with the pa-
rameters previously obtained using either the function hdda or hddc, may also take another
argument:

e cls: This argument takes the original class vector of the dataset, it is optional and only
for comparison sake (see Section 3.3 for further explanations).

The function plot.hdc uses the parameters obtained using hdda or hddc. It may also take
two arguments:

e method: The method used to select the intrinsic dimension. It can be "BIC" or
"Cattell". By default it takes the method used when obtaining the parameters using
hdda or hddc.

e threshold: The threshold for Cattell’s scree-test. The default is the one used when
obtaining the parameters using hdda or hddc.

3.3. Output

The routines hdda and hddc have the following common outputs:

e All the estimated model parameters:
— a: The variance parameters within the class-specific subspaces.
— b: The variance parameters outside the class-specific subspaces.
— d: The intrinsic dimensions of the classes.
— prop: The proportions of the classes.
—mu: The means of the classes.
— ev: The eigenvalues of each Y, the covariance matrix of the classes.

— Q: The orthogonal matrices defining the orientation of the classes.
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e scaling: Contains the mean and the standard deviation of the original dataset, if
scaled.

e BIC: The BIC value of the estimation.
Also, hddc has the following specific outputs:

e class: The cluster vector obtained with HDDC.

e posterior: The n x K matrix giving the posterior probability ¢;; that the observation
i belongs to the group k.

e loglik: The vector of the log-likelihood at each iteration.
The routine predict.hdc gives the following results:

e class: The vector of the classification result.

e posterior: The n x K matrix giving the posterior probability ¢;; that the observation
i belongs to the class k.

o If the initial class vector is given to the argument cls then:
— The correct classification rate and this confusion matrix are shown on the R console.

— confusion: The confusion matrix of the classification is given in the output object.

The function plot.hdc shows either the graph of Cattell’s scree-test or the graph of the
dimensions selection using the BIC criterion. Also, a print method has been implemented
to sum up the main parameters of the model.

4. Practical examples in R

This section aims to illustrate both the use and the main features of the methods HDDA and
HDDC through the package HDclassif. Two introductory examples, which can be directly
run from the package using the command demo ("HDclassif"), are first presented. The last
experiments of this section focus on the numerical advantages of both HDDA and HDDC.

4.1. HDDA: An introductory example

To introduce the supervised classification method HDDA, we first use the wine dataset that
can be found in the package. This dataset is the result of a chemical analysis of wines from the
same region in Italy but derived from K = 3 different crops. There are n = 178 observations
and the p = 13 variables are constituents found in each of the three categories of wine. As the
variables are from very different nature, some being much larger than others, we choose to
center and scale the dataset, which consists to put the mean to 0 and the standard deviation
to 1 for each variable, using the option scaling = TRUE. The following example can be run
using the command demo ("hdda").
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Figure 1: This graph summarizes the results of the estimation of the learning sample of the
wine dataset. It gives the BIC values for all HDDA models. The match between the numbers
and the models is given in the outputs of the subsection First results in Section 4.1.

First results

The dataset is split into two different samples. The first one is used to learn the model
while the second will be used to test the method performance. The learning dataset is
made of 40 randomly selected observations while the test is made of the 138 remaining ones.
The parameters are obtained using the function hdda on the learning dataset. We use the
option model = "all" to select the best model with respect to the BIC criterion among all
HDDA models. In this case, the intrinsic dimension is selected using the Cattell’s scree-test
with its default treshold. Notice that since the Cattell’s scree-test operates on the empirical
covariance matrices, it does not depend on the chosen model. Also, in order to see clearly the
BIC differences between the different models, we use the option graph = TRUE to plot these
results. They are shown in Figure 1. Then, the prediction is done on the testing dataset using
the function predict. The R code used and the results of the classification are shown below:

R> data("wine")

R> w <- winel[, -1]

R> cls <- winel[, 1]

R> set.seed(1)

R> ind <- sample(178, 40)

R> prms <- hdda(w[ind, ], cls[ind], scaling = TRUE, model = "all",
+ graph = TRUE)

# Model BIC

11



12 HDclassif: Clustering and Discriminant Analysis of High-Dimensional Data in R

1: AKJBKQKDK -1481.539
2 : AKBKQKDK -1475.969
3 : ABKQKDK -1474.783
4 : AKJBQKDK -1481.384
5 : AKBQKDK -1475.814
6 : ABQKDK -1474.627
7 AKJBKQKD -1572.024
8 : AKBKQKD -1572.666
9 : ABKQKD -1577.823
10 : AKJBQKD -1613.758
11 : AKBQKD -1614.4

12 : ABQKD -1619.557
13 : AJBQD -1419.712
14 : ABQD -1420.275

SELECTED: Model AJBQD, BIC=-1419.712.

