
JSS Journal of Statistical Software
January 2012, Volume 46, Issue 7. http://www.jstatsoft.org/

Neural Networks in R Using the Stuttgart Neural

Network Simulator: RSNNS

Christoph Bergmeir
University of Granada

José M. Beńıtez
University of Granada

Abstract

Neural networks are important standard machine learning procedures for classification
and regression. We describe the R package RSNNS that provides a convenient interface
to the popular Stuttgart Neural Network Simulator SNNS. The main features are (a) en-
capsulation of the relevant SNNS parts in a C++ class, for sequential and parallel usage
of different networks, (b) accessibility of all of the SNNS algorithmic functionality from
R using a low-level interface, and (c) a high-level interface for convenient, R-style usage
of many standard neural network procedures. The package also includes functions for
visualization and analysis of the models and the training procedures, as well as functions
for data input/output from/to the original SNNS file formats.

Keywords: neural networks, SNNS, R, RSNNS.

1. Introduction

This paper presents the package RSNNS (Bergmeir and Beńıtez 2012) that implements an
R (R Development Core Team 2011) interface to the Stuttgart Neural Network Simulator
(SNNS, Zell et al. 1998). The SNNS is a comprehensive application for neural network model
building, training, and testing. Today it is still one of the most complete, most reliable,
and fastest implementations of neural network standard procedures. The main advantages
of RSNNS, rendering it a general purpose comprehensive neural network package for R, are
threefold. (a) The functionality and flexibility of the SNNS kernel is provided within R.
(b) Convenient interfaces to the most common tasks are provided, so that the methods of
SNNS integrate seamlessly into R, especially with respect to the scripting, automation, and
parallelization capabilities of R. Finally, (c) enhanced tools for visualization and analysis of
training and testing of the networks are provided.

The RSNNS is available from the Comprehensive R Archive Network (CRAN) at http:

http://www.jstatsoft.org/
http://CRAN.R-project.org/package=RSNNS

2 RSNNS: Neural Networks in R Using the SNNS

//CRAN.R-project.org/package=RSNNS. Moreover, a web page including fully detailed ex-
amples of usage at different abstraction levels and further information is available at http:

//sci2s.ugr.es/dicits/software/RSNNS.

The remainder of this paper is structured as follows. Section 2 describes the main features of
the SNNS software, together with references to general introductions to neural networks and to
original publications. Section 3 presents the general software architecture and implementation
details of the package. Section 4 presents the high-level interface of the package. Section 5
gives an overview of the included example datasets, and Section 6 shows some examples for the
usage of the package. Section 7 compares the presented package with packages and solutions
yet available in R, and discusses strengths and limitations. Finally, Section 8 concludes the
paper.

2. Features of the original SNNS software

SNNS consists of three main components: a simulation kernel, a graphical user interface
(GUI), and a set of command line tools. It was written for Unix in C and the GUI uses X11.
Windows ports exist. SNNS was developed at University of Stuttgart and is now maintained at
University of Tübingen. The last version where the authors added new functionality is version
4.2 that was released in 1998. In 2008, version 4.3 was released, which includes some patches
contributed by the community (http://developer.berlios.de/projects/snns-dev/) that
mainly add a Python wrapping. Furthermore, in this version a license change was performed
from a more restrictive, academic license to the Library General Public License (LGPL).

To the best of our knowledge SNNS is the neural network software that supports the highest
number of models. The neural network types implemented differ greatly in their manner
of operation, their architecture, and their type of learning. As giving a comprehensive in-
troduction to neural networks in general or detailed descriptions of the methods’ theories is
beyond the scope of this paper, we give a brief overview of the methods present in SNNS
in the following, together with references to the original literature. Various comprehensive
introductions to neural networks exist, to which the interested reader may refer, e.g., Rojas
(1996) covers many of the neural networks implemented in SNNS. Haykin (1999) and Bishop
(2003) also give comprehensive introductions, and Ripley (2007) gives a good introduction
from a statistical point of view.

Network architectures implemented in SNNS contain multi-layer perceptrons (MLP, Rosen-
blatt 1958), recurrent Elman-, and Jordan networks (Elman 1990; Jordan 1986), radial basis
function networks (RBF, Poggio and Girosi 1989), RBF with dynamic decay adjustment
(Berthold and Diamond 1995; Hudak 1993), Hopfield networks (Hopfield 1982), time-delay
neural networks (Lang et al. 1990), self-organizing maps (SOM), associative memories, learn-
ing vector quantization networks (LVQ, Kohonen 1988), and different types of adaptive res-
onance theory networks (ART, Grossberg 1988), namely ART1 (Carpenter and Grossberg
1987b), ART2 (Carpenter and Grossberg 1987a), and ARTMAP (Carpenter et al. 1991) nets.
It implements a wide variety of initialization, learning, update, activation, and pruning func-
tions, adding up to more than 270 in total. For example, update functions allow serial, ran-
domized, topologically ordered, or synchronous update of the units. The adaptive resonance
theory networks can be trained step-wise or directly until they reach a stable state. Learning
functions include standard backpropagation, backpropagation with momentum term, back-

http://CRAN.R-project.org/package=RSNNS
http://CRAN.R-project.org/package=RSNNS
http://sci2s.ugr.es/dicits/software/RSNNS
http://sci2s.ugr.es/dicits/software/RSNNS
http://developer.berlios.de/projects/snns-dev/

Journal of Statistical Software 3

propagation through time (BPTT, Rumelhart et al. 1986), Quickprop (Fahlman 1988), re-
silient backpropagation (Riedmiller and Braun 1993; Riedmiller 1994), backpercolation (Jurik
1994), (recurrent) cascade-correlation (Fahlman and Lebiere 1990; Fahlman 1991), counter-
propagation (Hecht-Nielsen 1987), scaled conjugate gradient (Møller 1993), and TACOMA
learning (Lange et al. 1994). Activation functions include many activation functions common
in neural networks, such as different step functions, the logistic and tanh functions, the linear
function, the softmax function, etc. An example of a pruning function implemented is optimal
brain damage (OBD, Cun et al. 1990). For a comprehensive overview of all functions along
with explanations of their parameters, as well as some theoretical background, we refer to Zell
et al. (1998), and Zell (1994).

The GUI offers tools for easy development and precise control of topologies, learning and
analyzing processes. Finally, some additional functionality is scattered along a set of command
line tools which for example allow to create networks, convert networks to standalone C code,
or to perform some analysis tasks.

3. Package architecture and implementation details

RSNNS provides convenient access to the major part of the SNNS application. To achieve
this, the SNNS kernel and some parts of the GUI code for network generation (see Section 3.1)
were ported to C++ and encapsulated in one main class. All code is included in a library,
which ships with RSNNS. We call this fork of SNNS (as well as its main class) SnnsCLib

throughout this paper and the software. To make the SnnsCLib functionality accessible from
within R, the package Rcpp (Eddelbuettel and François 2011) is used. The SnnsCLib class
has an equivalent S4 class in R, called SnnsR: the low-level interface of the package. As
SnnsR can be used to access directly the kernel API (called “krui” within SNNS), all of the
functionality and flexibility of the SNNS kernel can be taken advantage of. But, as it maps
C++ functions directly, its usage might seem unintuitive and laborious to R programmers.
Therefore, a high-level R interface is present by the S3 class rsnns and its subclasses. This
interface provides an intuitive, easy to use, and still fairly flexible interface so that the most
common network topologies and learning algorithms integrate seamlessly into R. All of these
components are detailed in the remainder of this section.

