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Abstract

The R package kerdiest has been designed for computing kernel estimators of the distri-
bution function and other related functions. Because of its usefulness in real applications,
the bandwidth parameter selection problem has been considered, and a cross-validation
method and two of plug-in type have been implemented. Moreover, three relevant func-
tions in nature hazards have also been programmed. The package is completed with two
interesting data sets, one of geological type (a complete catalogue of the earthquakes oc-
curring in the northwest of the Iberian Peninsula) and another containing the maximum
peak flow levels of a river in the United States of America.
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1. Introduction

Let (x1, x2, . . . , xn) be a data sample of a continuous random variable X, with distribution
function F and density f. A natural estimator for the distribution function F is the empirical
distribution one, defined at any point x as

Fn(x) = n−1
n∑

j=1

I(−∞,x](xj). (1)

On the other hand, a well-known nonparametric estimator of the density function is the
Rosenblatt-Parzen (Parzen 1962) kernel estimator f̂h(x) = n−1

∑n
j=1Kh(x − xj), where

Kh(u) = h−1K(u/h) with K the kernel function and h the bandwidth parameter. Using the
relationship between the density and the distribution function, that is, F (y) =

∫ y
−∞ f(t)dt, it

http://www.jstatsoft.org/
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Figure 1: Effect of the bandwidth on the kernel estimator for an exponential distribution with
parameter β = 1.

is easy to construct a kernel estimator for the distribution function as:

F̂h(x) =

∫ x

−∞
f̂h(t)dt, (2)

which can also be written in a similar form as the kernel estimator of the density, by

F̂h(x) = n−1
n∑

j=1

H

(
x− xj
h

)
, (3)

where H(x) =
∫ x
−∞K(t)dt. Some theoretical properties of the estimator F̂h have been inves-

tigated, among others, by Nadaraya (1964), Reiss (1981) or Hill (1985).

As seen in Equation 3, when working with a kernel estimator of the distribution function two
choices must be made: the kernel function K and the smoothing parameter or bandwidth h.
The selection of K is a problem of less importance, and different functions that produce good
results can be used. In practice, the choice of an efficient method for the calculation of h, for
an observed data sample is a more complex problem, because of the effect of the bandwidth
on the shape of the corresponding estimator. If the bandwidth is small, we will obtain an
undersmoothed estimator, with high variability. On the contrary, if the value of h is big, the
resulting estimator will be very smooth and farther from the function that we are trying to
estimate.

An example is drawn in Figure 1, where we show three different kernel estimators using
the same kernel function (the standard Gaussian density) and three different values for the
bandwidth. The data sample consists of 1000 random numbers of an exponential distribution
with parameter β = 1.

Despite the great number of bandwidth selection techniques in other settings, as for exam-
ple in density or regression estimation (Jones, Marron, and Sheather 1996; del Ŕıo 1996),
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to the best of our knowledge, only two methods have been investigated in the distribution
estimation context: plug-in and cross-validation. The plug-in bandwidth choice was stud-
ied, both theoretically and by simulation studies, by Altman and Leger (1995) and Polanski
and Baker (2000). The least-squares cross-validation method was analyzed in Sarda (1993),
but, as revealed in Altman and Leger (1995), it basically requires very large sample sizes to
ensure good results. Hence, only the second approach, namely the modified cross-validation
proposed in Bowman, Hall, and Prvan (1998), is of interest for implementation in a language
programming and for application to real data sets.

The distribution function estimation is not only an interesting problem by itself, but also for
the fact that it appears naturally in real problems of many scientific fields, such as seismology,
hydrology, environmental sciences, etc. Thus, diverse methodologies, based on nonparametric
ideas, have emerged for attacking statistical problems in these disciplines. In many cases,
the distribution function appears to be directly linked to the risk term, or nature hazard.
Scientists are interested in knowing the risk of occurrence of an earthquake of great magnitude,
the probability of high wind speeds or hurricane occurrences, or the hazard of high flow levels.
We cite, among others, the papers of Elsner, Jagger, and Tsonis (2006), Gomes, Arrúe, López,
Sterk, and Richard (2003), Katz, Parlange, and Naveau (2002), Küchenhoff and Thamerus
(1996), del Ŕıo and Francisco-Fernández (2011) and Scheitlin, Elsner, Malmstadt, Hodges,
and Jagger (2010) for applications of the distribution function estimation to the different
sciences mentioned in the nature hazard setting.