First of all, one can see that for this sample the model which best fits the data with respect
to the BIC criterion is one of the most constrained, with a covariance matrix being common
for all classes. Remark that another way to select the model would have been to use cross-
validation. Let us see the results on the testing dataset:

R> res <- predict(prms, w[-ind, ], cls[-ind])

Correct classification rate: 0.9782609.
Initial class
Predicted class 1 2 3

144 0 O
2 252 0
3 0 139

It appears that the method performs well with a correct classification rate of 97%, even with
a small learning dataset of 40 individuals. Moreover, the confusion matrix helps to see clearly
where are the mismatches.

Intrinsic dimension selection

We now use the full dataset in order to discuss the selection of the intrinsic dimensions, since
dj, can be estimated using either Cattell’s scree-test or the BIC criterion. HDDA is first used
with the BIC criterion to determine the intrinsic dimension of each class-specific subspace,
using d = "BIC". Once the parameters are obtained, we use the command plot to see the
result of the dimension selection.

R> prms <- hdda(w, cls, scaling = TRUE, d = "BIC")
R> plot(prms)

Figure 2 is the result of the command plot, it shows the selection of the intrinsic dimensions
of the classes using the BIC criterion. Here, 3 dimensions are selected for the first cluster, 4
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Figure 2: Selection of the intrinsic dimension of the classes in HDDA using the BIC criterion
for the wine dataset.

for the second and 4 for the third one. Let us recall that the dimensions can also be selected
using Cattell’s scree-test. The same plot command can be used with the option method =
"Cattell" to see the results of Cattell’s scree-test. We use the option threshold to first use
a threshold of 0.2 and then one of 0.3:

"Cattell", threshold
"Cattell", threshold

0.2)
0.3)

R> plot(prms, method
R> plot(prms, method

Figure 3 shows the results of these two plots. An increase of the scree-test threshold, from
0.2 to 0.3, leads to a selection of fewer intrinsic dimensions. With a higher threshold, the
BIC criterion and the scree-test both select the same number of dimensions for each class.
However, it is important to recall that the method HDDA always keeps all the dimensions
for the modeling and the classification. Indeed, besides the main variance parameters (as;),
there are also the noise variance parameters (by) which model the data outside the class-
specific subspaces. Therefore, the method is robust to changes on the intrinsic dimensions:
a slight change in the intrinsic dimension estimation does not imply a big modification of
the classification results. We recommend to use a threshold between 0.1 and 0.3 to select a
small number of dimensions (typically less than 10) and a threshold around 0.01 for more
dimensions. Notice as well that, when using both intrinsic dimension and model selections,
HDDA first selects the dimension, using cattell or BIC, then the dimension is kept to run the
different models.

Using common dimensions models

We now use a common dimension model, the model [ay;b,Qrd], to illustrate the dimension
selection. First we apply a cross-validation on the dataset using the option d = "CV", with
cv.vfold = 178 in order to make a leave-one-out CV (LOO-CV), and for different common
dimensions going from 1 to 10 (which is the default value). The graph which allows to compare

13
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Figure 3: Effect of the Cattell’s threshold on the dimension selection for the wine dataset
with HDDA. These figures are the results of the command plot. Those at the top have a
threshold of 0.2 while the threshold is of 0.3 for those at the bottom.

the results of the LOO-CV is displayed using graph = TRUE. We then compare the results of
the CV with the dimensions selected by the two other criteria: BIC and Cattell’s scree-test.

R> prms <- hdda(w, cls, scaling = TRUE, model = "AkjBk@kD", d = "CV",
+ cv.vfold = 178, graph = TRUE, show = FALSE)

R> plot(prms, method = "BIC")

R> plot(prms, method = "Cattell")

The results of dimension selection with the BIC criterion and Cattell’s scree-test are displayed
on the first two graphs of Figure 4. Both criteria select 5 dimensions. The result of the LOO-
CV, displayed on the third graph, validates these results, as the best good classification rate
is obtained for 5 dimensions.
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Figure 4: Intrinsic dimension selection with the BIC criterion, Cattell’s scree-test and LOO-
CV on the wine dataset with the common dimensions model [ay;b,Qrd] of HDDA.