3.1. The SNNS fork SnnsCLib

SNNS is written as pure C code. It can only manage one neural network at a time that is
represented as a global state of the program. Porting it to C++ and encapsulating it in a
class bears the advantage that various instances can be used sequentially or in parallel. The
code basis of SnnsCLib is the SNNS version 4.3 with a reverse-applied Python patch1. All
code from the SNNS kernel and some code taken from the GUI to create networks of different
architectures (within SNNS known as the “bignet” tool)2 was copied to the src folder of the

1The patch prepares SNNS for Python wrapping, which is not needed in our context. Furthermore, it caused
some problems during the porting to C++. So we decided to reverse-apply it, so that everything included in
the patch was removed from the source.

2There is a tool in SNNS that assists in network generation, the so-called bignet tool. Though this tool is
located within the source code of the GUI, there are a lot of important functions for network generation that
depend strongly on kernel functionality and whose only connection to the GUI is, that they receive some input
from there. These functions were also included in SnnsCLib.

4 RSNNS: Neural Networks in R Using the SNNS

package. SNNS has header files with a file name extension of .h, containing public function
declarations, and others with a file name extension of .ph, the private headers. These were
merged into one .h file, each. The body file extensions were renamed from .c to .cpp. As all
code is to be encapsulated in one C++ class, the merged .h files are included (with #include)
in the private section of the SnnsCLib class definition. This procedure has the advantage that
in the original code relatively few things had to be changed: In the header files, the changes
mainly include removal of static keywords and the moving of variable initializations to the
constructor of SnnsCLib. As these variables are not anymore initialized automatically to zero,
variable initializations for all variables of this type were added. In the body files, (a) SNNS-
internal includes were substituted with an include of SnnsCLib.h, (b) static variables within
functions were turned into member variables of SnnsCLib, (c) all function declarations were
changed to declarations of member functions of SnnsCLib, and (d) calls to the function table
are now done using the this pointer and C++ -style function pointers.

3.2. The R low-level interface class and C++ wrapping

To use the SnnsCLib functionality from R we employ Rcpp. Every function from SnnsCLib

has a corresponding wrapper function, e.g., the wrapper for the function to set the current
learning function setLearnFunc is implemented as follows:

RcppExport SEXP SnnsCLib__setLearnFunc(SEXP xp, SEXP learning_func) {

Rcpp::XPtr<SnnsCLib> snnsCLib(xp);

std::string p1 = Rcpp::as<std::string>(learning_func);

int err = snnsCLib->krui_setLearnFunc(const_cast<char*>(p1.c_str()));

return Rcpp::List::create(Rcpp::Named("err") = err);

}

A pointer to the current SnnsCLib object is in all such functions present as the first parameter.
The other parameters are converted and passed to the corresponding SNNS function. In this
example, the only parameter learning_func gives the name of the function to be set as the
current learning function. The result of the wrapper function is typically a named list. If a
return value for err is present, then an error handling is implemented (see below).

The corresponding part of SnnsCLib on the R side is the S4 class SnnsR. Each SnnsR object
has an external pointer to its corresponding SnnsCLib object. If the object factory is used, a
SnnsCLib object is generated automatically and the pointer is initialized with this object:

snnsObject <- SnnsRObjectFactory()

SnnsR contains a convenient calling mechanism for member functions of its instances based
on the calling mechanism suggested by Rcpp. The $ operator is overloaded and can be used
for function calling as illustrated by the following example. The function used earlier as an
example, SnnsCLib__setLearnFunc, can be called like this:

snnsObject$setLearnFunc("Quickprop")

The $ operator first searches an R function with the name SnnsR__setLearnFunc. If no such
function is present, R’s calling mechanism is used to call the corresponding C++ function from

Journal of Statistical Software 5

R class Description

mlp Multi-layer perceptron
dlvq Dynamic learning vector quantization network
rbf Radial basis function network
rbfDDA RBF network using the dynamic decay adjustment algorithm
elman Recurrent Elman network
jordan Recurrent Jordan network
som Self-organizing map
art1 ART network for binary patterns
art2 ART network for real-valued patterns
artmap ART network for supervised learning of binary patterns
assoz Autoassociative memory

Table 1: Models directly accessible from the R high-level interface.

SnnsCLib. This has the advantage that a function from SnnsCLib can be replaced completely
transparently by a function implemented in R, which typically might call the original SnnsCLib
function after some error checking and preprocessing, or perform some postprocessing. Also,
functions not present in the original SNNS can be added in this way, either implemented
in R or in C++. A preprocessing currently implemented is automatic loading of an object
serialization of the SnnsCLib object, if it is not present. This mechanism is used by the
high-level interface objects to allow them to be saved and loaded by the usual R mechanisms
for saving and loading. A postprocessing currently implemented in the $ operator is an error
handling. If in the result list the member err is present and not equal to zero, then the SNNS
function error is called, which translates the error code to a text message. This text message
then is displayed as an R warning.

3.3. R high-level interface classes

The most convenient way to use the RSNNS is through its high-level R interface composed
of the S3 class rsnns and its subclasses. The classes currently implemented are shown in
Table 1.

The subclasses typically implement a process of five steps:

1. Check and preprocess the input.

2. Generate an rsnns object using the object factory rsnnsObjectFactory, setting train-
ing, update, and initialization function and their parameters.

3. Create/load a network architecture by directly accessing functions of the SnnsR object
created within the rsnns object: rsnnsObject$snnsObject$...

4. Train the network, using either the function train.rsnns or direct access again.

5. Postprocess the output.

The train.rsnns function directly saves all training results in the rsnns object, e.g., in
rsnnsObject$fitted.values.

6 RSNNS: Neural Networks in R Using the SNNS

4. Using the R high-level interface

The high-level interface of the RSNNS package provides a comfortable way to develop and
deploy the most common models of neural nets. The classes present in this interface enable
convenient use of the models in R, as a model can be built with a single command, and many
standard methods known from other models in R are present, such as predict to apply the
models to new data, or print and summary to show characteristics of the models.

The interface is very similar for all models. As an example of use, we show the interface for
the multi-layer perceptron mlp:

R> mlp(x, y, size = 5, maxit = 100, initFunc = "Randomize_Weights",

+ initFuncParams = c(-0.3, 0.3), learnFunc = "Std_Backpropagation",

+ learnFuncParams = c(0.2, 0.0), updateFunc = "Topological_Order",

+ updateFuncParams = 0.0, hiddenActFunc = "Act_Logistic",

+ shufflePatterns = TRUE, linOut = FALSE, inputsTest = NULL,

+ targetsTest = NULL)

The parameters reflect the five processing steps discussed in Section 3.3:

� Training data: x, y. x is a matrix or vector containing the training inputs. If the
method is a supervised learning method, also training targets y have to be supplied.

� The network architecture parameters: size. The mlp has one architecture parameter,
size, which defines the amount of neurons in the hidden layers.

� Number of iterations: maxit. The parameter maxit defines the number of iterations,
i.e., the number of training epochs to perform.

� Initialization function: initFunc, initFuncParams. The initialization function initial-
izes the components of the network, i.e., mainly the weights of the connections between
the units. Depending on the network architecture and the learning method to use, an
appropriate initialization function has to be chosen, e.g., there are learning procedures
where weights have to be initialized with a determined value such as 0.0 or 1.0, in other
procedures, random initialization may be best, or in methods where the weights repre-
sent prototypes they are usually initialized in a way to cover the whole input space. As
the initialization function has a close connection to the architecture of the network, it
is usually not necessary to alter the defaults that are set in the high-level functions.