For the above reasons, we have implemented, in the package kerdiest, developed in the lan-
guage R (R Development Core Team 2012), the kernel distribution function estimator, the
three commented bandwidth selection procedures, and three interest functions in real appli-
cations: the exceedance, the mean return period and the return level functions. The package
also contains two application data sets, that show the features and capabilities of the pack-
age in practice. The package is available from the Comprehensive R Archive Network at
http://CRAN.R-project.org/package=kerdiest.

The aim of this paper is to describe this package, and also to summarize and conveniently
present the associated nonparametric framework, helping interested readers to apply this kind
of techniques to real situations. The structure of this paper is as follows. Section 2 details the
bandwidth selection procedures implemented in the package. Section 3 introduces the utility
of estimating some functions derived directly from the distribution one, and their mathemat-
ical forms are presented. Section 4 explains the structure of the package. In Sections 4 and
5, the functions and data sets of the package are described, and applications of the different
features are illustrated. Section 6 is devoted to conclusions.

2. Bandwidth selection

2.1. Plug-in bandwidth selection

This method is based on considering some type of quadratic error between the true function
and its estimator, such as the mean integrated squared error (MISE),

MISE (F̂h) =

∫ +∞

−∞
(F̂h(x) − F (x))2dx, (4)

http://CRAN.R-project.org/package=kerdiest
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and then selecting the bandwidth minimizing an asymptotic approximation of this error. It
can be proven (Altman and Leger 1995) that, under smoothness conditions,

MISE (F̂h) = h4
∫ +∞

−∞
B2

F (x)dx+
1

n

∫ +∞

−∞
F (x)(1 − F (x))dx−

−h
n

∫ +∞

−∞
V 2
F (x)dx+ o(MISE (h)), (5)

where

BF (x) =
(
1
2

)
(f ′(x))2

(∫ +∞
−∞ x2K(x)dx

)
and V 2

F (x) = 2f(x)
(∫ +∞
−∞ xK(x)H(x)dx

)
.

(6)

Therefore, the asymptotically optimal bandwidth has the form:

hAMISE (F̂h) = Cn−1/3 =

(
1
2

∫ +∞
−∞ V 2

F (x)dx∫ +∞
−∞ B2

F (x)dx

)1/3

n−1/3. (7)

As we can see in this last equation, the optimal bandwidth is of order n−1/3, instead of n−1/5,
that would be the optimal order in the case of the kernel nonparametric density estimation
(Silverman 1986). Therefore, for large sample sizes, the optimal bandwidth for the nonpara-
metric distribution estimator will be smaller than for the corresponding density estimator.
For small values of the bandwidth, the nonparametric density estimator produces a closer es-
timation to the true density, but the area under the estimated curve and the X axis (measured
by the distribution function estimator) will be a good estimation of the true area. However,
if we choose a large value for the bandwidth, we obtain a smoother estimator, away from the
true curve, and therefore the estimated values for the area will be also away from the real
ones. Looking at one specific graph of the distribution function estimation, the corresponding
curve is a smoother one than the density estimation. For this reason, we need to use smaller
values for the bandwidth of the distribution estimator than in the density case, because we
have to capture the curvature changes of the distribution function.

Because the constant C in Equation 7 depends on the kernel function and the theoretical
(unknown in practice) distribution function of the data, a plug-in estimation of considers the
bandwidth

ĥ = Ĉ n−1/3, (8)

where Ĉ is estimated through the data sample. The way of obtaining Ĉ differs from one
author to another.

