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Abstract

Longitudinal data from factorial experiments frequently arise in various fields of study,
ranging from medicine and biology to public policy and sociology. In most practical sit-
uations, the distribution of observed data is unknown and there may exist a number of
atypical measurements and outliers. Hence, use of parametric and semiparametric proce-
dures that impose restrictive distributional assumptions on observed longitudinal samples
becomes questionable. This, in turn, has led to a substantial demand for statistical pro-
cedures that enable us to accurately and reliably analyze longitudinal measurements in
factorial experiments with minimal conditions on available data, and robust nonparamet-
ric methodology offering such a possibility becomes of particular practical importance.
In this article, we introduce a new R package nparLD which provides statisticians and
researchers from other disciplines an easy and user-friendly access to the most up-to-
date robust rank-based methods for the analysis of longitudinal data in factorial settings.
We illustrate the implemented procedures by case studies from dentistry, biology, and
medicine.

Keywords: nonparametric, longitudinal data, factorial design, nparLD, R.

1. Introduction

Longitudinal data are measurements collected from the same experimental units, usually
referred to as subjects or individuals, over time. Such data are widely encountered in biology,
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medicine, public policy, sociology, and psychology, and often arise in the following factorial
settings:

� One homogeneous group of subjects is observed repeatedly at s = 1, . . . , t time points.

� One homogeneous group of subjects is observed repeatedly at s = 1, . . . , t time points,
where each subject is observed under each time point several times (e.g., different vessel
sections, left and right eye).

� One homogeneous group of subjects is observed repeatedly under ` = 1, . . . , c conditions,
where each subject is observed under each condition at s = 1, . . . , t time points.

� More than one homogeneous group of subjects (e.g., male and female, different treatment
groups) are observed repeatedly at s = 1, . . . , t time points.

Typical questions that most practitioners deal with are:

� Do the treatments have the same effect?

� Is the time profile flat?

� Are the effects of the treatments similar over time? Are the treatment profiles parallel?

Alternatively, these practical questions can be translated into the statistical language as treat-
ment effects, time effects, and interaction effects between treatment and time, respectively.

Measurements from the same experimental unit may be dependent, which leads to an ex-
tra level of complexity in longitudinal studies. Diggle, Liang, and Zeger (1994) provide a
comprehensive overview of existing methods for longitudinal data analysis: generalized linear
models (GLM) and their extensions, generalized linear mixed models (GLMM) and general-
ized estimating equations (GEE, Breslow and Clayton 1993; Zeger and Liang 1992; Liang and
Zeger 1986). Most of these procedures are implemented in the commercial software SAS (SAS
Institute Inc. 2003), e.g., SAS PROC MIXED for the analysis of linear mixed models. Publicly
available software for longitudinal data analysis includes implementation of GLM/GLMM in
R (R Development Core Team 2012) through the glmmPQL() function in MASS (Venables and
Ripley 2002), the lme() function in nlme (Pinheiro, Bates, DebRoy, Sarkar, and R Develop-
ment Core Team 2012), and the lmer() function in lme4 (Bates, Maechler, and Bolker 2012);
while GEE is available through gee (Carey, Lumley, and Ripley 2012) and geepack (Halekoh,
Højsgaard, and Yan 2006, and references therein). However, all of these (semi)parametric
procedures are based on specific model assumptions, e.g., existence of an expectation or ho-
mogeneous variances. In practice, such conditions can rarely be verified, and if observed
measurements do not reflect the imposed conditions, e.g., in case of skewed distributions,
outliers, or small sample sizes, parametric statistical procedures may result in unreliable or
even false conclusions.

As an alternative, we can employ nonparametric rank-based methods that offer a flexible and
robust framework for the analysis of a variety of longitudinal studies. In particular, in contrast
to parametric procedures for factorial designs, the rank-based methodology is not restricted
to data on a continuous scale and enables to analyze ordered categorical, dichotomous, and
heavily skewed data in a systematic way (Konietschke, Bathke, Hothorn, and Brunner 2010).
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Moreover, such nonparametric methods are robust to outliers and exhibit competitive perfor-
mance for small sample sizes (Brunner, Domhof, and Langer 2002, Section 1.1, pp. 2). Note
that, as discussed by Brunner et al. (2002), Robson (2002), Lehmann (2009), and Romano
(2009), and references therein, if the assumptions of a parametric method are satisfied, the
parametric procedure typically yields a higher power efficiency than its nonparametric coun-
terpart. However, if these assumptions are not met or impossible to verify, the conclusions
from the parametric method could be unreliable or even false. In such situations, more broadly
applicable nonparametric approaches are preferred. Brunner and Puri (2001) and Brunner
et al. (2002) provide a detailed overview of purely rank-based nonparametric methods for
longitudinal data in factorial experiments, including descriptive point estimators of relative
treatment effects (RTEs), confidence intervals, and test procedures. The hypotheses of “no
treatment effect”, “no time effect”, and “no interaction between treatment and time” can be
tested with nonparametric procedures for the analysis of data from factorial designs. Hereby,
the hypotheses are not formulated in terms of expectations of treatment effects, but rather in
terms of their distribution functions.