� Learning function: learnFunc, learnFuncParams. The learning function defines how
learning takes place in the network. It is a central characteristic of the network. For
some network architectures, e.g., the ART networks, there is essentially only one type
of learning function, which has to be used then. For other networks, such as the MLP,
a host of choices exists. Depending on the function, the parameters have different
meanings, e.g., for Std_Backpropagation, there are two parameters, the step width
of the gradient descent η, and the maximal difference dmax between target value and
output that is tolerated, i.e., that is propagated as error of value zero.

� Update function: updateFunc, updateFuncParams. The update function defines how
activation is propagated through the network. As it is the case for the initialization

Journal of Statistical Software 7

function, an update function that suits the network architecture has to be chosen, so
that it usually is not necessary to alter the defaults. E.g., in feed-forward networks
normally the function Topological_Order is used, which calculates unit activations in
the topological order of the units, which means especially that activation of the units
in the input layer is calculated before activations in the first hidden layer etc., so that
the activation is propagated through the network from the input to the output layer.
In many architectures, the same parameters that are used for the learning function can
be used for the update function.

� Special parameters for the method: hiddenActFunc, shufflePatterns, linOut. Of-
ten, parameters particular to the method are present. In the mlp, the hiddenActFunc

parameter specifies the activation function of the hidden units, shufflePatterns de-
fines, whether patterns will be internally shuffled by SNNS before training or not, and
linOut defines, whether the activation function of the output units will be the linear or
the logistic function, making it suitable for classification or regression.

� Optional test data: inputsTest, targetsTest. Providing test data directly at the
model building stage has the advantage that after each epoch the error on the test set
is computed, and can later be used to analyze the training process. As the data at this
stage is exclusively used to compute this iterative error, providing test data here is only
interesting for supervised learning methods. In any case, the predict function can be
used later to obtain results on test data, both in supervised and unsupervised learning
scenarios.

Initialization, learning, and update function names together with their parameters are directly
passed to the SNNS kernel. For their documentation, we refer to Zell et al. (1998). In the
SNNS kernel, each of the parameter sets has a maximal length of five. A list of all available
functions in the SNNS kernel can be obtained by getSnnsRFunctionTable. Their name,
type, number of input- and output parameters are shown:

R> getSnnsRFunctionTable()[196:202,]

name type #inParams #outParams

196 Counterpropagation 4 3 3

197 Dynamic_LVQ 4 5 5

198 Hebbian 4 3 3

199 JE_BP 4 3 3

200 JE_BP_Momentum 4 5 5

201 JE_Quickprop 4 5 5

202 JE_Rprop 4 4 4

As a short example, the easiest way to train a model is using the default parameters, only
setting the training inputs, and – if required by the model – the training outputs. The generic
print function implemented for rsnns objects can then be used to get information about the
architecture, the functions, and the parameters used by the model:

R> encoder <- mlp(inputs, targets)

R> encoder

8 RSNNS: Neural Networks in R Using the SNNS

Class: mlp->rsnns

Number of inputs: 8

Number of outputs: 8

Maximal iterations: 100

Initialization function: Randomize_Weights

Initialization function parameters: -0.3 0.3

Learning function: Std_Backpropagation

Learning function parameters: 0.2 0

Update function:Topological_Order

Update function parameters: 0

Patterns are shuffled internally: TRUE

Compute error in every iteration: TRUE

Architecture Parameters:

$size

[1] 5

All members of model:

[1] "nInputs" "maxit"

[3] "initFunc" "initFuncParams"

[5] "learnFunc" "learnFuncParams"

[7] "updateFunc" "updateFuncParams"

[9] "shufflePatterns" "computeIterativeError"

[11] "snnsObject" "archParams"

[13] "IterativeFitError" "fitted.values"

[15] "nOutputs"

The summary function that is implemented in the rsnns class generates a textual represen-
tation of the net in the original SNNS file format, and displays it (output of the function is
omitted here):

R> summary(encoder)

After training, the model can be used for prediction on new data, or the visualization capabil-
ities of R can be used to analyze the training process and the models performance on training
and test data. Examples are given in Section 6.

5. Included datasets

A fairly convenient feature in R is the inclusion of datasets along with software packages.
This is important for standardized tests as well as for examples of the usage of the package
(as presented in Section 6). Various datasets are present in the original SNNS examples,
covering a wide variety of network types and possible applications. The functions presented
in Section 6.5 were used to convert all pattern files with fixed-size patterns included as example
data in SNNS to data accessible within R. All the data is available in RSNNS through the
list snnsData:

R> data("snnsData")

R> names(snnsData)

Journal of Statistical Software 9

[1] "art1_letters.pat" "artmap_test.pat"

[3] "eight_016.pat" "laser_999.pat"

[5] "letters_with_classes.pat" "spirals.pat"

[7] "trainValidMAP.pat" "xor_rec1.pat"

[9] "art2_tetra_high.pat" "artmap_train.pat"

[11] "eight_160.pat" "letseq_test.pat"

[13] "nettalk.pat" "sprach_test.pat"

[15] "validMAP.pat" "xor_rec2.pat"

[17] "art2_tetra_low.pat" "bdg_TDNN.pat"

[19] "encoder.pat" "letseq_train.pat"

[21] "patmat.pat" "sprach_train.pat"

[23] "art2_tetra_med.pat" "font.pat"

[25] "letters_auto.pat" "som_cube_norm.pat"

[27] "testMAP.pat" "art2_tetra.pat"

[29] "dlvq_ziff_100.pat" "laser_1000.pat"

[31] "letters.pat" "som_cube.pat"

[33] "trainMAP.pat" "xor.pat"

The columns of the datasets are named according to whether they are input or output to the
net. The convenience functions inputColumns and outputColumns can be used to pick the
right columns according to their names. Furthermore, the function splitForTrainingAndTest

can be used to split the data in a training and a test set. So, for example the laser dataset
can be loaded and preprocessed with:

R> laser <- snnsData$laser_1000.pat

R> inputs <- laser[, inputColumns(laser)]

R> targets <- laser[, outputColumns(laser)]

R> patterns <- splitForTrainingAndTest(inputs, targets, ratio = 0.15)

Also, use of datasets from the KEEL dataset repository (http://sci2s.ugr.es/keel/
datasets.php) is possible. Reference results for various models are provided at the pack-
age homepage at http://sci2s.ugr.es/dicits/software/RSNNS/.

6. Examples

In this section we illustrate the use of the package with examples for regression, classification,
and clustering. Furthermore, we comment on some other useful functionality and on the
benefits of using both RSNNS and a separate installation of the original SNNS software. All
examples shown here and various other ones that illustrate both the use of the high-level and
the low-level interface are included in the package as demos. In R the command demo() gives
a list of available demos, e.g., the demo "laser" can be started with demo("laser"). The
examples can also be found at the package web page referred to above.