2.2. Altman and Leger plug-in

The plug-in method developed by Altman and Leger (1995) consists in estimating nonpara-
metrically the unknown terms in Equation 7. Using Altman and Leger’s notation, Equation 7
can be written as:

hAMISE (F̂h) =

(
1
4V2

B3

)1/3

n−1/3, (9)
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with

V2 = ρ(K)
∫ +∞
−∞ [f(x)]2dx ; ρ(K) = 2

∫ +∞
−∞ xK(x)H(x)dx (10)

and

B3 = 0.25
(
µ2(K)2

) ∫ +∞
−∞ [f ′(x)]2f(x)dx ; µ2(K) =

∫ +∞
−∞ x2K(x)dx. (11)

So the plug-in bandwidth is

hAL =

(
1
4 V̂2

B̂3

)1/3

n−1/3, (12)

where

V̂2 = ρ(K)
1

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

1

α
K

(
xi − xj
α

)
, (13)

and
B̂3 = 0.25D̂3(F ) (µ2(K))2 , (14)

being

D̂3(F ) =
1

n3α4
b

n∑
i=1

n∑
j=1

n∑
k=1

K
′
b

(
xi − xj
αb

)
K

′
b

(
xi − xk
αb

)
. (15)

In this last formula, K
′
b is the derivative of a kernel function Kb (that is not necessarily equal

to K). Its associated bandwidth parameter is denoted as αb. In practice, we can choose
αb = α and Kb = K. Moreover, if we use as the kernel function the Epanechnikov density,
Altman and Leger (1995) prove that an optimal choice is made taking α = n−0.3σ̂(xi), with
σ̂(xi) an estimate of the standard deviation of the data. A good option for this last quantity
is (Silverman 1986):

σ̂(xi) = min

{
ŝ,
Q3 −Q1

1.349

}
, (16)

with ŝ the sample standard deviation, and Q1, Q3 denoting the first and third quartile, re-
spectively. Note that we are only using this last formula for the estimation of the standard
deviation, and this is independent of the estimated function. In fact, Polanski and Baker
(2000) use the same formula, because it is more suitable for non-normal densities than the
sample standard deviation.

2.3. Polansky and Baker plug-in

Based also on Equation 8, the Polansky and Baker plug-in bandwidth (using their notation)
can be written as

hPB =

(
ρ(K)

−nµ22(K)Ψ̂2(g2)

)1/3

, (17)

where ρ(K) and µ2(K) appear in Equation 10 and Equation 11, respectively,

Ψ̂r(g) =
1

n2gr+1

n∑
i=1

n∑
j=1

L(r)

(
xi − xg
g

)
(18)

estimates

Ψr =

∫ +∞

−∞
f (r)(x)f(x)dx, (19)
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r ≥ 2 an even integer and

g2 =

(
2L(2)(0)

−nµ22(L)Ψ4

)1/5

. (20)

Note that the kernel function L is not necessarily equal to K.

Based on this scheme, Polanski and Baker (2000) developed an iterative method for calculating
the plug-in bandwidth, that we detail below.

Let b > 0 be an integer.

First step. Calculate Ψ̂2b+2 using the formula

Ψ̂r =
(−1)r/2r!

(2σ̂(xi))r+1(r/2)!π1/2
,

where σ̂(xi) is estimated as in Equation 16.

Second step. Begin from j = b to j = 1, calculating Ψ̂2j(ĝ2j) where

ĝ2j =

(
2L(2j)(0)

−nµ2(L)Ψ̂2j+2

)1/(2j+3)

with

Ψ̂2j+2 =

{
Ψ̂2b+2 if j = b

Ψ̂2j+2(ĝ2j+2) if j < b
.

Third step. The plug-in bandwidth is

ĥ =

(
ρ(K)

−nµ22(K)Ψ̂2j(ĝ2j)

)1/3

. (21)

In practice, it is sufficient to consider b = 2 for most applications.