The working group from the Department of Medical Statistics, University of Göttingen, pro-
vides a SAS/IML macro library for nonparametric analyses of factorial longitudinal data. For
each of different factorial designs, interactive matrix language (IML) code is implemented to
test hypotheses formulated above and to compute confidence intervals. Given a high demand
in publicly available software for robust longitudinal data analysis (Erceg-Hurn and Miro-
sevich 2008), we develop an R version of this SAS/IML macro library, i.e., a user friendly
package nparLD that is freely available from the Comprehensive R Archive Network at
http://CRAN.R-project.org/package=nparLD and offers nonparametric methodology for
the most frequently arising factorial designs. The package nparLD is the first comprehensive
R package that supports nonparametric methods in higher-way layouts. The name nparLD is
interpreted as follows: “npar” stands for “nonparametric” while “LD” stands for “longitudinal
data”. All the implemented functions are accompanied by detailed help files and numerous
examples. The goal of this paper is to introduce the developed nonparametric procedures in
nparLD to a wide audience of statisticians and practitioners dealing with longitudinal studies.

The paper is organized as follows. In Section 2, we provide a brief overview of the nonpara-
metric marginal model and commonly used factorial designs. In Section 3, we discuss the
interpretation of results along with a review of relative treatment effects and their relation-
ship to Wald-type statistics and analysis of variance (ANOVA)-type test statistics which are
denoted by WTS and ATS, respectively, using case studies from dentistry, medicine, and biol-
ogy. In Section 4, three different factorial longitudinal experiments are statistically evaluated
with the new R package nparLD. Section 5 contains some conclusions and an outlook to future
work.

2. Nonparametric factorial designs and hypotheses

We describe the idea of the nonparametric marginal model and its connection to different
types of commonly arising factorial designs for longitudinal data. To classify common factorial
designs, we introduce a notational system for each design depending on the number of factors.
The factor which stratifies samples in independent groups, is called a whole-plot factor; while

http://CRAN.R-project.org/package=nparLD
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Data Marginal distributions
Time (Factor T ) Time

Subjects s = 1 · · · s = t s = 1 · · · s = t

k = 1 X11 · · · X1t F1 · · · Ft
...

...
...

k = n Xn1 · · · Xnt F1 · · · Ft

Table 1: The LD-F1 design and the corresponding marginal distributions.

the factor, stratifying repeated measurements, is called a sub-plot factor1. For example, when
male and female subjects are observed at three time points, the factor sex is the whole-plot
factor and the factor time is the sub-plot factor. Each design is denoted by Fx-LD-Fy, where
x and y are the number of whole-plot and sub-plot factors, respectively, while “LD” stands
for “longitudinal data”. If only one group of homogeneous subjects is being considered, then
such a design is denoted by LD-Fy instead. Examples of LD-F1, F1-LD-F1, and F2-LD-F1
designs are studied in Section 4. For more details and other common designs, we refer to
Brunner et al. (2002, pp. 25 ff.).

2.1. LD-F1 design

We consider an experimental design consisting of k = 1, . . . , n experimental units (subjects).
Each subject is observed repeatedly t times. The data from subject k are collected in the
vector

Xk = (Xk1, . . . , Xkt)
>, k = 1, . . . , n, (1)

with marginal distributions

X1s, . . . , Xns ∼ Fs, s = 1, . . . , t.

Here, Fs denotes the marginal cumulative distribution function from sample s. The total
number of observations is N = n · t. The data structure of such a trial is displayed in Table 1.

The hypothesis of “no time effect” is expressed in terms of the marginal distribution functions
as

HF
0 (T ) : F1 = . . . = Ft

and was introduced by Akritas and Arnold (1994).