6.1. Recurrent neural networks for regression

In this example, we show the use of an Elman network (Elman 1990) for time series regression.
After loading the data as seen in Section 5, the model is trained in a way similar to the one

http://sci2s.ugr.es/keel/datasets.php
http://sci2s.ugr.es/keel/datasets.php
http://sci2s.ugr.es/dicits/software/RSNNS/

10 RSNNS: Neural Networks in R Using the SNNS

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Laser time series

Index

V
al

ue
s

0 20 40 60 80 100

0.
1

0.
3

0.
5

(b) Target and fitted values

Index
V

al
ue

s

Figure 1: (a) The laser example time series. (b) The first 100 values of the series (black), and
the corresponding fits (green).

shown in Section 4. Meaningful default values (especially for the function to use) are already
given, so it is often sufficient just to adjust the learning parameters:

R> model <- elman(patterns$inputsTrain, patterns$targetsTrain,

+ size = c(8, 8), learnFuncParams = c(0.1), maxit = 500,

+ inputsTest = patterns$inputsTest, targetsTest = patterns$targetsTest,

+ linOut = FALSE)

The powerful tools for data visualization in R come handy for neural net modeling. For
example, input data and fitted values can be visualized in the following way (the plots are
shown in Figure 1):

R> plot(inputs, type = "l")

R> plot(targets[1:100], type = "l")

R> lines(model$fitted.values[1:100], col = "green")

In addition to the visualization tools already available in R, various other methods for visual-
ization and analysis are offered by the package. The function plotIterativeError generates
an iterative error plot that shows the summed squared error (SSE), i.e., the sum of the squared
errors of all patterns for every epoch. If a test set is provided, its SSE is also shown in the
plot, normalized by dividing the SSE through the test set ratio (which is the amount of pat-
terns in the test set divided by the amount of patterns in the training set). The function
plotRegressionError can be used to generate a regression plot which illustrates the quality
of the regression. It has target values on the x-axis and fitted/predicted values on the y-axis.
The optimal fit would yield a line through zero with gradient one. This optimal line is shown,
as well as a linear fit to the actual data. Using standard methods of R, also other evalua-
tion techniques can be implemented straightforwardly, e.g., an error histogram (the plots are
shown in Figure 2):

Journal of Statistical Software 11

0 100 200 300 400 500

0
5

10
15

20
25

30
(a) Iterative errors

Iteration

W
ei

gh
te

d
S

S
E

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Regression plot fit

Targets
F

its

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Regression plot test

Targets

F
its

(d) Error histogram fit

Error

F
re

qu
en

cy

−0.2 0.0 0.2 0.4

0
10

0
20

0
30

0
40

0

Figure 2: An Elman net trained with the laser example dataset. (a) The iterative error plot of
both training (black) and test (red) error. (b) Regression plot for the training data, showing
a linear fit in the optimal case (black), and to the current data (red). (c) Regression plot for
the test data. (d) An error histogram of the training error.

R> plotIterativeError(model)

R> plotRegressionError(patterns$targetsTrain, model$fitted.values)

R> plotRegressionError(patterns$targetsTest, model$fittedTestValues)

R> hist(model$fitted.values - patterns$targetsTrain)

6.2. Multi-layer perceptron for classification

Performing classification or regression is very similar with the package. The neural output is
typically set to the logistic function instead of the linear function, and an output neuron is
used for each possible class. Training targets force the activation of the neuron representing

12 RSNNS: Neural Networks in R Using the SNNS

the correct class, i.e., using the logistic function its output should be close to one. The other
neurons should output values close to zero. Methods of pre- and postprocessing to facilitate
such a procedure are present in RSNNS. In the following, we present an example of how
to train a multi-layer perceptron using the standard backpropagation algorithm (Rumelhart
et al. 1986). We use the well-known iris dataset included in R for this example.

The data is loaded, shuffled, and preprocessed. The function decodeClassLabels gener-
ates a binary matrix from an integer-valued input vector representing class labels. With
splitForTrainingAndTest, the data is split into training and test set, that can then be
normalized using the function normTrainingAndTestSet, which has different normalization
types implemented. We use a normalization to zero mean and variance one, which is the
default setting:

R> data("iris")

R> iris <- iris[sample(1:nrow(iris), length(1:nrow(iris))), 1:ncol(iris)]

R> irisValues <- iris[, 1:4]

R> irisTargets <- iris[, 5]

R> irisDecTargets <- decodeClassLabels(irisTargets)

R> iris <- splitForTrainingAndTest(irisValues, irisDecTargets, ratio = 0.15)

R> iris <- normTrainingAndTestSet(iris)

The training data of this structure can then be used for training the multi-layer perceptron
(or any other supervised learning method):

R> model <- mlp(iris$inputsTrain, iris$targetsTrain, size = 5,

+ learnFuncParams = 0.1, maxit = 60, inputsTest = iris$inputsTest,

+ targetsTest = iris$targetsTest)

R> predictions <- predict(model, iris$inputsTest)

Again, iterative and regression error plots can be used for analysis, but the regression error
plot is less informative than for a regression problem (see Figure 3). Also, a function for
displaying receiver operating characteristics (ROC) is included in the package. ROC plots are
usually used for the analysis of classification problems with two classes. With more classes,
for every class a ROC plot can be generated by combining all other classes to one class, and
using the output of only the output of the corresponding neuron for drawing the ROC plot
(see Figure 3 for examples):

R> plotIterativeError(model)

R> plotRegressionError(predictions[, 2], iris$targetsTest[, 2], pch = 3)

R> plotROC(fitted.values(model)[, 2], iris$targetsTrain[, 2])

R> plotROC(predictions[, 2], iris$targetsTest[, 2])

However, using ROC plots in this way might be confusing, especially if many classes are
present in the data. Yet in the given example with three classes it is probably more informative
to analyze confusion matrices, using the function confusionMatrix. A confusion matrix
shows the amount of times the network erroneously classified a pattern of class X to be a
member of class Y. If the class labels are given as a matrix to the function confusionMatrix,
it encodes them using the standard setting. Currently, this standard setting is a strict winner-
takes-all (WTA) algorithm that classifies each pattern to the class that is represented by the

Journal of Statistical Software 13

0 10 20 30 40 50 60

20
40

60
80

(a) Iterative errors

Iteration

W
ei

gh
te

d
S

S
E

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Regression plot test

Targets
F

its

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) ROC second class fit

1 − Specificity

S
en

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) ROC second class test

1 − Specificity

S
en

si
tiv

ity

Figure 3: A multi-layer perceptron trained with the iris dataset. (a) The iterative error
plot of both training (black) and test (red) error. (b) The regression plot for the test data.
As a classification is performed, ideally only the points (0, 0) and (1, 1) would be populated.
(c) ROC plot for the second class against all other classes, on the training set. (d) Same
as (c), but for the test data.

neuron having maximal output activation, regardless of the activation of other units. For
other encoding algorithms, the class labels can be encoded manually. In the following example,
besides the default, the 402040 method is used, which is named after its default parameters,
the two thresholds l = 0.4, and h = 0.6. In this configuration, these two thresholds divide
the [0, 1]-interval into a lower part with 40% of the values, a middle part of 20% of the values
and an upper part containing 40% of the values. The method classifies a pattern to the
corresponding class of an output neuron, if this output neuron has an activation in the upper
part, and all other neurons have an activation in the lower part. Otherwise, the pattern is

14 RSNNS: Neural Networks in R Using the SNNS

treated as unclassified. In the current implementation, unclassified patterns are represented
by a zero as the class label. If WTA is used with standard settings, no unclassified patterns
occur. Both 402040 and WTA are implemented as described in Zell et al. (1998). In the
following, we show the calculation of confusion matrices for the training and the test dataset:

