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Abstract

The R environment provides a natural platform for developing new statistical methods
due to the mathematical expressiveness of the language, the large number of existing
libraries, and the active developer community. One drawback to R, however, is the learning
curve; programming is a deterrent to non-technical users, who typically prefer graphical
user interfaces (GUIs) to command line environments. Thus, while statisticians develop
new methods in R, practitioners are often behind in terms of the statistical techniques they
use as they rely on GUI applications. Meta-analysis is an instructive example; cutting-edge
meta-analysis methods are often ignored by the overwhelming majority of practitioners, in
part because they have no easy way of applying them. This paper proposes a strategy to
close the gap between the statistical state-of-the-science and what is applied in practice.
We present open-source meta-analysis software that uses R as the underlying statistical
engine, and Python for the GUI. We present a framework that allows methodologists to
implement new methods in R that are then automatically integrated into the GUI for use
by end-users, so long as the programmer conforms to our interface. Such an approach
allows an intuitive interface for non-technical users while leveraging the latest advanced
statistical methods implemented by methodologists.

Keywords: meta-analysis, software, open source, Python, R.

1. Introduction

In statistically-driven sciences there is often a disparity between cutting edge methodologies
and the techniques used by practitioners in their daily work. This disparity is due in part
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to a dearth of technical know-how. Methodologists (usually statisticians) tend to implement
advanced methods in statistical programming languages such as Stata and SAS, and perhaps
most commonly now, in R (R Development Core Team 2012). Non-technical researchers,
meanwhile, are often deterred by programming and rely on available graphical user interface
(GUI) driven tools. Such specialized software is generally easy to use, but usually lags with
respect to the statistical methods available. The result is that practitioners continue to use
inappropriate or suboptimal methods due to their being restricted to what is made available
via GUIs. The problem is compounded by the fact that statistical programmers generally do
not implement custom GUIs for new methods they develop.

The example of meta-analysis, described at length in the following section, motivates our work.
Most meta-analysts are non-technical clinical researchers without experience in R or any other
statistical programming language. They therefore tend to rely on available (often commercial)
GUI software, e.g., Comprehensive Meta-Analysis (CMA, Borenstein, Rothstein, and Cohen
2005). Such programs are user-friendly, but it is difficult for the maintainers to keep up-to-
date with the latest methodological developments. For example, despite their user-friendly
interfaces, no existing GUI-driven specialized meta-analysis software that we are aware of
accomodates multivariate datasets with multiple correlated outcomes, or longitudinal data
on multiple treatments (in a network of treatments). Furthermore, most analytic choices are
presented to the user as defaults with few, if any, options for more advanced analyses. Finally,
graphs are often of low quality and the software architecture cannot easily accomodate new
graphing capabilities.

Indeed, we encountered the above difficulties firsthand when implementing and maintaining
our previous version of meta-analysis software, Meta-Analyst (Wallace, Schmid, Lau, and
Trikalinos 2009). The program was implemented in C#, atop the .NET platform. Although
the .NET platform made it easy to develop a user-friendly interface (spreadsheet-driven, etc.),
it practically restricted us to the Windows platform.1 More importantly, however, the lan-
guage is not ideal for statistical programming; we found ourselves porting existing code from
R to C#, an error-prone and inefficient process.

In this work, we propose a novel strategy for making advanced methods available to non-
technical end-users. We apply this strategy to meta-analysis as an example, but we believe
it to be relatively general. We use a software architecture where an ‘agnostic’ front-end GUI
(in our case written in Python) interfaces with a calculation and graphics engine (in R) in
the back-end, using relatively simple standards. The GUI is agnostic in that it can render
inputs to and results from arbitrary routines implemented in the calculations engine, so long
as they conform to the predefined standards. The architecture lends itself to a ‘two-tiered’
distribution of statistical methods; advanced/technical users may opt to use the underlying
R package(s) directly, ignoring the GUI, while non-technical users may only use the GUI,
unaware even that R is the back-end.