2.4. Cross-validation bandwidth selection

Applied several times in the nonparametric setting, the cross-validation procedure is based
on directly estimating the function MISE in Equation 4, and then selecting the bandwidth
to minimize this function. Sarda (1993) proposed to use

CV (h) =
n∑

i=1

(Fn(xi) − F̂−i(xi))
2. (22)

In this case, the CV (·) function minimizes the differences between the empirical distribution
function (see Equation 1) and the leave-one-out version of the distribution kernel estimator.
This last estimator is defined as that using all the points except xi:

F̂−i(x) =
1

n− 1

∑
j 6=i

H

(
x− xj
h

)
. (23)

In spite of the asymptotic optimality theorem proven in Sarda (1993), this method does not
provide good results in practice. Instead, the modified cross-validation proposal of Bowman
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et al. (1998) is also asymptotically optimal and works well in simulation studies and real cases.
It consists in minimizing the function

CV (h) =
1

n

n∑
i=1

∫ +∞

−∞

(
I(x− xi) − F̂−i(x)

)2
dx, (24)

where I(x− xi) = 1 if x− xi ≥ 0 and 0 in any other case. Bowman et al. (1998) performed a
simulation study comparing this method with the plug-in one of Altman and Leger. Better
results are obtained, in general, with cross-validation. A drawback is the worse performance in
terms of computational time, because cross-validation involves the minimization of a function
of n2 terms that is necessary to evaluate over a large enough grid of bandwidths. Furthermore,
it is also precise to compute an integral term (approximating it numerically). Obviously, this
is not really a drawback, for a real data situation, because the minimization process is carried
out only once.

3. Associated functions

In real applications, the distribution function estimation appears as a natural problem due to
the existence of related functions, that can be very useful in several contexts. One of these
is the risk function or probability of exceedance. For example, in climatological studies, for
a high value c, the relevance of knowing the probability of occurrence of a wind speed bigger
than c is obvious. The function returning the probabilities of exceedance is simply defined as

R(c) = 1 − F (c). (25)

Usually, the exceedance function is calculated over D time units. For instance, seismologists
are interested in the probability of exceedance or the risk function over D years, that is,
the probability of occurrence of an earthquake of magnitude bigger than c in D years. More
exactly, let us suppose that we are observing the occurrence process of earthquakes, or extreme
rainfall events, in a specific geographical area. The usual assumption is that the occurrence
process is a Poisson random variable. In this case, it can be proven that the exceedance
function takes the form (see e.g., Orlecka-Sikora 2008):

R(c,D) = 1 − exp(−λD(1 − F (c)), (26)

and we can estimate this last function by means of

R̂h(c,D) = 1 − exp(−λ̂D(1 − F̂h(c)), (27)

where λ̂ is an estimate of the mean rate λ of the Poisson process (as e.g., the sample mean).

This definition clearly concerns other disciplines, for example, measuring concentrations of a
pollutant, the flow level, etc. Directly linked with it, we also consider the mean return period
or recurrence interval of a concrete value c, as an estimator of the interval of time between
events of level greater than or equal to c. It can be calculated as the inverse of the probability
that a level c will be exceeded in 1 period of time:

RT (c) =
1

λ(1 − F (c))
. (28)
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The last function can be estimated by means of

R̂T (c) =
1

λ̂(1 − F̂h(c))
. (29)

Finally, from the definition of quantile, we also take into account the return level function.
For 0 < p < 1, the quantile of order 1 − p is defined as the value xp such that 1 − p = F (xp).
In many practical problems it is useful to estimate quantiles corresponding to a probability
of exceedance. The T−return level is defined as the value of the observed variable (flow level,
pollutant level, wind speed) that can be expected to be once exceeded during a T−period
of time. This matches with the quantile or the value xT such that the probability that the
random variable will be less than it is at most 1 − (1/T ), that is,

xT = F−1
(

1 − 1

T

)
(30)

(see e.g., Coles 2001). We can estimate this last function directly by means of the nonpara-
metric kernel distribution estimator as:

RL(T ) = x̂T = F̂−1h

(
1 − 1

T

)
. (31)

Some examples of the three functions described appear in Sections 5.1 and 5.2.

4. The package

We have implemented in R the estimators of the defined functions and the bandwidth selection
procedures of the above sections. The package kerdiest contains seven functions and two
application data sets. In Table 1 we can find a summary of the contents of the package.