As an illustration of the LD-F1 design, we may consider the psychiatric clinical trial by
Bandelow et al. (1998) where the clinical global impression score (CGI) of 16 patients suffering
from panic disorder was recorded during eight weeks under a treatment. Note that, since the
response is measured on an ordered categorical scale, parametric and semiparametric mean-
based approaches are inappropriate and may lead to unreliable conclusions.

In many factorial experiments, more than one homogeneous group of subjects is observed
at multiple time points. Hence, in such cases, we get the Fx-LD-F1 design, where x is the
number of whole-plot factors (e.g., treatments). The most common situation is the F1-LD-F1
design which is examined in Section 2.2.

1Here, whole-plot and sub-plot factors are referred to as between- and within-subjects factors, respectively.
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Data Marginal distributions
Time (Factor T ) Time

Factor A Subjects s = 1 · · · s = t s = 1 · · · s = t

k = 1 X111 · · · X11t F11 · · · F1t

i = 1
...

...
...

k = n1 X1n11 · · · X1n1t F11 · · · F1t
...

...
...

...

k = 1 Xa11 · · · Xa1t Fa1 · · · Fat

i = a
...

...
...

k = na Xana1 · · · Xanat Fa1 · · · Fat

Table 2: The F1-LD-F1 design and the corresponding marginal distributions.

2.2. F1-LD-F1 design

Suppose that a different groups of homogeneous subjects are observed repeatedly at t different
time points and each group receives a randomly assigned treatment (treatment 1, treatment
2,. . ., treatment a). The statistical model underlying this design can be described by inde-
pendent random vectors Xik = (Xik1, . . . , Xikt)

>, k = 1, . . . , ni, with marginal distributions
Xiks ∼ Fis, i = 1, . . . , a; s = 1, . . . , t. The total number of observations is N = n · t, where
n =

∑a
i=1 ni. The data structure of this F1-LD-F1 trial is displayed in Table 2.

The hypotheses of no main effect A, no main time effect T , and no interaction (AT ) between
A and T , are expressed in terms of the marginal distribution functions:

HF
0 (A) : F 1· = . . . = F a·

HF
0 (T ) : F .1 = . . . = F .t

HF
0 (AT ) : Fis = F i· − F .s + F ··, i = 1, . . . , a; s = 1, . . . , t,

where F i· = 1
t

∑t
s=1 Fis denotes the mean distribution over time for treatment group i, i =

1, . . . , a, F .s = 1
a

∑a
i=1 Fis denotes the mean distribution over the treatment groups for time

point s, s = 1, . . . , t, and F ·· =
1
at

∑a
i=1

∑t
s=1 Fis denotes the overall mean distribution. Note

that the hypotheses for the classical (parametric) linear longitudinal models are expressed in
the same way with the expectations µis. For a discussion of the formulation of hypotheses by
distribution functions, we refer to Akritas and Arnold (1994).

As an example, we may consider the study on efficacy of irrigation techniques in removing de-
bris from irregularities in root canals with different apical sizes by Rödig, Sedghi, Konietschke,
Lange, Ziebolz, and Hülsmann (2010). In this study, thirty extracted human pre-molars were
randomly divided into three groups (each of size n = 10) followed by root canal preparation.
In all three groups, three different irrigation procedures were performed and the amount of
remaining debris was measured on an ordinal scale. This trial constitutes an F1-LD-F1 de-
sign. A more sophisticated setting may include an additional stratification of the whole-plot
factor, which is illustrated in Section 2.3.

2.3. F2-LD-F1 design

The F2-LD-F1 design is one of the most widely used settings in factorial experiments in spite
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Data Marginal distributions
Time (Factor T ) Time

Factor A Factor B Subjects s = 1 · · · s = t s = 1 · · · s = t

k = 1 X1111 · · · X111t F111 · · · F11t

j = 1
...

...
...

k = n11 X11n111 · · · X11n11t F111 · · · F11t

i = 1
...

...
...

...
k = 1 X1b11 · · · X1b1t F1b1 · · · F1bt

j = b
...

...
...

k = n1b X1bn1b1 · · · X1bn1bt F1b1 · · · F1bt
...

...
...

...
...

k = 1 Xa111 · · · Xa11t Fa11 · · · Fa1t

j = 1
...

...
...

k = na1 Xa1na11 · · · Xa1na1t Fa11 · · · Fa1t

i = a
...

...
...

...
k = 1 Xab11 · · · Xab1t Fab1 · · · Fabt

j = b
...