2. Meta-analysis

Meta-analysis is the quantitative synthesis of information from independent sources (stud-
ies). It is typically used to answer questions that individual studies are underpowered or

1Technically, we may have been able to run the program on top of alternative .NET implementations, e.g.,
Mono, however such implementations are not yet mature.
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Figure 1: Growth of the meta-analysis literature in the biomedical sciences. Based on a
MEDLINE search (using the keywords: ‘meta-analysis[Publication Type]’ and ‘meta-analysis
as topic[MeSH Terms]’), we obtained estimates of the crude number (left panel), and the pro-
portion (per 100,000 publications, right panel) of published papers related to meta-analysis,
respectively, over the last 3 decades. The left panel represents the growth in the absolute num-
ber of meta-analysis-related publications whereas the right pannel demonstrates the growth
of the meta-analysis field normalized to the overall growth of the literature.

not designed to address. Meta-analysis has a long tradition in many scientific disciplines, in-
cluding the natural sciences, such as physics, astronomy (Airy 1875) and ecology (Osenberg,
Sarnelle, and Goldberg 1999), as well as medicine (Simpson and Pearson 1904; Fisher 1925),
epidemiology (Stroup et al. 2000), psychology (Glass 1976), and education (Kulik and Kulik
1989). As the number of primary studies in all scientific fields has increased, so too has the
need to synthesize this evidence using meta-analytic methods. For example, Figure 1 shows
the exponential growth of meta-analyses and related publications in the medical literature
over the last 3 decades. At the same time methodological advances have made it possible
to the synthesize complex data, including multivariate data on multiple correlated outcomes,
data assessed over successive time points (longitudinal data), or data on multiple treatments
(networks of treatments).

2.1. Existing software for meta-analysis

The tasks involved in evidence synthesis are complex, and in order to accomodate this com-
plexity, meta-analysis software should ideally:

� Allow data entry for complex datasets, including multiple outcomes reported in each
study, simultaneous comparisons of multiple interventions across studies (networks of
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contrasts) and reporting of results over multiple timepoints (longitudinal datasets).

� Facilitate back-calculation of sufficient statistics for meta-analysis based on the the data
reported by each study. For example, the software could back-calculate a variance (a
statistic that is often necessary for meta-analysis) from the corresponding p-value or
confidence interval, or other information. Automating such calculations can reduce the
reviewers’ work burden and minimize data extraction errors (Gotzsche, Hrobjartsson,
Maric, and Tendal 2007).

� Include most commonly used meta-analysis methods and, importantly, allow the addi-
tion of new statistical techniques as they become available.

� Implement Bayesian meta-analysis methods through Markov chain Monte Carlo simu-
lations.

� Generate publication quality graphs for data presentation and exploration and allow the
rendering of new graph types based on the particular requirements of novel statistical
methods.

� Be open-source to ensure availability in resource-limited settings and to allow community
involvement in development and testing.

� Combine the above listed technical requirements with ease of use, ideally through a
GUI.

Currently, meta-analysis methods are implemented in many statistical packages, including
Stata (Sterne 2009), SPSS (Lipsey and Wilson 2001), SAS (Arthur, Bennett, Huffcutt, Arthur,
and Bennett 2001) and R (Schwarzer 2012; Lumley 2009; Viechtbauer 2010), in addition to
Microsoft Excel plug-ins, such as MIX (Bax, Yu, Ikeda, Tsuruta, and Moons 2006) and
MetaEasy (Kontopantelis and Reeves 2009). Stand-alone software for general meta-analysis
include Comprehensive Meta-Analysis (Borenstein et al. 2005), MetaWin (Rosenberg, Adams,
and Gurevitch 1997), Meta-Analyst (Wallace et al. 2009), and the Cochrane Collaboration’s
RevMan (Clarke and Oxman 2000). In addition, there is dedicated software for specialized
types of meta-analysis, such as meta-analysis of diagnostic test data; examples are Meta-Test
(Lau 1997) and Meta-Disc (Zamora, Abraira, Muriel, Khan, and Coomarasamy 2006). We
have provided a more exhaustive overview elsewhere (Wallace et al. 2009).

The methodologies that are implemented in software end up being widely used, because they
are readily available. A striking example is the almost universal use of the DerSimonian-
Laird method for random effects univariate meta-analysis (DerSimonian and Laird 1986)
(the default or only method in the aforementioned programs), irrespective of good data that
alternative random effect methods have better statistical properties (Turner, Omar, Yang,
Goldstein, and Thompson 2000; Viechtbauer 2005).

In the following sections we describe the proposed software architecture by virtue of an applied
example, namely our new meta-analysis program, which we call OpenMeta-Analyst.