R> confusionMatrix(iris$targetsTrain, fitted.values(model))

predictions

targets 1 2 3

1 42 0 0

2 0 40 3

3 0 1 41

R> confusionMatrix(iris$targetsTest, predictions)

predictions

targets 1 2 3

1 8 0 0

2 0 7 0

3 0 0 8

R> confusionMatrix(iris$targetsTrain, encodeClassLabels(fitted.values(model),

+ method = "402040", l = 0.4, h = 0.6))

predictions

targets 0 1 2 3

1 0 42 0 0

2 5 0 38 0

3 3 0 0 39

Finally, we can have a look at the weights of the newly trained network, using the function
weightMatrix (output is omitted):

R> weightMatrix(model)

6.3. Self-organizing map for clustering

A self-organizing map is an unsupervised learning method for clustering (Kohonen 1988).
Similar input patterns result in spatially near outputs on the map. For example, a SOM can
be trained with the iris data by:

R> model <- som(irisValues, mapX = 16, mapY = 16, maxit = 500,

+ targets = irisTargets)

The targets parameter is optional. If given, a labeled version of the SOM is calculated,
to see if patterns from the same class are present as groups in the map. As for large pat-
tern sets calculation of the outputs can take a long time, the parameters calculateMap,
calculateActMaps, calculateSpanningTree, and saveWinnersPerPattern can be used to
control which results are computed. Component maps are always computed. The results in
more detail are:

Journal of Statistical Software 15

� model$actMaps: An activation map is simply the network activation for one pattern.
The activation maps list actMaps contains a list of activation maps for each pattern.
If there are many patterns, this list can be very large. All the other results can be
computed from this list. So, being an intermediary result, with limited use especially if
many patterns are present, it is not saved if not explicitly requested by the parameter
calculateActMaps.

� model$map: The most common representation of the self-organizing map. For each
pattern, the winner neuron is computed from its activation map. As unit activations
represent Euclidean distances, the winner is the unit with minimal activation. The map
shows then, for how many patterns each neuron was the winner.

� model$componentMaps: For each input dimension there is one component map, showing
where in the map this input component leads to high activation.

� model$labeledMap: A version of the map where for each unit the target class number
is determined, to which the majority of patterns where the neuron won belong to. So,
performance of the (unsupervised) SOM learning can be controlled using a problem that
could also be trained with supervised methods.

� model$spanningTree: It is the same as model$map, except that the numbers do not
represent the amount of patterns where the neuron won, but the number identifies the
last pattern that led to minimal activation in the neuron. In contrast to the other results
of SOM training, the spanning tree is available directly from the SNNS kernel. As the
other results are probably more informative, the spanning tree is only interesting if the
other functions require high computation times, or if the original SNNS implementation
is needed.

The resulting SOM can be visualized using the plotActMap function which displays a heat
map, or by any other R standard method, e.g., persp. If some units win much more often
than most of the others, a logarithmic scale may be appropriate (plots are shown in Figure 4):

R> plotActMap(model$map, col = rev(heat.colors(12)))

R> plotActMap(log(model$map + 1), col = rev(heat.colors(12)))

R> persp(1:model$archParams$mapX, 1:model$archParams$mapY, log(model$map + 1),

+ theta = 30, phi = 30, expand = 0.5, col = "lightblue")

R> plotActMap(model$labeledMap)

The component maps can be visualized in the same way as the other maps (Figure 5 shows
the plots):

R> for(i in 1:ncol(irisValues)) plotActMap(model$componentMaps[[i]],

+ col = rev(topo.colors(12)))

6.4. An ART2 network

ART networks (Grossberg 1988) are unsupervised learning methods for clustering. They offer
a solution to a central problem in neural networks, the stability/plasticity dilemma, which

16 RSNNS: Neural Networks in R Using the SNNS

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) SOM of the iris example

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) SOM, logarithmic scale

x

y

F
requency

(c) SOM, logarithmic scale

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) SOM, with target class labels

Figure 4: A SOM trained with the iris dataset. (a) A heat map that shows for each unit
the amount of patterns where the unit won, from no patterns (white) to many patterns (red).
(b) Same as (a), but on a logarithmic scale. (c) Same as (b), but as a perspective plot instead
of a heat map. (d) Labeled map, showing for each unit the class to which the majority of
patterns belong, for which the unit won.

means, that in general it is difficult in neural networks to learn new things without alter-
ing/deleting things already present in the net. In ART networks, plasticity is implemented
in the way that new input patterns may generate new prototypes/cluster centers, if they
are not represented yet by another prototype of the net. Stability is present, as a proto-
type is not altered by all new patterns, but only by new patterns that are similar to the
prototype. The ART1 networks (Carpenter and Grossberg 1987b) only allow binary input
patterns, ART2 (Carpenter and Grossberg 1987a) was developed for real-valued inputs. In
the SNNS example art2_tetra, which we reimplement here, the inputs are noisy coordinates
of the corners of a tetrahedron.

Journal of Statistical Software 17

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d)

Figure 5: (a)–(d) Component maps for the SOM trained with the iris data. As the iris

dataset has four inputs, four component maps are present that show for each input, where in
the map it leads to high activation.

The architecture parameter f2Units defines the amount of hidden units present in the f2-layer
of the network, and so gives the maximal amount of clusters that can be saved in the net (for
details, see Zell et al. (1998) and Herrmann (1992)).

The model can be built in the following way:

R> patterns <- snnsData$art2_tetra_med.pat

R> model <- art2(patterns, f2Units = 5,

+ learnFuncParams = c(0.99, 20, 20, 0.1, 0),

+ updateFuncParams = c(0.99, 20, 20, 0.1, 0))

For visualization of this example, it is convenient to use the R package scatterplot3d (Ligges

18 RSNNS: Neural Networks in R Using the SNNS

(a) Medium noise level

−0.5 0.0 0.5 1.0 1.5

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

0.5
1.0

1.5
2.0

2.5
3.0

3.5

(b) High noise level

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

0.5
1.0

1.5
2.0

2.5
3.0

3.5
4.0

Figure 6: An ART2 network trained with noisy input data which represent the corners of
a three-dimensional tetrahedron. (a) Data with medium noise level, the method correctly
assumes four different clusters and clusters the points correctly. (b) Data with high noise
level. The method generates three clusters. Note that the points of two of the corners are
in one cluster though they are not spatially near. As ART2 uses normalized vectors, it only
is able to take into account the direction of the vectors, which yields this unintuitive result
(Herrmann 1992).

and Maechler 2003), for three-dimensional scatter plots:

R> library("scatterplot3d")

R> scatterplot3d(patterns, pch = encodeClassLabels(model$fitted.values))

Figure 6 shows this scatter plot, and the result of the same processing, but using as input
data snnsData$art2_tetra_high.pat, which has more noise added.

6.5. Combined use of RSNNS and independent SNNS software

While RSNNS includes the major part of SNNS functionality, there are some bits left out,
which can be interesting for some specific purposes: for example, the SNNS GUI is a very
convenient tool for interactive visual development of a neural network topology or for manual
analysis of a network weight’s role. RSNNS offers functionality to interact with SNNS. This
includes mainly reading/writing native dataset files (.pat, where files containing patterns
with variable length are currently not supported) or neural network files (.net), as well as a
rudimentary parser for .res files. This way, data and networks can be interchanged with an
installation of the original SNNS, e.g., to visualize the network architecture in SNNS, or to
train a net in SNNS and use R to analyze the capabilities of the net.

R> exportToSnnsNetFile(model, filename)

R> readPatFile(filename)

R> savePatFile(inputs, targets, filename)

R> readResFile(filename)

Journal of Statistical Software 19

The .pat file methods make use of the original SNNS methods. Furthermore, .net files can
be loaded and saved with the normal SNNS kernel methods loadNet and saveNet.