...
...

k = nab Xabnab1 · · · Xabnabt Fab1 · · · Fabt

Table 3: The F2-LD-F1 design and the corresponding marginal distributions.

of its complexity. Here, a ·b different groups of homogeneous subjects are observed repeatedly
at t different time points. Such a design can be employed, for example, when subjects are first
stratified by their gender (female or male), then in each stratification, subjects are randomly
assigned to different treatments (treatment 1, treatment 2,. . ., treatment a) and recorded
at multiple time points. The statistical model of this trial can be described by independent
random vectors Xijk = (Xijk1, . . . , Xijkt)

>, k = 1, . . . , nij , with marginal distributionsXijks ∼
Fijs, i = 1, . . . , a; j = 1, . . . , b; s = 1, . . . , t. The total number of observations is N = n · t,
where n =

∑a
i=1

∑b
j=1 nij . The data structure of this F2-LD-F1 trial is displayed in Table 3,

and the nonparametric hypotheses can be expressed in the same manner as in the F1-LD-F1
design.

To demonstrate an application of the F2-LD-F1 design, we may consider the shoulder tip pain
study carried out with patients having undergone laparoscopic surgery in the abdomen, de-
scribed by Lumley (1996). In this study, 41 patients were stratified by gender (Factor A), and
in each stratification, the patients were randomly assigned to either the control or treatment
group (Factor B). The pain scores of each patient were recorded at six time points (Factor T )
to evaluate the effect of gender, treatment, and their interactions.

Instead of considering stratifications on the whole-plot factor, we may have stratifications on
the sub-plot factor (time factor). Such designs include LD-F2, F1-LD-F2, and F2-LD-F2,
which are discussed in detail by Brunner et al. (2002, Chapter 2).

In Section 3, we examine rank estimators of the relative treatment effects and test procedures
for the hypotheses discussed above.
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3. Nonparametric effects, estimators, and test procedures

The general model (1)2 does not entail any parameters by which a difference between the dis-
tributions could be described. Therefore, the mean distribution functionH(x) = 1

t

∑t
s=1 Fs(x)

and the distribution functions Fs(x) are used to define a treatment effect as a marginal sum-
mary measure between H and Fs:

ps =

∫
HdFs = P (Z < X1s) + 0.5P (Z = X1s), s = 1, . . . , t, (2)

where Z ∼ H denotes a randomly chosen observation from the whole data set independently
from X1s. These so-called relative marginal effects3 ps can be regarded as the probability that
a randomly chosen observation Xsk at time point s tends to result in a larger value than Z.
The interpretation of ps is rather simple; i.e., X1j tends to result in

• a smaller value than X2s, if pj < ps,

• a larger value than X2s, if pj > ps,

• neither a smaller nor larger value than X2s, if pj = ps.

A graphical illustration of the tendency is given in Figure 1, where both the distribution
functions Fi(x), Fj(x), and the mean distribution function H(x), are displayed.

Figure 1 suggests that, for an easier interpretation of the effect size measure ps, it is sufficient
to consider only the relation between pj and ps referring to <,=, and >, respectively. For a
detailed discussion of ps, we refer to Brunner et al. (2002, Section 3.1, pp. 35 ff).

The unknown quantities ps can be estimated with overall ranks of the data by replacing
all the observations X11, . . . , Xns with their overall ranks R11, . . . , Rns. Further, let R·s =

2To derive the results for factorial settings, sub-indices for the random vectors Xk in the model (1) are
necessary.

3Here, we use the term “relative marginal effect” as a synonym for “relative treatment effect”.

x

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

H(x)

Fj(x) Fs(x)

(a) pj < ps
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(b) pj > ps

Figure 1: Stochastic tendency: (a) pj < ps, (b) pj > ps.
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1
n

∑n
k=1Rsk denote the mean of the ranks in the marginal sample s. Then, an asymptotically

unbiased and consistent estimator of ps is given by

p̂s =
1

N

(
R.s −

1

2

)
, s = 1, . . . , t,

where N = n · t. To test the hypothesis HF
0 : F1 = . . . = Ft, let C denote a suitable

contrast matrix, F = (F1, . . . , Ft)
> the vector of distributions, p = (p1, . . . , pt)

> the vector of
the relative marginal effects, and p̂ the vector of corresponding estimators. Further, let V̂n

denote the empirical covariance matrix of the ranks, noting that V̂n is a consistent estimator.
Then, under the hypothesis HF

0 : CF = 0, the Wald-type statistic (WTS)

Qn(C) = np̂>C>[CV̂nC
>]+Cp̂ (3)

has, asymptotically, a χ2
f distribution with f = rank(C) degrees of freedom under some mild

regularity conditions (Akritas, Arnold, and Brunner 1997). Here, M+ denotes the Moore-
Penrose inverse of a matrix M.