3. Why R and Python?

We will briefly explain our reasons for electing to use the R and Python languages for
OpenMeta-Analyst. R has become the lingua franca amongst methodologists and statisti-
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cians. We argue that Python is in many ways ideal for implementing a GUI; it is cross-
platform, has a large, open-source community and the rpy library (Moriera and Warnes 2004)
facilitates easy communication with R. Moreover, there are many mature, rich GUI toolkits
available in Python. We feel that general purpose programming languages provide a better
framework for writing GUIs compared to specialized statistical languages such as R.

There are many major benefits to using R as a statistical engine. First, doing so allows
one to exploit the wealth of methods already written in R. By the same token, it allows us
to incorporate new methods that are written with relatively little effort (i.e., we need only
‘wrap’ them so as to conform to our interface, as explicated in Section 4.2). Second, R is both
cross-platform and open-source, both of which are desirable traits in any scientific software.

Our approach is similar in spirit to the R Commander package (Rcmdr), which provides
an “easy-to-use, cross-platform, extensible GUI” with enough functionality to span a basic
statistics course (Fox 2005). Like Rcmdr, we hope to provide an inuitive GUI that exploits
the power of the R environment. However, rather than creating a general statistics program,
we aimed to develop an intuitive, easy-to-use program for conducting meta-analyses that
leverages the existing R code for this task. Moreover, we wanted this architecture to be
extensive, so that new statistical routines can be developed by methodologists and plugged
into the GUI with minimal effort.

For the GUI, we elected to use Python, rather than a GUI toolkit native to R such as the tcltk
package, as the author of Rcmdr did. We did so for a few reasons. First, we were able to use
the PyQT library (River Bank Computing 2012), a mature GUI toolkit written in Python.
We feel that PyQT provides a richer set of GUI widgets than does tcltk. Second, Python is
a cross-platform, open-source, object-oriented programming language, which we feel is more
conducive to writing GUI code than is R. In any case, we note that had we opted to use tcltk,
our approach to communicating between the GUI and underlying methods would remain as
it is outlined in the following section.

The GUI we built with PyQT is shown in Figure 2. Because PyQT is a modern, mature
graphics package, we were able to include such features as a full-fledged spreadsheet com-
ponent, unlimited undo/redo functionality, and other modern interface features with relative
ease. Moreover, QT widgets emulate the native look of the target platforms (e.g., a button
will appear as a standard Windows button on Windows, and a standard OS X button on
OS X), which is aesthetically pleasing.

4. Communication between statistical methods and the GUI

We will now describe the interface between the Python and R elements that comprise
OpenMeta-Analyst. The key idea is that by exploiting assumptions about naming conven-
tions and argument passing, methods written in R can be plugged in seamlessly to the GUI,
meaning that they will be available to end-users via the GUI without the R coder having to
write any GUI code. We will first outline our general framework for accomplishing this, and
then walk through a concrete example.

4.1. The general framework

The main tenet of the design of OpenMeta-Analyst is that the user interface must be entirely
divorced from the underlying statistical routines. In particular, the Python interface is to
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Figure 2: A screenshot of the GUI we have developed using the PyQT library; this, in turn,
interfaces with R to perform statistical analyses.

Python R 

what methods exist for data type d? 

m1, m2 ... mk 

what are their parameters? 

p1, p2, … pk 

Figure 3: Python requests a list of available methods for a particular data type from R. The
parameter names and types required by these methods are also requested. Knowing the type
of parameter allows an interface to be generated, on the fly.

know only that it is calling an abstract type of method (e.g., a meta-analysis method), and
not the concrete method that it is actually invoking. We accomplish this through the dual
strategy of assuming certain naming standards and exploiting R’s introspective capabilities
(i.e., ability to dynamically examine the current run-time environment).

The meta-analysis methods themselves are contained in our R package openmetar. This is
a stand-alone package that in the future may be useful on its own for users interested in
bypassing the GUI. At present, the package serves as an adapter that ‘wraps’ many of the
methods found in metafor (Viechtbauer 2010) package so that they are consistent with our
interface, which we explain in detail in the following subsection. In the (near) future, we plan
on expanding our package to include meta-analysis routines for network meta-analysis and
other advanced meta-analytic methods.
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OpenMeta 
Interface 

OpenMetaR 
Package 

…

Standardized  
API 

Existing and newly 
developed R 
packages 

Figure 4: The openmetar package is a liason between the UI and the underlying methods,
which themselves may live in arbitrary packages. openmetar provides a coherent interface
(i.e., API) for communication between the ‘front’ and ‘back’-ends; new R methods can be
‘plugged-in’ to the program by wrapping them in the openmetar package, as demonstrated
in Section 4.2.