4.2. HDDC: An introductory example

The clustering method HDDC is now introduced using the Crabs dataset. We chose this
dataset as a first example of HDDC, as it is known to be hard to cluster. This dataset is
made of p = 5 measurements on n = 200 individuals split in K = 4 balanced classes: male
and female crabs with orange shell, male and female crabs with blue shell. For each crab, the
5 variables are: the frontal lobe size, the rear width, the carapace length, the carapace width
and the body depth. This example can be run directly from the package using the command
demo ("hddc").

First results

The clustering of this dataset is done with HDDC, all the default settings are kept:

R> data("Crabs")

R> A <- Crabs[, -1]
R> cls <- Crabs[, 1]
R> set.seed(1)

R> prms <- hddc(A, 4)

Model k BIC
AKJIBKQKDK 4 -2809.081

R> res <- predict(prms, A, cls)
Correct classification rate: 0.945.

Initial class
Predicted class BF BM OF OM
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The results obtained show a correct classification rate of 94% and the confusion matrix is
again helpful to understand the clustering results: while the orange males (OM) are totally
well classified, the blue males (BM) seem to have characteristics similar to the blue females
(BF). Also, the two species are totally separated, as there is no mismatch between them.

PCA representation

Figure 5 shows the projection of the data on the first and second principal axis, obtained using
the principal component analysis (PCA), as well as the PCA representation of the clustering
result obtained with HDDC. Furthermore, as the estimated dimension of the intrinsic subspace
of each class is equal to 1, this allows an easy representation of HDDC’s subspaces using
line segments. In order to illustrate the clustering process, we run HDDC with the model
lajbrQrdy] using a k-means initialization, then, every 3 steps, we plot the dataset on its 2 first
principal axis. The clusters, the means and the orientation of each class are also represented.
The results are shown on Figure 6. This example can be run interactively with the command
demo ("hddc") where the user can choose the algorithm, the model and the initialization. It
can be observed on Figure 6 that, even with an initialization far from the original classes,
HDDC updates sequentially the means and the orientations of the classes to finally reach a
classification close to the expected one.

Original groups Groups obtained with HDDC
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Figure 5: Clustering of the Crabs dataset, visualization on the 2 first principal axis. The
segments represent the classes subspaces while the points are the means.
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Figure 6: Clustering process of the Crabs dataset with HDDC. The initialization is done
with k-means.

Cluster selection

Since HDDC is a model-based clustering method, we can also use the BIC criterion to select
the number of clusters K to keep. HDDC provides a simple way to do this: it displays the
BIC value for each clustering result for different number of classes and select the model which
maximizes it. Let us compute the clustering for 1 to 10 classes, which is the default option:

R> set.seed(1)
R> prms <- hddc(4)
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Model K BIC

ALL 1 -3513.071
AKJBKQKDK 2 -3299.155
AKJBKQKDK 3 -3138.566
AKJBKQKDK 4  -2809.081
AKJBKQKDK 5 -2842.08
AKJBKQKDK 6 -3099.988
AKJBKQKDK 7 -2949.258
AKJBKQKDK 8 -3007.329
AKJBKQKDK 9 -3045.638
AKJBKQKDK 10 -3089.492

SELECTED: model AKJBKQKDK with 4 clusters, BIC=-2809.081.

As discussed by Hennig (2010), the choice of the number of clusters is a complex question;
particularly with this dataset where the number of 4 clusters is not obvious. Indeed, some
other Gaussian mixture models may select 9 clusters and this partition could be viewed
as a subpartition of the “true” classes. However, one can see here that with the model
lak;brQrdy] the BIC criterion points out the number of clusters that was originally defined
by the construction of this dataset, which is 4.