It is well known that the convergence of the distribution of Qn to its limiting χ2
f distribution

is relatively slow (Akritas et al. 1997; Akritas and Brunner 1997; Brunner, Munzel, and Puri
1999; Brunner et al. 2002). In general, the asymptotic approximation deteriorates with an
increase of a number of factor levels as well as for smaller sample sizes. Hence, we also present
a small sample modification of this test statistic that maintains an accurate size of the test
even for small sample sizes (n ≥ 7).

Let T = C>[CC>]−C denote the projection matrix obtained from C where M− denotes a
generalized inverse of M. Then, the distribution of the ANOVA-type statistic (ATS)

An(C) =
n

tr(TV̂)
p̂>Tp̂ (4)

can be approximated by the F
(f̂ ,∞)

distribution, where f̂ = [tr(TV̂)]2/tr(TV̂TV̂) (Brunner,

Dette, and Munk 1997; Brunner et al. 1999; Brunner and Puri 2001).

Note that, depending on additional stratification or experimental groups, an appropriate
partition into sub-indices is necessary. For example, if the experimental units are divided into
i = 1, . . . , a groups with j = 1, . . . , ni units in the i-th group, then Xijs denotes the random
variable for the jth unit in the ith group at time point s.

For the main effects of the whole-plot factors and interactions involving only the whole-plot
factors, the distribution of ATS can be further approximated by applying a finite denominator
degrees of freedom f̂0, i.e., by the F

(f̂ ,f̂0)
distribution, taking advantage of the diagonal covari-

ance matrix resulting from independence of subjects 4. (For further details on f̂0, see Brunner
et al. (1997) and Brunner et al. (2002, Section 8.3.3, pp. 134 ff).) Real-life applications of the
so-called modified ATS can be found in Sections 4.2 and 4.3.

Note that, the adjusted degrees of freedom used for the approximation of the distribution
of ATS may appear to be quite different from the conventional degrees of freedom employed
in the traditional repeated measures ANOVA. However, such an adjustment for degrees of

4Bathke, Schabenberger, Tobias, and Madden (2009) mention that ATS becomes too conservative for testing
an effect with a finite denominator degrees of freedom when a sub-plot factor is involved. Therefore, the use
of F

(f̂ ,∞)
instead of F

(f̂ ,f̂0)
is recommended for ATS involving sub-plot factors.



Journal of Statistical Software 9

freedom can be viewed as a generalization of the conventional degrees of freedom in the het-
eroscedastic case. For instance, for the repeated measures data in the LD-F1 design, assuming
sphericity, e.g., compound symmetry structure, of the covariance matrix, approximate degrees
of freedom for the distribution of ATS, which is equivalent to treatment sum of squares di-
vided by residual sum of squares, are equal to (f̂ , f̂0) = (t − 1, (n − 1) · (t − 1)) (Bathke
et al. 2009). However, in general, ranked observations are heteroscedastic even if the original
observations are homoscedastic (Akritas 1990), and thus it is reasonable to assume an arbi-
trary (unstructured) covariance matrix (Brunner et al. 2002, Section 2.2, pp. 33)5. Therefore,
for such covariance matrix structure, an appropriate adjustment for degrees of freedom is
necessary to draw a valid inference using ATS.

4. Examples

In this section, we provide examples that illustrate how different factorial designs can be
analyzed using the package nparLD. Along with the individual functions for specific designs
(ld.f1(), ld.f2(), f1.ld.f1(), f2.ld.f1() and f1.ld.f2()), the package provides a wrap-
per function nparLD() that automatically identifies the most suitable design through the for-
mula provided by a user. The wrapper function nparLD() creates a class object called nparLD

from which users may obtain short and extended summaries as well as a plot of the results
using print(), summary(), and plot() for the nparLD object, respectively. In particular, the
print() function displays basic results about the model formula and results from the WTS
and ATS; the summary() function shows the relative treatment effects in detail additionally
to the output provided by print(). Finally, plot() creates plots of the relative treatment
effects and their corresponding confidence intervals at different time points.