In meta-analysis, there are a few basic data outcome types that can be pooled quantitatively.
These include: binary outcomes, in which one of two possibilities is realized (e.g., dead/alive);
continuous outcomes, which are arbitrary scalars capturing some measured quality (e.g., pain,
as expressed on some scale); and diagnostic outcomes, which assess the performance of a
diagnostic test (e.g., the sensitivity and specificity of a test). These data types are associated
with different types of ‘raw data’ from which outcomes are calculated. Characterizing the
space of data types over which analyses can be performed allows methodologists to write
new methods for particular types of data, making assumptions about the parameters these
methods will receive.

The interface side of things uses introspection to retrieve a list of available functions in the
openmetar package for the current data type. It then assumes that method names that begin
with, e.g., ‘binary’ are meta-analysis methods for binary data. We plan on augmenting this
for more advanced data types (e.g., network data) in the future. The interface also assumes
that there is a function for each of these methods that will return a list of parameter names
and types the method requires. These are then used to generate a GUI for the user to input
the required values. The GUI elicits these parameters from the user and passes them pack
to the method in a dictionary with names corresponding to those given by the .parameters

method. Figure 3 depicts the described interaction.

4.2. An example

We will now walk through an example of how a methodologist can implement a new meta-
analysis method in R, and, so long as they conform to our interface, this method will auto-
matically be available to end users via the (Python) GUI.

In particular, we require that each meta-analysis method that operates on binary data takes
as arguments a BinaryData S4 object and a named list of parameters (similiarly, continuous
meta-analysis methods are assumed to accept a ContinuousData object and a parameters
list).2 By distilling the elemental arguments sufficient to run meta-analyses, the GUI can
remain agnostic with respect to what method it is invoking, as it needs only to know that
it must pass these two arguments. The parameters, of course, will be specific to the meta-

2We use S4 as our object system rather than S3 because the former is a more fully realized instantation of
an object-orientation system than latter, in our opinion (e.g., S4 allows for inheritance, which we exploit). In
any case, we do not think that this choice will much affect methodologists implementing new methods in the
system.
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0 binary.random <- function(binary.data, params) {

1 if (!("BinaryData" %in% class(binary.data))) stop("Binary data expected.")

2 res <- rma.uni(yi = binary.data@y, sei = binary.data@SE,

slab = binary.data@study.names, method = params$rm.method,

level = params$conf.level, digits = params$digits)

3 degf <- res$k.yi - 1

4 model.titless <- paste("Binary Random-Effects Model (k = ", res$k, ")",

sep = "")

5 summary.disp <- create.summary.disp(res, params, degf, model.title)

6 forest.path <- paste(params\$fp_outpath, sep = "")

7 plot.data <- create.plot.data.binary(binary.data, params, res)

8 forest.plot(plot.data, outpath=forest.path)

9 images <- c("Forest Plot" = forest.path)

10 plot.names <- c("forest plot" = "forest_plot")

11 results <- list("images" = images, "Summary" = summary.disp,

"plot_names" = plot.names)

12 results

13 }

Figure 5: Code for our implemenation of the binary random effects meta-analysis. The main
point is that we are able to wrap existing code so as to conform to our interface: the methods
are then automatically made available via the UI. We provide detailed exposition, below. Line
1 asserts that the parametric data is of the right type. Line 2 is the call out to the random
effects as implemented by the metafor package (Viechtbauer 2010). We parse out the param-
eters required by this method in order to pass them along to the method we are wrapping.
The first three of these parameters are assumed to belong to every BinaryData object; the
latter three are passed in via the params object because the associated .parameters method
(below) requested them, and so the GUI solicited the user for appropriate values. Lines 3–
5 assemble some output for the user, in particular Line 5 invokes a method to construct a
pretty-printed summary table. This will be passed back to the GUI, which will display it
to the user. Lines 6–8 call out to a routine that constructs an image associated with this
type of analysis; in particular this is a ‘forest plot’, a popular graphic in meta-analysis. The
forest.plot method generates this figure and writes it out to disk. We then return a named
list mapping the name of the plot to the path to this generated image file. This image will
subsequently be displayed by the GUI (in Python we will read the image from the disk). In
this case there is only one image, however we could generate (and return) an arbitrary num-
ber of figures in the same way. Finally, in lines 9–11, we package the results in a dictionary
(technically, a named list) to be returned and consuemd by the GUI. In particular, there are
two fields that must be returned; the aformentioned dictionary of images (mapping titles to
image paths) and a list of texts (mapping titles to pretty-printed text). The GUI will take
care of displaying these to the user.

analysis method being implemented – we next discuss how we accomodate this requirement
by way of an example.