4.3. HDDA: The effect of the data dimension

We now experiment the effect of the dimensionality on different supervised classification
methods based on the Gaussian mixture model. To this end, we simulate three classes mod-
eled by Gaussian densities on RP, p = 20,...,200, with respect to the model [axbrQrdk].
The following parameters were used: {di,dz,d3} = {2,5,10}, {m,m, 73} = {0.4,0.3,0.3},
{a1,a9,a3} = {150,75,50} and {b1,be,b3} = {15,10,5}; with close means: {1, o, us} =
{(0,...,0),(10,0,...,0),(0,...,0,—10)}. Each orientation matrix @ was simulated as the
orthogonal matrix of a QR factorization of a random multivariate normal distribution. The
learning and testing datasets were respectively made of 250 and 1000 points. The performance
of each method was measured by the average of the correct classification rates on the test
dataset for 50 replications on different samples of the simulated learning and testing datasets.
The model [a;brQrdk] is used in HDDA and is compared to three other methods: QDA, linear
discriminant analysis (LDA) and PCA+LDA (LDA on 15-dimensional data projected with
PCA). The results of each method are represented as boxplots in Figure 7.

Unsurprisingly, the QDA method shows its weakness with high dimensionality and its per-
formance sinks when the dimension rises. Moreover, when the dimension reached 50, QDA
began to fail because of singularity problems on the covariance matrices. In particular, QDA
failed half of the time in 70 dimensions and then did not work anymore with dimensions
higher than 80. The LDA method is less sensitive to the dimension than QDA but its perfor-
mance declines when the dimension gets beyond 60. The method PCA+LDA improves LDA
results and seems only little affected by the dimension but it cannot reach more than 82% of
average correct classification rate. Finally, as expected, HDDA appears not to be sensible to
large dimension as it provides good results in large as well as in low dimension. Furthermore,
Figure 7 clearly shows that the results of HDDA have a low variance in comparison to the
other methods and the rise of the dimension increases only slightly the variance of its results.
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Figure 7: Boxplots of the supervised classification results for different methods on a simulated
dataset. This has been done with 250 observations for learning and 1000 observations for
testing, with an increasing dimensionality.

4.4. HDDC: The effect of sample size

We study here the ability of HDDC models to deal with high-dimensional datasets of small
sizes. For this, three Gaussian densities in R% are simulated in the same way as in the previous
experiment. In order to investigate the effect of the sample size on clustering results in high-
dimensional spaces, we try to cluster the data for different dataset sizes as this phenomenon
occurs when the number of observations n is small compared to the dimension p. The number
of chosen observations varies from a small value (n = 100) to a high value (n = 4000) compared
to p.

Here we used HDDC with the model [a;brQrdi] and with the mini-em initialization which is
a popular estimation procedure. HDDC is also compared to three other clustering methods
based on the Gaussian mixture model which can be found in the R package mclust (Fraley and
Raftery 1999). The models used are (from the most complex to the simplest one): ellipsoidal,
varying volume, shape and orientation (VVV), diagonal, varying volume and shape (VVI),
diagonal, equal volume and shape (EEI). For each method and each number of observations,
the experiment is repeated 20 times, each time for a different simulated dataset but with the
same parameters.

The results of this experiment are presented in Figure 8. This figure combines the boxplots of
each method, the mean of the correct classification results when the algorithm converged (red
curves) and the number of times the algorithm failed for numerical reasons (black curves).

19
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Figure 8: Effect of the dimension on correct classification rates on simulated data with the
functions hddc (model [arbrQrdy]) and Mclust (models VVV, VVI and EEI). The red lines
represent the means of the correct classification rates (when the algorithm converged) while
the black lines represent the numbers of times that the algorithms could not be fitted in the
20 simulations (its scale is at right).

It appears that all tested models of the function Mclust are very sensitive to both the high
dimension of the data and the size of the dataset since their clustering results have a high
variance whatever the value of n. In particular, Mclust with its most complex model (VVV)
is unsurprisingly very sensitive to the size of the dataset since it is highly over-parametrized in
high-dimensional spaces. Indeed, models with non constrained variances require the estima-
tion of O(p?) parameters which is, in some cases here, dramatically larger than the number of
observations (p = 60). As one can see, Mclust with the VVV model often fails for numerical
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reasons and does not work at all for datasets smaller than 500 observations. The model VVI,
which is a more parsimonious model than VVV, seems well appropriate for this kind of data
but presents a high variance of its results and often fails for numerical reasons. It is also
unable to cluster datasets of sizes smaller than 300 observations. The model EEI is, con-
versely to the two previous ones, a very parsimonious model. Using this model within Mclust
allows the algorithm to always provide a result. These results are however very sensitive to
the dataset size and have a large variance when n is larger than 1500. As expected, since the
model used for the simulation is one of the HDDC models, HDDC works well for a large range
of dataset sizes. It is however interesting to notice that HDDC is very stable (small variance
of the results) and that its robustness weakens only for datasets smaller than 300. In such
cases, it would be preferable to use a more parsimonious model of HDDC (the model [abQydy]
for instance). Notice that a similar behavior is expected for the models of McNicholas and
Murphy (2008a); Baek et al. (2009) and Bouveyron and Brunet (2012).