4.1. Study from dentistry

Our first case study is related to a growth curve problem where the LD-F1 design may be
employed. Potthoff and Roy (1964) assess distances (in millimeters) between the center of the
pituitary and the pterygomaxillary fissure of 16 boys and 11 girls on four different occasions,
i.e., at the ages 8, 10, 12, and 14, and conclude that two separate growth curves are required
for boys and girls. In this example, we focus on the homogeneous group of the 16 boys. (The
data for boys are available in dental. A complete dataset for both boys and girls is available
in Orthodont in the package nlme.) In particular, we are interested in testing the hypothesis
HF

0 (T ) : F8 = F10 = F12 = F14 of no time effect, where Fs denotes the marginal distribution
of the distances at age s. We start our analysis by examining the box plot shedding light
on the distribution of the data for each age group, and by observing the plot of the relative
treatment effect for each age group along with the pointwise 95% confidence intervals. The
plots are generated using the following code:

R> library("nparLD")

R> data("dental")

R> boxplot(resp ~ time, data = dental, lwd = 2, xlab = "time",

+ font.lab = 2, cex.lab = 2, main = "Box Plots")

5When data are assumed to have an equal correlation structure, Schörgendorfer, Madden, and Bathke
(2011) suggest to utilize a heterogeneous compound symmetry (CSH) structure for ranked data, in order to
reduce the number of estimated parameters and to obtain less conservative results using ATS.
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Figure 2: Box plots and 95% confidence intervals for ps in the dental study.

R> ex.f1np <- nparLD(resp ~ time, data = dental, subject = "subject",

+ description = FALSE)

R> plot(ex.f1np)

LD F1 Model

-----------------------

Check that the order of the time level is correct.

Time level: 8 10 12 14

If the order is not correct, specify the correct order in time.order.

Remark. Note that, as a precautionary check, the function nparLD() automatically pro-
vides information about the selected model as well as the order of levels in the sub-plot
factor. The user may choose to hide this information by setting order.warning = FALSE.
Moreover, more detailed information about the data and abbreviations used in the output
become available by setting description = TRUE.

The box plots at the left panel of Figure 2 show the minimum, first quartile, median, third
quartile, and the maximum distance measured for each time point separately. They indicate
that the measured distances have a somewhat skewed distribution (especially as the age goes
up). The increase in median gives rise to a time effect. The 95% confidence intervals at the
right panel of Figure 2 present the lower bound, point estimate, and the upper bound for
each time point separately using plot(ex.f1np), where ex.f1np is an nparLD class object.
The point estimates increase, meaning the older the boys, the larger the observed distances
between pituitary and the pterygomaxillary fissure. The exact values for the bounds and
point estimates are obtainable by using the code plot(ex.f1np)$Conf.Int. The results can
be explored further by using summary(ex.f1np).
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Remark. Note that, a further insight about dependence of the measurements per subject
can be readily obtained by using the groupedData() function from the R package nlme
(Pinheiro et al. 2012) that produces subject-specific line plots in factorial experiments.

R> summary(ex.f1np)

Model:

LD F1 Model

Call:

resp ~ time

Relative Treatment Effect (RTE):

RankMeans Nobs RTE

time8 19.06250 16 0.2900391

time10 24.31250 16 0.3720703

time12 37.03125 16 0.5708008

time14 49.59375 16 0.7670898

Wald-Type Statistc (WTS):

Statistic df p-value

time 94.47718 3 2.391503e-20

ANOVA-Type Statistc (ATS):

Statistic df p-value

time 31.48774 2.700785 1.437729e-18

For each age group s, the rank mean of the overall ranks (RankMeans), the number of
observations (Nobs) and the point estimate p̂s of the relative treatment effect (RTE) are
displayed. The obtained result of 0.29 for the age group 8 (time8) can be interpreted, for
example, as follows: a randomly chosen observation from the whole dataset results in a
smaller value than a randomly chosen observation from the age group 8 with an estimated
probability of 29%. Further, since p̂8 < p̂10 < p̂12 < p̂14, the observations from the age group
8 tend to result in smaller values than those from the age group 10 which, in return, also tends
to result in smaller values than the measurements from the age groups 12 and 14, respectively.
Thus, an increase in the effect seems to indicate the increase in the measured distances.