Let us suppose that we are interested in implementing the random effects models we pre-
viously discussed. In fact, these methods have already been implemented in the metafor
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Figure 6: A screenshot of the GUI rendering the results of a meta-analysis.

package (Viechtbauer 2010), and so our implementation of random effects meta-analysis for
binary data (Figure 5) simply wraps the pre-existing routine for this contained in the metafor
package. This example illustrates how using R as an analytic back-end allows us to exploit
the wealth of existing statistical packages, thereby freeing us from having to reinvent the
proverbial wheel. Moreover, contrary to most existing (GUI-based) meta-analysis software,
the metafor implementation of random effects meta-analysis includes many alternative es-
timators of between-study variance, beyond the popular DerSimonian-Laird estimator (see
Figure 8).

The code itself is relatively straightforward3 (the reader is encouraged to read through the
commented code). We parse out the elements required by the rma.uni function, namely the in-
dividual effect estimates (binary.data@y) and the corresponding standard errors
(binary.data@SE). Both of these fields are assumed to exist in all BinaryData objects. We
pass along some other parameters, as provided in the params argument. The rest of the rou-
tine is concerned with parsing the output of interest from the rma.uni function and packaging
it for consumption by the GUI. We also generate a forest plot, which is saved to disk at a
user-specified path.

The method must return a named list. This list is assumed to contain an ‘images’ entry,
which is a dictionary that maps image names to their paths on disk. The GUI will render

3This code is a simplified version of what is actually used for this routine in the openmetar package; here
we suppress unimportant details for clarity.
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0 binary.random.parameters <- function(){

1 rm_method_ls <- c("HE", "DL", "SJ", "ML", "REML", "EB")

2 params <- list("rm.method" = rm_method_ls, "conf.level" = "float",

"digits" = "float")

3 defaults <- list("rm.method" = "DL", "conf.level" = 95, "digits" = 3)

4 var_order <- c("rm.method", "conf.level", "digits")

5 parameters <- list("parameters" = params, "defaults" = defaults,

"var_order" = var_order)

6 parameters

7 }

Figure 7: The .parameters method associated with the binary.random function (Figure 5).
This method specifies the arguments required by said method, as well as their types. Line 1
specificies the different available estimates for tau2, discussed above: the user will be able to
choose which of these the software usess. Line 2 assembles a complete list of parameters the
binary.random method requires (and that the user must provide): the estimation method,
the confidence level and the number of digits to be displayed. Crucially, this requires that
the code here specify what type of values each of these parameters may take; this allows the
interface code to draw suitable input widgets. In Line 3 the defaults for these are provided.
The GUI will automatically set the corresponding parameters to these values, initially; the
user can then change them. In 4 we specify the order in which these variables are to appear
in the GUI, vertically (see Figure 8). Finally, in line 5 we package these up for consumption
by the Python interface code, which will be responsible for rendering an interface that allows
the user to impart values for these parameters to the system.

these for the end user. Other entries in the returned list are assumed to correspond to textual
output – in this case we only have a ‘Summary’ field, which contains information about the
analysis and the overall (pooled) estimate, etc. An arbitrary number of text fields may be
returned. The text will be rendered in the GUI exactly as it would appear at the console, so
the programmer is responsible for ‘pretty-printing’ the output.

There remains the issue that different meta-analysis methods will require different parameters.
For example, a random-effects meta-analysis requires the specification of the random effects
method to be used, whereas no such parameter is required for fixed-effects analysis. We
therefore need a way for R programmers who are implementing meta-analysis methods to
communicate to the GUI what parameters are required for their routine. The GUI will
then be responsible for rendering an interface that solicits these parameters from users and,
ultimately, passes them to the analytic routine.