7. Neural network packages in R

In this section, we review the packages available directly in R or from CRAN implementing
neural networks, and compare their functionality with algorithms available through RSNNS.
As all neural network packages we are aware of on CRAN implement either feed-forward
networks or Kohonen networks (LVQ, SOM), we discuss the packages grouped accordingly
in this section. Furthermore, we give a general discussion about the functionality that has
become available through RSNNS to R, and on general limitations of both SNNS and the
wrapper package.

The only package present on CRAN yet that tackles connection between SNNS and R is
write.snns (Castejón Limas et al. 2007), which implements a function to export data from R
to a SNNS pattern file (.pat). This functionality is included in RSNNS, using directly the
original SNNS functions for input and output of pattern files.

7.1. Feed-forward neural networks

There are several packages available for R that implement multi-layer perceptrons. Further-
more, implementations of quantile regression neural networks and flexible radial basis function
networks exist.

nnet The package nnet (Venables and Ripley 2002) is part of the recommended R packages
that usually ship directly with R. So, nnet can be considered the R standard neural network
package. It implements a multi-layer perceptron with one hidden layer. For weight adjust-
ment, it does not use backpropagation nor one of its variants, but a general quasi-Newton
optimization procedure, the BFGS algorithm. Ripley (2007) argues that to “use general al-
gorithms from unconstrained optimization [...] seems the most fruitful approach”. A similar
method, the scaled conjugate gradient (SCG, Møller 1993), is implemented in SNNS. SCG
combines a conjugate gradient approach with ideas from the Levenberg-Marquardt algorithm.
Møller (1993) compares SCG with standard backpropagation, another conjugate gradient al-
gorithm, and the BFGS algorithm. In his comparison, the SCG performs best.

AMORE The package AMORE (Castejón Limas et al. 2010) implements the “TAO-robust
backpropagation learning algorithm”(Perńıa Espinoza et al. 2005), which is a backpropagation
learning algorithm designed to be robust against outliers in the data. Furthermore, adaptive
backpropagation and adaptive backpropagation with momentum term, both in online and
batch versions, are implemented. The algorithms use an individual learning rate for each
unit. Adaptive backpropagation procedures are not implemented in this way in SNNS, but
using different learning rates for the units or the weights is a common idea for enhancing
neural network learning procedures, and e.g., resilient backpropagation, which is implemented
in SNNS, adapts the learning rate for each weight.

Furthermore, the package aims at giving a general framework for the implementation of
neural networks (http://rwiki.sciviews.org/doku.php?id=packages:cran:amore), i.e.,

http://rwiki.sciviews.org/doku.php?id=packages:cran:amore

20 RSNNS: Neural Networks in R Using the SNNS

for defining units, their activation functions, connections, etc. The SNNS kernel interface
implements such structures that are used internally by the algorithms implemented in SNNS.
This interface can be accessed by the low-level interface functions of RSNNS.

neuralnet The package neuralnet (Fritsch et al. 2010) implements standard backpropagation
and two types of resilient backpropagation (Riedmiller and Braun 1993; Riedmiller 1994).
These algorithms are also available in SNNS, in implementations of the original authors of
the algorithms. Furthermore, the package implements a “modified globally convergent version
of the algorithm” presented by Anastasiadis et al. (2005), and a method for “the calculation
of generalized weights”, which are not present in SNNS.

monmlp The package monmlp (Cannon 2011a) implements a multi-layer perceptron with
partial monotonicity constraints (Zhang and Zhang 1999). The algorithm allows for the def-
inition of monotonic relations between inputs and outputs, which are then respected during
training. If no constraints are defined, the algorithms behave as the usual, unconstrained
versions. Implemented are standard backpropagation, and learning using a nonlinear least-
squares optimizer. Furthermore, a stopping criterion using a bootstrap procedure is imple-
mented. In SNNS, monotonic constraints methods are not implemented. Regarding the
standard procedures, backpropagation and SCG, which uses a general optimizer, are present
in SNNS. Stopping criteria are not implemented in SNNS, but as this part is controlled by
RSNNS in the R code, could be considered for future versions of the package.

qrnn The package qrnn (Cannon 2011b) implements a quantile regression neural network,
which can be used to produce probability density forecasts, especially in environments with
both continuous and discrete input variables. This is not implemented in SNNS.

frbf The package frbf (Martins 2009) implements an algorithm for flexible radial basis func-
tions (Falcao et al. 2006). The algorithm can be used for classification only. The algorithm
constructs in a first phase of unsupervised learning the network topology from the training
data, and later uses different kernels for each class. The algorithm is not included in SNNS,
but standard radial basis functions are. Furthermore, an algorithm that also is only suitable
for classification and constructs the network topology on its own is present with the RBF
dynamic decay adjustment algorithm (Berthold and Diamond 1995).

7.2. Kohonen networks

Several packages in R implement SOMs. The version that is implemented in SNNS uses
Euclidean distance and a quadratic neighborhood.

class The package class (Venables and Ripley 2002) is one of the recommended packages
in R . It implements a SOM with rectangular or hexagonal grid, and the learning vector
quantization algorithms LVQ1, LVQ2.1, LVQ3, and OLVQ. LVQ1 only adapts the winning
prototype, whereas LVQ2.1 and LVQ3 also adapt the second best prototype. OLVQ uses
a different learning rate for every unit. An implementation of LVQ is present in SNNS,
where it is called dynamic LVQ, because it starts with an empty network/codebook, and
adds successively new units.

Journal of Statistical Software 21

som The package som (Yan 2010) implements a self-organizing map, focused on its applica-
tion in gene clustering. It has hexagonal and rectangular topologies implemented, as well as
basic visualization functionality.

kohonen The package kohonen (Wehrens and Buydens 2007) implements a standard SOM,
as well as a supervised SOM with two parallel maps, and a SOM with multiple parallel maps.
It is based on the package class. It has hexagonal and quadratic neighborhood relationships
implemented, as well as toroidal maps. Besides the usual Euclidean distance, for class labels
the Tanimoto distance can be used.

When class labels are available, there are various potential possibilities of how to use them
during SOM training. An easy possibility is to use them (as in Section 6.3) merely during
visualization. Another possibility that can be used with the standard SOM, is to add the class
labels as additional feature, possibly with a weighting. However, the method implemented in
this package, presented by Melssen et al. (2006), uses two different maps. The algorithm is an
enhancement of counterpropagation (Hecht-Nielsen 1987), which is implemented in SNNS.

Besides the supervised versions of the SOM, the package also offers various visualization
possibilities for the maps.

wccsom The package wccsom (Wehrens 2011) is another package from the authors of the
kohonen package. It implements another distance measure, the weighted cross-correlation
(WCC). Furthermore, it implements maps that start with few units, and add additional units
during training by interpolation. This way, training can be performed faster.

7.3. Possibilities and limitations of RSNNS

So far, neural network methods are scattered along several packages. RSNNS addresses this
lack of a standard neural network package in R by making the SNNS functionality usable from
R, and therewith offering a uniform interface to many different standard learning procedures
and architectures. For those models or algorithms for which there are already implementations
available in R, such as for resilient propagation, standard backpropagation, or DLVQ, RSNNS
offers alternatives that can be used complementary and for comparison. Regarding SOMs,
there exist yet sophisticated packages in R, which offer powerful visualization procedures and
flexible network construction, so use of the SOM standard implementation in RSNNS will
usually not have benefits. But RSNNS also makes available a lot of architectures and learning
procedures that were not present for R before, to the best of our knowledge, such as partial
recurrent neural networks (Jordan and Elman nets), the ART theory, associative memories,
Hopfield networks, the cascade correlation networks, or network pruning algorithms.