The function kde corresponds to the distribution function estimator (Equation 3). Four
possibilities are allowed for the kernel functions: "e" for the Epanechnikov function, "n" for
the N(0, 1) (Gaussian) density, "b" for the biweight kernel and "t" for the triweight kernel
(see e.g., Wand and Jones 1995). Obviously, there are many possibilities that could be used

Function Description

kde The distribution function estimator, as defined in Equation 3.
ALbw Plug-in bandwidth selection of Altman and Leger.
PBbw Plug-in bandwidth selection of Polansky and Baker.
CVbw Cross-validation bandwidth selection of Bowman, Hall and Prvan.
ef Exceedance function estimator.
mpr Mean return period estimator.
rl Return level estimator.

Data set Description

nwip Data of earthquakes of the northwest of the Iberian Peninsula.
saltriver Data of annual peak instantaneous flow of the Salt River near Roosevelt,

AZ, USA, for 1924–2009.

Table 1: Summary of contents of the package.
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Figure 2: Distribution function estimator obtained with the function kde.

for the kernel function, but only these four options are applied because they are widely used in
practice in the nonparametric estimation framework. Working with a data sample, from now
on denoted by vec_data, this function enables to compute the kernel distribution function
estimator over a grid of points, with a bandwidth selected by the user, but it also allows to
estimate directly this parameter by the plug-in method of Polansky and Baker (PBbw). We
have chosen this method as the automatic one because it is the fastest in computation time
terms.

R> x <- rnorm(100)

R> kde(vec_data = x)

With these two last elementary lines, we generate a sample of 100 random numbers of a N(0, 1)
distribution and estimate its distribution function. By default, the function kde selects a grid
of 100 points in the data range. The output is a list containing the estimated values in the
points of the grid, this last sequence and the Polansky and Baker plug-in bandwidth. In
Figure 2 we show the estimator obtained with the code:

R> plot(kde(vec_data = x)$grid, kde(vec_data = x)$Estimated_values,

+ type = "l")

4.1. Bandwidth selection methods

The function ALbw provides the plug-in bandwidth of Altman and Leger. The same possi-
bilities for the kernel function as in the function kde appear here. The following example
computes this bandwidth for a sample of 100 random numbers of a N(0, 1) distribution:

R> x <- rnorm(100)
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Arguments Description

type_kernel The kernel function.
vec_data The data sample.
n_pts The number of points used to approximate the integral term by the

Simpson’s rule. The default is 100 points.
seq_bws The bandwidth sequence where the cross-validation score is computed.

Results Description

seq_bws The bandwidth sequence where the cross-validation score was computed.
CVfunction The evaluation of the cross-validation function in the grid of bandwidths.
bw The cross-validation bandwidth.

Table 2: Summary of arguments and results of CVbw.

R> h_AL <- ALbw(type_kernel = "e", x)

R> print(h_AL)

[1] 0.4257229

The function PBbw computes the plug-in bandwidth with the method of Polansky and Baker.
In this case, because kernel estimators of derivatives of order greater than 2 of the distribution
function are needed, we only work with the normal kernel. The value by default for the number
of iterations is b = 2, but values up to 4 are allowed (see Section 2.3 for details). Next, we
show an example:

R> x <- rnorm(30)

R> h_PB <- PBbw(vec_data = x, num_stage = 4)

R> print(h_PB)

[1] 0.5910396

The function CVbw computes the cross-validation bandwidth of Bowman, Hall and Prvan. The
integral term in the cross-validation score (Equation 24) is calculated using the Simpson’s rule
(Burden and Faires 2000). This procedure approximates the integral by a sum of 100 terms,
by default. Depending on the sample size, this procedure can be quite slow. An example is
the following:

R> x <- rnorm(30)

R> CVbw(type_kernel = "n", vec_data = x, n_pts = 100, seq_bws = NULL)

In Table 2 we enumerate the arguments and results of this function.

In seq_bws, by default, a sequence of 50 points is selected, from the range of the data divided
by 200 to the range divided by 2. Next, the function CV in Equation 24 is evaluated on each
of these points and then minimized.