To test the hypothesis HF
0 (T ) of no time effect, WTS in (3) and ATS in (4) can be applied,

which are also displayed in the output of summary(ex.f1np). The column df for ATS is the
numerator degrees of freedom of the F distribution as the denominator degrees of freedom is
set to infinity. Both WTS and ATS yield highly statistically significant p values of 2.392×10−20

and 1.438 × 10−18, respectively, indicating that the null hypothesis of no time effect is to be
rejected. To investigate the question about which of the four distribution functions differ, we
can apply multiple comparisons with the Bonferroni adjustment as described below:

R> m810 <- which(((dental$time == 8) + (dental$time == 10)) == 1)

R> m812 <- which(((dental$time == 8) + (dental$time == 12)) == 1)

R> m814 <- which(((dental$time == 8) + (dental$time == 14)) == 1)
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Comparison Hypothesis p value Adjusted p value

Time 8 vs. Time 10 HF
0 : F8 = F10 0.2204 0.6612

Time 8 vs. Time 12 HF
0 : F8 = F12 < 0.0001 < 0.0001

Time 8 vs. Time 14 HF
0 : F8 = F14 < 0.0001 < 0.0001

Table 4: Multiple comparisons against the control in the dental study with Bonferroni ad-
justment.

R> ex.f1np810 <- nparLD(resp ~ time, data = dental[m810,],

+ subject = "subject", description = FALSE)

R> ex.f1np812 <- nparLD(resp ~ time, data = dental[m812,],

+ subject = "subject", description = FALSE)

R> ex.f1np814 <- nparLD(resp ~ time, data = dental[m814,],

+ subject = "subject", description = FALSE)

R> summary(ex.f1np810)

R> summary(ex.f1np812)

R> summary(ex.f1np814)

The results are presented in Table 4, where, for brevity, only the p values obtained from ATS
are reported.

In Table 4, the Bonferroni-adjusted p value of 0.6612, obtained for testing the age group 8
against the age group 10 (Time 8 vs. Time 10), is calculated by multiplying the original p value
of 0.2204 by 3. Similar calculations are also performed for the other pairwise comparisons.
From the results, we can conclude that the distance between the center of the pituitary and
the pterygomaxillary fissure significantly increases over time by observing the p values of
< 0.0001 from both WTS and ATS. In addition, we notice significant differences between the
distributions of the measured distances for the age groups 8 and 12, and age groups 8 and
14, respectively. To compare the obtained results and conclusions with parametric methods,
we further reanalyze the data with the lme() function in the R package nlme (Pinheiro et al.
2012) as described below:

R> library("nlme")

R> ex.f1lme <- lme(resp ~ time, data = dental, random = ~ 1 | subject)

R> summary(ex.f1lme)

We obtain an overall significant time effect (p value < 0.0001). Regarding the multiple
comparisons against age group 8, using the code

R> ex.f1lme810 <- lme(resp ~ time, data = dental[m810,],

+ random = ~ 1 | subject)

R> ex.f1lme812 <- lme(resp ~ time, data = dental[m810,],

+ random = ~ 1 | subject)

R> ex.f1lme814 <- lme(resp ~ time, data = dental[m810,],

+ random = ~ 1 | subject)

R> summary(ex.f1lme810)

R> summary(ex.f1lme812)

R> summary(ex.f1lme814)
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and multiplying the original p value by 3, we obtain the adjusted p value of 0.4395 for the
comparison“Time 8 vs. Time 10”, as well as the p values of 0.0009 and < 0.0001 for“Time 8 vs.
Time 12” and “Time 8 vs. Time 14”, respectively. Thus, both parametric and nonparametric
procedures result in similar conclusions in this example, which is not surprising since the data
exhibit only a minor degree of skewness as indicated by the box plots (see the left panel of
Figure 2).

4.2. Rat growth study

Our next example deals with the study of body weights of 27 rats (Box 1950; Wolfinger 1996).
Each rat was randomly assigned to one of three treatments (control, thyroxin, or thiouracil)
with sample sizes 10, 7, and 10, respectively. Thyroxin is a thyroid hormone typically applied
in hypothyroidism, and thiouracil is a drug that suppresses generation of thyroxin. The first
group was kept as a control while the second and third group had thyroxin and thiouracil
added to their drinking water, respectively. The weight (in grams) of each rat was recorded
at baseline and subsequent four weeks. Thus, this experiment has the F1-LD-F1 design
structure with treatment being the whole-plot factor. As is pointed out by Wolfinger (1996),
the body weights of the 27 rats show a “fanning effect”, indicating an increase in variability
over time. Although a standard technique of the logarithmic transformation makes the data
more homoscedastic, there is a concern that such a nonlinear transformation distorts the time
and treatment effects. Therefore, we analyze the data using our nonparametric methods.
Similar to the dental study, we first examine the box plots of the data and the plot of the
relative treatment effect estimates and their corresponding confidence intervals.