SNNS is a robust and fast software with standard implementations of a large amount of neural
network techniques (see Section 2), validated by many years of employment by a huge group
of users. Though RSNNS successfully overcomes some of the main problems that the use
of SNNS in a modern experiment design raises, some others persist. As active development
terminated in 1998, newer network types are not present. However, building a comprehensive
up-to-date neural network standard package is a difficult task. The packages currently avail-
able from CRAN mainly focus on implementation of special types of architectures and/or
learning functions. An important question in this context seems, if RSNNS could provide
a suitable architecture to add new network types. Though SNNS in general is well-written

22 RSNNS: Neural Networks in R Using the SNNS

software with a suitable architecture and kernel API, to extend the kernel, knowledge of its
internals is necessary, and the networks would need to be added directly in SnnsCLib, as the
current wrapping mechanism of RSNNS is one-way, i.e., RSNNS provides no mechanisms
that allow to implement learning, initialization, or update functions for use from within the
SNNS kernel in R.

Regarding other limitations of the wrapping mechanism itself, the low-level interface offers
full access to not only the kernel user interface, but also some functions that were not part
of the kernel (bignet), and some functions that were not part of the original SNNS, but
implemented for SnnsCLib. Some functions of the kernel interface are currently excluded
from wrapping (see the file KnownIssues, that installs with the package), but this does not
limit the functionality of RSNNS, as those functions usually implement redundant features,
or features that can be easily reimplemented from R. So, with the low-level interface, all of
the functionality of SNNS can be used.

In contrast to the direct mapping of the SNNS kernel to R functions of the low-level interface,
the high-level interface implements task-oriented functionality that is mainly inspired by the
original SNNS examples. The high-level functions define the architecture of the net, and
the way the learning function is called (e.g., iteratively or not). So, the high-level functions
are still pretty flexible, and e.g., the function mlp is suitable for a wide range of learning
functions. Naturally, there are cases where such flexibility is not necessary, so for example
the ART networks are only suitable for their specific type of learning.

8. Conclusions

In this paper, we presented the package RSNNS and described its main features. It is essen-
tially a wrapper in R for the well-known SNNS software. It includes an API at different levels
of trade-off between flexibility/complexity of the neural nets and convenience of use. In addi-
tion it provides several tools to visualize and analyze different features of the models. RSNNS
includes a fork of SNNS, called SnnsCLib, which is the base for the integration of the SNNS
functionality into R, an environment where automatization/scriptability and parallelization
play an important role. Through the use of Rcpp, the wrapping code is kept straightforward
and well encapsulated, so that SnnsCLib could also be used on its own, in projects that do
not use R. Flexibility and full control of the networks is given through the RSNNS low-level
interface SnnsR. The implemented calling mechanism enables object serialization and error
handling. The high-level interface rsnns allows for seamless integration of many common
SNNS methods in R programs.

In addition, various scenarios exist where the combined usage of the original SNNS and
RSNNS can be beneficial. SNNS can be used as an editor to build a network which afterwards
can be trained and analyzed using RSNNS. Or, a network trained with RSNNS can be saved
along with its patterns, and SNNS can be used for a detailed analysis of the behavior of the
net (or parts of the net or even single units or connections) on certain patterns.

As discussed in Section 7, packages currently available in R are focused on distinct network
types or applications, so that RSNNS is the first general purpose neural network package for
R, and could become the new standard for neural networks in R.

Journal of Statistical Software 23

Acknowledgments

This work was supported in part by the Spanish Ministry of Science and Innovation (MICINN)
under Project TIN-2009-14575. C. Bergmeir holds a scholarship from the Spanish Ministry
of Education (MEC) of the “Programa de Formación del Profesorado Universitario (FPU)”.

References

Anastasiadis AD, Magoulas GD, Vrahatis MN (2005). “New Globally Convergent Training
Scheme Based on the Resilient Propagation Algorithm.” Neurocomputing, 64(1–4), 253–
270.

Bergmeir C, Beńıtez JM (2012). Neural Networks in R Using the Stuttgart Neural Net-
work Simulator: RSNNS. R package version 0.4-3, URL http://CRAN.R-Project.org/

package=RSNNS.

Berthold MR, Diamond J (1995). “Boosting the Performance of RBF Networks with Dynamic
Decay Adjustment.” In Advances in Neural Information Processing Systems, pp. 521–528.
MIT Press.

Bishop CM (2003). Neural Networks for Pattern Recognition. Oxford University Press.

Cannon AJ (2011a). monmlp: Monotone Multi-Layer Perceptron Neural Network. R package
version 1.1, URL http://CRAN.R-project.org/package=monmlp.

Cannon AJ (2011b). “Quantile Regression Neural Networks: Implementation in R and Ap-
plication to Precipitation Downscaling.” Computers & Geosciences, 37(9), 1277–1284.

Carpenter GA, Grossberg S (1987a). “ART 2: Self-Organization of Stable Category Recogni-
tion Codes for Analog Input Patterns.” Applied Optics, 26(23), 4919–4930.

Carpenter GA, Grossberg S (1987b). “A Massively Parallel Architecture for a Self-Organizing
Neural Pattern Recognition Machine.” Computer Vision, Graphics and Image Processing,
37, 54–115.

Carpenter GA, Grossberg S, Reynolds JH (1991). “ARTMAP: Supervised Real-Time Learning
and Classification of Nonstationary Data by a Self-Organizing Neural Network.” Neural
Networks, 4(5), 565–588.

Castejón Limas M, Ordieres Meré JB, de Cos Juez FJ, Mart́ınez de Pisón Ascacibar FJ
(2007). write.snns: Function for Exporting Data to SNNS Pattern Files. R package
version 0.0-4.2, URL http://CRAN.R-project.org/package=write.snns.

Castejón Limas M, Ordieres Meré JB, González Marcos A, Mart́ınez de Pisón Ascacibar FJ,
Perńıa Espinoza AV, Alba Eĺıas F (2010). AMORE: A MORE Flexible Neural Network
Package. R package version 0.2-12, URL http://CRAN.R-project.org/package=AMORE.

Cun YL, Denker JS, Solla SA (1990). “Optimal Brain Damage.” In Advances in Neural
Information Processing Systems, pp. 598–605. Morgan Kaufmann.

http://CRAN.R-Project.org/package=RSNNS
http://CRAN.R-Project.org/package=RSNNS
http://CRAN.R-project.org/package=monmlp
http://CRAN.R-project.org/package=write.snns
http://CRAN.R-project.org/package=AMORE

24 RSNNS: Neural Networks in R Using the SNNS

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18.

Elman JL (1990). “Finding Structure in Time.” Cognitive Science, 14(2), 179–211.

Fahlman S, Lebiere C (1990). “The Cascade-Correlation Learning Architecture.” In Advances
in Neural Information Processing Systems 2, pp. 524–532. Morgan Kaufmann.

Fahlman SE (1988). “An Empirical Study of Learning Speed in Back-Propagation Networks.”
Technical Report CMU-CS-88-162, Carnegie Mellon, Computer Science Department.

Fahlman SE (1991). “The Recurrent Cascade-Correlation Architecture.” In Advances in
Neural Information Processing Systems 3, pp. 190–196. Morgan Kaufmann.