In general, cross-validation functions in nonparametric bandwidth selection present several
local minima. These minima are more likely to appear at too small values of the bandwidth
(Hall and Marron 1991). In CVbw, the cross-validation function is evaluated in a sequence of



Journal of Statistical Software 11

0.0 0.5 1.0 1.5

0.
45

0
0.

45
5

0.
46

0

hCV$seq_bws

hC
V

$C
V

fu
nc

tio
n

Figure 3: CV function obtained by CVbw.

values, beginning at a very small value and ending in a high one. The user can select the first
and the last values and the size of the sequence to find the local minima, if there exist. In any
case, the calculation of the minimum is made directly through the R function which.min that
provides the index of the sequence minimizing the CV score. Therefore, it is very unlikely to
obtain the minimum value in two different points.

In the following example, we compute the cross-validation bandwidth, using the Epanechnikov
kernel, for a sample of 30 random numbers of a N(0, 1) distribution. The plot of the cross-
validation function CV is shown in Figure 3.

R> x <- rnorm(30)

R> num_bws <- 50

R> seq_bws <- seq(((max(x)-min(x))/2)/50, (max(x)-min(x))/2,

+ length = num_bws)

R> hCV <- CVbw(type_kernel = "e", x, n_pts = 200, seq_bws)

R> hCV

[1] 0.8883513

R> plot(hCV$seq_bws, hCV$CVfunction, type = "l")

The next code lines allow us to compare the three bandwidth selection methods, using a
normal kernel and a standard setting of parameters, in each case. In Figure 4 we can observe
the results.

R> x <- rnorm(100)

R> h_CV <- CVbw(vec_data = x)$bw

R> h_AL <- ALbw(vec_data = x)
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Figure 4: Distribution function estimation using the studied bandwidth selection methods.

R> h_PB <- PBbw(vec_data = x)

R> F_CV <- kde(vec_data = x, bw = h_CV)

R> F_AL <- kde(vec_data = x, bw = h_AL)

R> F_PB <- kde(vec_data = x, bw = h_PB)

R> y <- F_CV$grid

R> Ft <- pnorm(y)

R> plot(y, Ft, ylab = "Distribution", xlab = "data", type = "l",

+ xlim = c(-2, 2))

R> lines(y, F_CV$Estimated_values, type = "l", lty = 2, col = 2)

R> lines(y, F_AL$Estimated_values, type = "l", lty = 3, col = 3)

R> lines(y, F_PB$Estimated_values, type = "l", lty = 4, col = 4)

R> legend(1, 0.4, c("real", "F_CV", "F_AL", "F_PB"), lty = 1:4, col = 1:4)

4.2. Implementation of the associated functions

The functions of Equations 27, 29 and 31, defined in Section 3, have been programmed in
ef, mpr and rl, respectively. Since the two first functions are directly defined from the
distribution one, its calculation is straightforward (once we have an estimate of the mean
rate λ). In the case of rl, because it is not possible to obtain a direct expression for the
inverse of the distribution function estimator, we use a numerical technique for root finding.
We have directly programmed the bisection method (dichotomy, Burden and Faires 2000), for
its simplicity and speed (it has been used several times in similar problems; see e.g., del Ŕıo
2011). More details are given below.

Function ef. The exceedance probability of a concrete value c (a magnitude of a seismic
event, a flow or pollutant level) will be exceeded in D time units. From a data set
vec_data, the function is invoked in the form:



Journal of Statistical Software 13

ef(type_kernel = "n", vec_data, c,

bw = PBbw(type_kernel = "n", vec_data, 2),

Dmin = 0, Dmax = 15, size_grid = 50, lambda)

Choose chooses a part choses a where, as before, four kernel types are allowed. c is the
target in which we calculate the risk function, which is evaluated on a grid of 50 (by
default) points from Dmin to Dmax. The mean activity rate lambda is the parameter of the
Poisson variable that controls the occurrence process of the events (earthquakes, winds).
ef chooses the plug-in bandwidth of Polansky and Baker to select the bandwidth. The
output is a list containing the used grid, the bandwidth and the estimated values on
the grid. An example is shown in Section 5.1.