We accomplish this again by making assumptions about naming conventions; every meta-
analysis method is assumed to have a corresponding .parameters routine, whose only purpose
is to return a named list specifying the argument names and types required by the the associ-
ated function. For example, the binary.random.parameters method shows the .parameters
routine for the random effects meta-analysis routine for binary data implemented in Figure 5.
Note that the type of each argument must also be specified. For example, the conf.level

parameter is a float, whereas the rm.method argument is a categorical string. In the latter
case, the values the argument can assume are enumerated in a list, which will be presented
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Figure 8: The GUI that is automatically built and presented to the end-user using the values
specified by the binary.random.parameters (Figure 7).

to the user as a standard combo box (see Figure 8).

We allow the author of the method to optionally specify default values for their parameters
using the defaults list, as shown in Figure 7; here, for example, we set the default confidence
interval to 95. We also allow the author to optionally specify the order in which the parameters
are presented to the user (e.g., in Figure 7, the rm.method argument will be at the top of the
GUI, as shown in Figure 8).

An example of the GUI rendering the output returned in the last line of the routine shown in
Figure 5 is displayed in Figure 6. Note also that in the bottom panel of the results window
there is a small console; this provides direct access to the R environment. More advanced
users may examine their results via the console, if they would prefer, and non-technical users
can simply ignore it.

An additional part of the architecture not demonstrated by this example is the ability for
the method author to express necessary conditions for their function. For example, a meta-
analysis method may require at least three studies (i.e., individual point estimates) to run.
The author of such a method can enforce this requirement by implementing a .is.feasible

function associated with their method. This function is passed the current data object, which
can then be inspected to see if the corresponding meta-analysis routine is feasible given the
provided data. The function is returns True if the function can be run and False otherwise.
Furthermore, we allow the implementer of methods to optionally provide more informative
names for both the method and parameters, as well as descriptions for both. If these are
available, the GUI will retrieve and display them. To recapitulate; the GUI requests which
methods for the current data type are available by using introspection and making assumptions
about naming conventions, and generates an interface for soliciting user parameters for these
methods based on the corresponding .parameters function. Methods are assumed to return
pointers to image files and pretty-printed text as output.
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5. Discussion

In meta-analysis, the methodologists who invent and implement cutting-edge meta-analysis
methods often do so in R. Meta-analysts are often non-technical and therefore tend to use
GUI-driven programs instead of R to perform their analyses. Thus there is a gap between the
statistical methods that ought to be used and the methods that are used due to the limited
availability of the former in GUI-based programs. It is difficult for software developers to
continuously implement and integrate the latest statistical methods into specialized programs,
particularly when the methods are fast-evolving. This problem is compounded by the fact
that such specialized GUI-based programs are written in general programming languages, not
in specialized statistical languages like R.

To address this issue for the case of meta-analysis software, we have presented a framework
for using R as the underlying computational/statistical engine, while the GUI is written in a
different language more suited to GUI programming (in our case, Python). We have outlined
our framework for extending the methods available in the GUI, which does not require directly
writing GUI code. Thus new methods developed by methodologists can be made available to
a more general, non-technical set of meta-analysts with minimal effort – the methods need
only be wrapped so as to conform to our architecture. In our case, we have opted to use
this strategy in developing a desktop application with the QT toolkit. However because of
our strict separation of the analytic and UI componenents, one could re-implement the UI
generation (following the described API) in, e.g., a web-interface with relative ease.

While meta-analysis was the driving example in this case, we believe this framework of using
R as the underlying computational engine and a different language for the GUI could be
of use in many mathematically driven application areas, particularly when the target users
of new methods may be non-technical. Such an approach is suitable whenever the problem
space (e.g., meta-analysis methods) is more conveniently expressed in a statistical language
such as R but there is a need for an intuitive GUI for end-users. Some examples of such
areas include: decision theory, machine learning, and network analysis. Given that this
strategy is likely widely applicable, it would perhaps be useful in future work to extract the
UI generating functionality into a stand-alone Python library, which could attempt to build
UIs (automatically) for any R package that conformed to the API. Admittedly, however, such
a general package would require careful design.

6. Code

OpenMeta-Analyst is a completely open source project. The source code (both Python and R)
is available on GitHub at: http://github.com/bwallace/OpenMeta-analyst-.

Compiled ‘binary’ releases of the program are available to Windows and OS X users at http:
//tuftscaes.org/open_meta/.
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