4.5. HDDC: Comparison with variable selection

We focus now on the comparison of HDDC with variable selection methods for clustering.
Recently, Raftery and Dean (2006) proposed a Bayesian approach for variable selection in the
model-based clustering context. Their approach recasts the variable selection problem into
a model selection problem and the BIC criterion is used to decide whether a variable should
be retained or not. The whole procedure is embedded in a backward-forward algorithm to
explore combinations of variables. The package clustvarsel implements this method. For this
experiment, we used the Crabs (also used in Raftery and Dean 2006) and the USPS358 datasets
and we compared on both datasets the clustering performances of HDDC, clustvarsel and
Mclust. The results of Mclust are reported as reference results. The USPS358 dataset is a
subset of the original USPS dataset which will be used and described in detail in Section 5.1.
The USPS358 dataset contains only the 1756 images associated to the digits 3, 5 and 8 and
each image is represented as 256-dimensional vector.

Table 3 and 4 present, for each studied method, the correct classification rate (CCR, 2nd

Function CCR Used model Computing time
Mclust 0.575 VEV on 5 var. 0.2 sec.
clustvarsel 0.925 EEV on 4 var. 4.4 sec.
hddc 0.945 [akjkakd] with d =1 1.8 sec.

Table 3: Comparison between HDDC and variable selection (package clustvarsel) on the
Crabs dataset (n = 200, p = 5, K = 4). The results of Mclust are reported as reference
results.

Function CCR Used model Computing time
Mclust 0.555 EEE on 256 var. 1 028.7 sec.
clustvarsel 0.483 EEV on 6 var. 6 922.5 sec.
hddc 0.930 lakjbrQrdy] with d = {7,7,6} 301.2 sec.

Table 4: Comparison between HDDC and variable selection (package clustvarsel) on the
USPS358 dataset (n = 1756, p = 256, K = 3). The results of Mclust are reported as reference
results.

21
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column) which measures the adequation of the proposed partition with the known one, the
model chosen by the procedure (3rd column) as well as the computing time (4th column,
in seconds) for the whole procedure (model selection and clustering). On the one hand,
regarding the Crabs dataset, one can notice that this apparently simple dataset (ratio n/p
large) is difficult to cluster with traditional Gaussian mixture models since Mclust failed to
propose a good partition of the data. The selection of variables made by clustvarsel allows
to clearly improve the clustering performances of Mclust which reaches 92.5% of adequacy
with the known labels by selecting 3 among the 5 original variables. HDDC selects using BIC
the model [ay;brQrd] with d = 1 and provides a partition of the data which has an adequacy
rate with the known labels of 94%. On the other hand, the high-dimensional USPS358 dataset
seems to be as well a difficult dataset since Mclust again failed to propose a good partition
of the data. However, the selection of variables made by clustvarsel in this case seems to
be non discriminative since it deteriorates the clustering results compared to Mclust. HDDC
selects the model [ayjbrQrdy] with {di,d2,d3} = {7,7,6} and reaches 93% of clustering
accuracy. The results of this experiment suggest that it is preferable to keep all variables in
the model, with nevertheless different roles, than discarding some of them. Finally, it is also
important to notice that HDDC is significantly less time consuming than clustvarsel, and
particularly in high dimensions.

4.6. HDDC: computing time comparison

Here the effect of the dimension and of the number of observations on the computing time
is finally tested. In order to realize this experiment, a dataset has been simulated according
to the same protocol as before with different dimensions, p = 50,...,200, and number of
observations, n = 200, ...,1000. HDDC is again compared here to the mclust package. The
experiment has been run on a laptop PC with a 2.10 GHz Intel core 2 duo T4300 processor
and 4 GB of RAM. Both methods are used with their default parameters and the presented
results are the average times on 20 replications.