Function mpr. Function that estimates the mean period of time between two events with
the same concrete level (magnitude of an earthquake, flow level, concentration of a
pollutant, wind speed). From a data set vec_data, the function is invoked in the form:

mrp(type_kernel = "n", vec_data, y = NULL,

bw = PBbw(type_kernel = "n", vec_data, 2), lambda)

The plug-in bandwidth of Polansky and Baker is calculated from the data set vec_data.
For a grid defined as a sequence of 50 points between the minimum and the maximum
of the data, the output allows to plot directly the resulting function, because a list
containing the grid used, the bandwidth and the estimated values is obtained. As for
the above case, a real application can be seen in Section 5.1.

Function rl. This function is directly related with the last one, but with easier handling.

rl(type_kernel = "n", vec_data, T,

bw = PBbw(type_kernel = "n", vec_data, 2))

A detailed description, through an example using a hydrological application, is given in
Section 5.2.

5. Data description and applications

5.1. Northwest of the Iberian Peninsula data

The data of nwip correspond to the earthquakes occurring in the northwest of the Iberian
Peninsula, from 1924-11-25 to 2010-07-31. The coordinates of the zone are 41 N – 44 N and 6
W – 10 W, and involve the autonomic region of Galicia (Spain) and northern Portugal. The
data can be obtained from the National Geographic Institute (IGN) of Spain, through the
web page http://www.ign.es/.

The epicenters of the earthquakes are marked in a map in Figure 5, done with MATLAB
(The MathWorks, Inc. 2010) for its better resolution than an R map for this area. There are
3491 earthquakes. A geophysical description of the characteristics of this area can be seen
in Rueda and Mezcua (2001), Mart́ınez-Dı́az, Capote, Tsige, Martin-Gonzalez, Villamor, and
Insua (2006) and Dı́az, Gallart, Gaspa, Ruiz, and Córdoba (2008). A nonparametric study of

http://www.ign.es/
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Figure 5: Epicenters of earthquakes included in the data set nwip.

the hazard function of a subset of these data is made in Estévez-Pérez, Lorenzo-Cimadevila,
and del Ŕıo (2002).

In the following example, we need to load the packages chron (James and Hornik 2011)
and date (Therneau, Lumley, Halvorsen, and Hornik 2011) to work with the dates of the
earthquake data and compute the number of years. We select those earthquakes with mag-
nitude greater than 3.0, because the set of data with magnitude bigger than 3.0 fulfills the
Guttenberg-Richter law. That is, 3.0 is the completeness magnitude for this catalogue; (see
e.g., Woessner and Wiemer 2005).

R> library("chron")

R> library("date")

R> data("nwip")

R> mg <- nwip$magnitude[nwip$magnitude > 3.0]

R> x1 <- nwip$year

R> x2 <- nwip$month

R> x3 <- nwip$day

R> ys <- paste(x1,x2,x3)

R> earthquake_date <- as.character(ys)

R> y1s <- as.date(earthquake_date, order = "ymd")

R> y2s <- as.POSIXct(y1s)

R> z <- years(y2s)

R> n.years <- length(levels(z))

R> lambda <- length(mg)/n.years

The value lambda is the mean earthquake rate per year, that is, we assume that the occurrence
process of the earthquakes is a Poisson variable with parameter lambda. With the following
code we can show, in Figure 6, the exceedance function for the values of the magnitude equal
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Figure 6: Exceedance function estimation for values of magnitude equal to 4 using the func-
tion ef.
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Figure 7: Mean return period estimation for earthquakes of the same magnitude using the
function mpr.

to 4. We observe that the risk function of occurrence of an earthquake with magnitude 4 or
bigger is higher when the number of years increases, being the probability practically equal
to 1 when the number of years approaches 10.

R> est <- ef(vec_data = mg, c = 4, lambda = lambda)

R> plot(est$grid, est$Estimated_values, type = "l", xlab = "years",

+ ylab = "Probability of Exceedance")
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Now, we plot in Figure 7 the mean return period between earthquakes of the same magnitude,
using the function mpr. As expected, the bigger the magnitude, the return period increases,
and for very high values, the number of years tends to infinity (the maximum magnitude of
the data set is 5.2).