Falcao AO, Langlois T, Wichert A (2006). “Flexible Kernels for RBF Networks.” Neurocom-
puting, 69(16-18), 2356–2359.

Fritsch S, Guenther F, Suling M (2010). neuralnet: Training of Neural Networks. R package
version 1.31, URL http://CRAN.R-project.org/package=neuralnet.

Grossberg S (1988). Adaptive Pattern Classification and Universal Recoding. I.: Parallel
Development and Coding of Neural Feature Detectors, chapter I, pp. 243–258. MIT Press.

Haykin SS (1999). Neural Networks: A Comprehensive Foundation. Prentice Hall.

Hecht-Nielsen R (1987). “Counterpropagation Networks.” Applied Optics, 26(23), 4979–4984.

Herrmann KU (1992). ART – Adaptive Resonance Theory – Architekturen, Implementierung
und Anwendung. Diplomarbeit 929, IPVR, University of Stuttgart.

Hopfield JJ (1982). “Neural Networks and Physical Systems with Emergent Collective Com-
putational Abilities.” Proceedings of the National Academy of Sciences of the United States
of America, 79(8), 2554–2558.

Hudak M (1993). “RCE Classifiers: Theory and Practice.” Cybernetics and Systems, 23(5),
483–515.

Jordan MI (1986). “Serial Order: A Parallel, Distributed Processing Approach.” Advances in
Connectionist Theory Speech, 121(ICS-8604), 471–495.

Jurik M (1994). “BackPercolation.” Technical report, Jurik Research. URL http://www.

jurikres.com/.

Kohonen T (1988). Self-Organization and Associative Memory, volume 8. Springer-Verlag.

Lang KJ, Waibel AH, Hinton GE (1990). “A Time-Delay Neural Network Architecture for
Isolated Word Recognition.” Neural Networks, 3(1), 23–43.

Lange JM, Voigt HM, Wolf D (1994). “Growing Artificial Neural Networks Based on Correla-
tion Measures, Task Decomposition and Local Attention Neurons.” In IEEE International
Conference on Neural Networks – Conference Proceedings, volume 3, pp. 1355–1358.

http://CRAN.R-project.org/package=neuralnet
http://www.jurikres.com/
http://www.jurikres.com/

Journal of Statistical Software 25

Ligges U, Maechler M (2003). “scatterplot3d – An R Package for Visualizing Multivariate
Data.” Journal of Statistical Software, 8(11), 1–20. URL http://www.jstatsoft.org/

v08/i11/.

Martins F (2009). frbf: Implementation of the ‘Flexible Kernels for RBF Network’ Algorithm.
R package version 1.0.1, URL http://CRAN.R-project.org/package=frbf.

Melssen W, Wehrens R, Buydens L (2006). “Supervised Kohonen Networks for Classification
Problems.” Chemometrics and Intelligent Laboratory Systems, 83(2), 99–113.

Møller MF (1993). “A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning.”
Neural Networks, 6(4), 525–533.

Perńıa Espinoza AV, Ordieres Meré JB, Mart́ınez de Pisón Ascacibar FJ, González Marcos
A (2005). “TAO-Robust Backpropagation Learning Algorithm.” Neural Networks, 18(2),
191–204.

Poggio T, Girosi F (1989). “A Theory of Networks for Approximation and Learning.” Technical
Report A.I. Memo No.1140, C.B.I.P. Paper No. 31, MIT Artifical Intelligence Laboratory.

R Development Core Team (2011). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org/.

Riedmiller M (1994). “Rprop – Description and Implementation Details.” Technical report,
University of Karlsruhe.

Riedmiller M, Braun H (1993). “Direct Adaptive Method for Faster Backpropagation Learn-
ing: The RPROP Algorithm.” In 1993 IEEE International Conference on Neural Networks,
pp. 586–591.

Ripley BD (2007). Pattern Recognition and Neural Networks. Cambridge University Press.

Rojas R (1996). Neural Networks: A Systematic Introduction. Springer-Verlag.

Rosenblatt F (1958). “The Perceptron: A Probabilistic Model for Information Storage and
Organization in the Brain.” Psychological Review, 65(6), 386–408.

Rumelhart DE, Clelland JLM, Group PR (1986). Parallel Distributed Processing: Explo-
rations in the Microstructure of Cognition. MIT Press.

Venables WN, Ripley BD (2002). Modern Applied Statistics with S. Springer-Verlag, New
York. URL http://www.stats.ox.ac.uk/pub/MASS4.

Wehrens R (2011). wccsom: SOM Networks for Comparing Patterns with Peak Shifts.
R package version 1.2.4, URL http://CRAN.R-project.org/package=wccsom.

Wehrens R, Buydens LMC (2007). “Self- and Super-Organizing Maps in R: The kohonen
Package.” Journal of Statistical Software, 21(5), 1–19. URL http://www.jstatsoft.org/

v21/i05/.

Yan J (2010). som: Self-Organizing Map. R package version 0.3-5, URL http://CRAN.

R-project.org/package=som.

http://www.jstatsoft.org/v08/i11/
http://www.jstatsoft.org/v08/i11/
http://CRAN.R-project.org/package=frbf
http://www.R-project.org/
http://www.R-project.org/
http://www.stats.ox.ac.uk/pub/MASS4
http://CRAN.R-project.org/package=wccsom
http://www.jstatsoft.org/v21/i05/
http://www.jstatsoft.org/v21/i05/
http://CRAN.R-project.org/package=som
http://CRAN.R-project.org/package=som

26 RSNNS: Neural Networks in R Using the SNNS

Zell A (1994). Simulation Neuronaler Netze. Addison-Wesley.

Zell A, et al. (1998). SNNS Stuttgart Neural Network Simulator User Manual, Version 4.2.
IPVR, University of Stuttgart and WSI, University of Tübingen. URL http://www.ra.

cs.uni-tuebingen.de/SNNS/.

Zhang H, Zhang Z (1999). “Feedforward Networks with Monotone Constraints.” In Proceedings
of the International Joint Conference on Neural Networks, volume 3, pp. 1820–1823.

Affiliation:

Christoph Bergmeir, José M. Beńıtez
Department of Computer Science and Artificial Intelligence
E.T.S. de Ingenieŕıas Informática y de Telecomunicación
CITIC-UGR, University of Granada
18071 Granada, Spain
E-mail: c.bergmeir@decsai.ugr.es, j.m.benitez@decsai.ugr.es
URL: http://dicits.ugr.es/, http://sci2s.ugr.es/

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 46, Issue 7 Submitted: 2010-12-20
January 2012 Accepted: 2011-10-03

http://www.ra.cs.uni-tuebingen.de/SNNS/
http://www.ra.cs.uni-tuebingen.de/SNNS/
mailto:c.bergmeir@decsai.ugr.es
mailto:j.m.benitez@decsai.ugr.es
http://dicits.ugr.es/
http://sci2s.ugr.es/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Features of the original SNNS software
	Package architecture and implementation details
	The SNNS fork SnnsCLib
	The R low-level interface class and C++ wrapping
	R high-level interface classes

	Using the R high-level interface
	Included datasets
	Examples
	Recurrent neural networks for regression
	Multi-layer perceptron for classification
	Self-organizing map for clustering
	An ART2 network
	Combined use of RSNNS and independent SNNS software

	Neural network packages in R
	Feed-forward neural networks
	Kohonen networks
	New possibilities with RSNNS

	Conclusions