The results, given in Table 5, show how the computing time rises with the dimension and
the number of observations. It clearly appears that the function hddc is faster than Mclust
for high-dimensional datasets. It is also interesting to remark that the impact of the rise
of dimension or of the number of observations is much less important on HDDC than on

Function Dimensions Number of observations
200 400 600 800 1000
hddc 50 0.16 040 0.52 0.67 0.86

100 052 091 1.15 1.22 1.34
150 0.61 140 211 235 2.72
200 069 179 370 3.82 448
Mclust 50 0.50 2.06 421 830 11.29
100 1.19 492 10.59 17.80 27.37
150 2.02  9.56 20.92 35.76 54.20
200 2.88 14.36 34.19 62.05 96.10

Table 5: Average computation times of the functions hddc and Mclust on simulated datasets
with varying dimensions and observation numbers (in seconds).
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Mclust. In particular, Mclust is 20 times slower than HDDC on a 200-dimensional dataset
with 1000 observations whereas it is only 3 times slower on a 50-dimensional dataset with 200
observations.

5. Applications

The methods HDDA and HDDC are now applied on two real-world datasets that have in
common to be in high dimension. The first one contains images represented as 256-dimensional
observations whereas the second one is made of spectra with more than 6,000 dimensions.

5.1. Optical character recognition

HDDA is first tested on the optical character recognition (OCR) dataset used for the study
of the United States postal service (USPS), which consists in the recognition of handwritten
numbers as shown in Figure 9 and which can be found on the site of the University of
Aachen at http://www-i6.informatik.rwth-aachen.de/ keysers/usps.html. There are
7,291 images for learning and 2,007 images for testing. The data is divided in 10 classes,
each digit is a 16 x 16 gray level image represented as a 256-dimensional vector. In this
experiment, four supervised classification methods are compared: HDDA, LDA, PCA+LDA
and the support vector machines (SVM) with the radial basis function (RBF) kernel. The aim
of this experiment is to see the effect of the size of the learning dataset on the prediction results.
For this, HDDA is computed with the model [a;;bQrd] and with the threshold of Cattell’s
scree-test fixed at 0.05. Indeed a common noise is particularly efficient for this dataset and
this low threshold leads to keep an average of 15 dimensions which seems parsimonious enough
(compared to the 256 dimensions) and high enough to provide good classification results. The
performance of the methods is measured by the average correct classification rate computed on
50 replications, for different sizes of the learning dataset, n = 100, ...,2000. Figure 10 shows
the results of the experiment and highlights that HDDA works very well compared to the other
methods when the size of the learning dataset is small. One can see that a PCA step improves
the prediction results of LDA and allows this method to work with small learning dataset.
This experiment illustrates that HDDA provides very satisfying results in high-dimensional
space and with small learning datasets. Table 6 shows in addition the computation time of
the four methods on the whole training and testing datasets. The presented results are the
average times on 20 replications. It appears that HDDA is again faster compared to the
other methods due to its parsimonious model. The computing time of HDDA with the model
[a;6Qd] has been also added to Table 6 in order to show that a linear method with only one
covariance matrix to estimate can again faster the computation.

{21 IONKA 7181910

Figure 9: Some examples of the USPS dataset used for the OCR experiment.


http://www-i6.informatik.rwth-aachen.de/~keysers/usps.html

24 HDclassif: Clustering and Discriminant Analysis of High-Dimensional Data in R

95

75 80 8 90
T

Correct classification rate
70
T

n L
©
o -
o
—o— HDDA
o | —%— PCA+LDA
L —%— LDA
5 —A— SVM (RBF)
g |

100 300 500 700 900 1100 1300 1500 1700 1900

Size of the training dataset

Figure 10: Influence of the size of the learning dataset on prediction results obtained with
HDDA and other classification methods on the USPS dataset.

Method  [ax;0rQrds] [a;6Qd] LDA PCA+LDA SVM
Time 2.00 088 1323 3.34 97.29

Table 6: Comparison of computing times (in seconds) of training and predicting on the USPS
learning and testing datasets.

5.2. Maldi mass-spectrometry

In this last experimental section, the two methods HDDA and HDDC are applied to the
problem of cancer detection using Maldi mass spectrometry. Maldi mass spectrometry is
a non invasive biochemical technique which is useful in searching for disease bio-markers,
assessing tumor progression or evaluating the efficiency of drug treatment, to name just a
few applications. In particular, a promising field of application is the early detection of the
colorectal cancer, which is one of the principal causes of cancer-related mortality, and Maldi
imaging could in few years avoid in some cases the colonoscopy method which is invasive and
quite expensive. The Maldi2009 dataset has been provided by Theodore Alexandrov from
the Center for Industrial Mathematics (University of Bremen, Germany) and is made of 112
spectra of length 16,331. Figure 11 shows the mean spectra of the cancer and control (healthy
people) classes on the mass-to-charge (m/z) interval 900-3500 Da. Among the 112 spectra,
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Figure 11: Mean spectra of the cancer class (up) and of the control class (bottom) on the
m/z interval 900-3500 Da.