R> est2 <- mrp(vec_data = mg, lambda =lambda)

R> plot(est2$grid, est2$Estimated_values, type = "l", xlab = "magnitude",

+ ylab = "Mean return period(years)")

5.2. Saltriver data

The file saltriver contains the annual peak instantaneous flow levels of the Salt River near
Roosevelt, AZ, USA, for the period 1924-2009, obtained from the National Water Information
System at http://waterdata.usgs.gov/nwis. This data set appears in the R package ex-
tRemes (Gilleland and Katz 2011), but limited to 1999. These data (in cumecs; m3s−1) were
exhaustively analyzed in Katz et al. (2002), where the authors fitted a generalized extreme
value (GEV) distribution Coles (2001) in a classical (parametric) extreme values analysis to
obtain the functions of Equation 25, Equation 28 and Equation 30. A graph of the relevant
variable appears in Figure 8, as a result of the code

R> data("saltriver")

R> peak <- saltriver$peakflow

R> year <- saltriver$year

R> plot(year, peak, type = "l", ylab = "Annual peak flow")

Now, we make a comparison between parametric and nonparametric estimates for computing
the mean return period. Firstly, we estimate nonparametrically the mean return period. Next,
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Figure 8: Annual peak flow levels for data in saltriver.

http://waterdata.usgs.gov/nwis
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Figure 9: Mean return period estimated parametrically (red line) and nonparametrically
(black line).

we fit a GEV distribution by means of the R package evir (Pfaff, McNeil, and Stephenson
2012). This distribution depends on three parameters, and its estimated values are (µ̂, σ̂, γ̂)
= (0.87, 8.17, 8.33).

R> library("evir")

R> rp <- mrp(type_kernel = "n", vec_data = peak, lambda = 1)

R> plot(rp$grid, rp$Estimated_values, type = "l", xlab = "Flow level",

+ ylab = "Years")

R> x1 <- gev(peak)

R> loc1 <- x1$par.ests[1]

R> scale1 <- x1$par.ests[2]

R> shape1 <- x1$par.ests[3]

R> lines(rp$grid, 1/(1 - pgev(rp$grid, loc1, scale1, shape1)),

+ type = "l", col = 2)

In Figure 9 we plot the mean return period estimated by the resulting estimators. The return
period estimated by the fitted GEV (gev) distribution (red line) is far from the nonparametric
estimator, revealing that this would not be a good theoretical distribution for these data, at
least for high values of the flow level (del Ŕıo 2011).

Finally, we compute the return levels for a period of 2 to 100 years, and show them in
Figure 10.

The analysis of Figure 10 reveals that, for example, in 20 years, we can expect that the flow
level of 100 cms will be exceeded at least once. An interesting jump can be seen at the levels
120-140, which will be exceeded after 80 years. The code for this purpose appears below.

R> T <- seq(2, 100, length.out = 100)
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Figure 10: Return levels estimation for a period from 2 to 100 years.

R> ret.lev <- rl(vec_data = peak, T = T)

R> plot(T, ret.lev, type = "l", xlab = "years", ylab = "Flow (cumecs)")

6. Conclusions

This work discusses the package kerdiest and its applications to real problems. The non-
parametric function distribution estimation appears as a powerful tool to treat several real
questions related with the risk function. In this setting, computation of concerning parame-
ters such as the return levels or mean return periods are valuable allies in the study of nature
hazards.

To estimate the distribution function using a kernel estimator it is necessary to have a band-
width parameter selection procedure. In the specialized literature, four methods have been
developed in this direction, two of the plug-in type and two using cross-validation ideas. Be-
cause one of the last two methods did not behave well in simulation studies (Altman and
Leger 1995), we have only implemented the modified cross-validation method of Bowman
et al. (1998). Moreover, we have complemented these routines with the programming of the
mentioned associated functions for real data applications, where we have directly made use
of the fastest bandwidth selection method. We think that this package can be of interest to
nonparametric practitioners of different scientific fields.
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