Method CCR Computing time

[akjkakdk] 0.955 26.37
[a;bQd]  0.973 32.52
LDA 0.524 24.01
SVM 1.000 457.36

Table 7: Correct classification rates of LOO-CV on the Maldi2009 dataset, and computing
times (in seconds).

64 are spectra from patients with the colorectal cancer (referred to as cancer hereafter) and
48 are spectra from healthy persons (referred to as control). Each of the 112 spectra is a
high-dimensional vector of 16,331 dimensions which covers the m/z ratios from 960 to 11,163
Da. Following the experimental protocol of Alexandrov, Decker, Mertens, Deelder, Tollenaar,
Maass, and Thiele (2009), only 6,168 dimensions corresponding to m/z ratios between 960
and 3,500 Da are used since there is no discriminative information on the reminder.

Supervised classification of the spectra

Here HDDA is tested in terms of effectiveness and computation time. The method is used
with two different models: the less constrained model, [akjkakdk], and the most constrained
one, [a;bQd], each time the intrinsic dimensions are selected thanks to the BIC criterion.
Then it is compared to LDA and SVM with a RBF kernel. A LOO-CV is done for each
classification method; we used the option LO0 = TRUE to do the LOO-CV with HDDA. The
results are shown on Table 7. First is to notice that LDA is totally inefficient on this dataset
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Method Class Cluster
Cancer  Control
PCA-EM Cancer 48 16
Control 1 47
Misclassification rate = 0.15
Mixt-PPCA  Cancer 62 2
Control 10 38
Misclassification rate = 0.11
HDDC Cancer 62 6
Control 0 45

Misclassification rate = 0.05

Table 8: Confusion matrices of the three studied clustering methods on the Maldi2009
dataset.

that has a large number of parameters. SVM works very well with no misclassification but
with a very high computation time. HDDA gives satisfying results, upper than 95% of good
classification for the two models, and has fast computation time as the LOO-CV for HDDA
is more than 17 times faster than SVM. So HDDA combines a computing time close to LDA
with performances close to SVM.

Unsuperuvised classification of the spectra

HDDC is now applied on this dataset to test its effectiveness on very high dimensional datasets
(with n < p). For the sake of comparison, Mclust with the VVV model on principal com-
ponents (PCA-EM) and mixture of probabilistic principal component analysis (Mixt-PPCA,
Tipping and Bishop 1999) have been applied to this subset as well. It has been asked to
all methods to cluster the dataset into 2 groups. HDDC is set with the most unconstrained
model [akjkakdk] and with a scree-test threshold of 0.1. The results are shown in Table 8.
All the methods present good results for such a complex problem, although the best level of
classification has been obtained with HDDC with a misclassification rate of 5%.

6. Conclusion

This paper has presented the R package HDclassif which is devoted to the clustering and
the discriminant analysis of high-dimensional data. The package provides the classification
functions HDDA and HDDC associated to a new Gaussian mixture model first proposed
by Bouveyron et al. (2007b) which takes into account that high-dimensional data live in low-
dimensional subspaces. The proposed models are more parsimonious than other Gaussian
mixture models available in other R packages. After having presented the theoretical aspects
of the methods and illustrated their use within the package HDclassif, this paper has shown
the efficiency of both methods through comparisons with reference methods on simulated and
real datasets.

Among the possible extensions of this work, it would be first interesting to allow HDDA and
HDDC to deal with semi-supervised problems (mixture of labeled and unlabeled data). This
extension is planned for the next release of the package. Another interesting extension would
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be to add a ¢; penalty on the loading matrices Q; within HDDA and HDDC to be able to
select the original variables which are the most useful for the considered task. This would
allow the practitioner to better understand the classification results provided by the method.
Finally, it would be also interesting to gather in a unique package all discriminant analysis
and clustering techniques based on the factor analysis model. This would include the methods
based on the models of McNicholas and Murphy (2008a), Baek et al. (2009) and Bouveyron
and Brunet (2012).
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