R> library("nparLD")

R> data("rat")

R> boxplot(resp ~ group * time, data = rat, names = FALSE,

+ col = c("grey", 2, 3), lwd = 2)

R> axis(1, at = 2, labels = "Time 0", font = 2, cex = 2)

R> axis(1, at = 5, labels = "Time 1", font = 2,cex = 2)

R> axis(1, at = 8, labels = "Time 2", font = 2,cex = 2)

R> axis(1, at = 11, labels = "Time 3", font = 2,cex = 2)

R> axis(1, at = 14, labels = "Time 4", font = 2,cex = 2)

R> legend(2, 190, c("Control", "Thiour", "Thyrox"), lwd = c(3, 3, 3),

+ col = c("grey", 2, 3), cex = 2)

R> ex.f1f1np <- nparLD(resp ~ time * group, data = rat,

+ subject = "subject", description = FALSE)

R> plot(ex.f1f1np)

F1 LD F1 Model

-----------------------

Check that the order of the time and group levels are correct.

Time level: 0 1 2 3 4

Group level: control thyrox thiour

If the order is not correct, specify the correct order in time.order or

group.order.



14 nparLD: Nonparametric Longitudinal Data Analysis in R

●

50
10

0
15

0

Time 0 Time 1 Time 2 Time 3 Time 4

Control
Thiour
Thyrox

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

−
−

−
−

−
−

−
−

−−

−
−

−−
−
− −

− −
−

−
−

−
−

−
−

−
− −

−

0 1 2 3 4

Relative Effects

●

●

●

group control
group thiour
group thyrox

Figure 3: Box plots and 95% confidence intervals for pis in the rat growth study. Thiouracil
and thyroxin are denoted by thiour and thyrox, respectively.

Figure 3 shows box plots (the left panel) and 95% confidence intervals (the right panel) for
the relative treatment effects in the rat growth study for the three treatments and each time
point separately. The box plots indicate that the data follow a skewed distribution. The 95%
confidence intervals further imply that the weights increase over time in all treatment groups.

The main question of this experiment is whether the time profiles of the three experiments are
parallel, i.e., if there exists a statistical interaction between treatment and time. Absence of
such an interaction would be indicated by parallel time profiles. Regarding the box plots and
the 95% confidence intervals in Figure 3, the time profile from the thyroxin group does not
seem to be parallel to both the control and the thiouracil group time profiles. A secondary
question of interest would be to know whether the treatments affect the weight gains. The
nparLD() and summary() functions can be applied to test the hypothesis of no interaction
between treatment and time formulated in terms of the distribution functions, which help us
answer questions raised above.

R> summary(ex.f1f1np)

For the F1-LD-F1, F1-LD-F2, and F2-LD-F1 designs, in addition to WTS and ATS, the
modified ATS using the Box (1954) approximation for the whole-plot factors and their in-
teraction (Brunner et al. 1997) are available. The modified ATS has a finite denominator
degrees of freedom (denoted by f̂0 as discussed in Section 3) as opposed to ATS which has
the denominator degrees of freedom equal to infinity, in order to improve approximation of
the distribution under the hypothesis of “no treatment effect” and “no interaction between
the whole-plot factors”. The output for each test is presented below:

Model:

F1 LD F1 Model
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Call:

resp ~ time * group

Relative Treatment Effect (RTE):

RankMeans Nobs RTE

groupcontrol 72.92000 50 0.53644444

groupthyrox 72.67143 35 0.53460317

groupthiour 59.81000 50 0.43933333

time0 14.20714 27 0.10153439

time1 41.55714 27 0.30412698

time2 72.57857 27 0.53391534

time3 97.68810 27 0.71991182

time4 116.30476 27 0.85781305

groupcontrol:time0 12.75000 10 0.09074074

groupcontrol:time1 43.30000 10 0.31703704

groupcontrol:time2 78.25000 10 0.57592593

groupcontrol:time3 105.00000 10 0.77407407

groupcontrol:time4 125.30000 10 0.92444444

groupthyrox:time0 15.57143 7 0.11164021

groupthyrox:time1 40.07143 7 0.29312169

groupthyrox:time2 75.78571 7 0.55767196

groupthyrox:time3 107.21429 7 0.79047619

groupthyrox:time4 124.71429 7 0.92010582

groupthiour:time0 14.30000 10 0.10222222

groupthiour:time1 41.30000 10 0.30222222

groupthiour:time2 63.70000 10 0.46814815

groupthiour:time3 80.85000 10 0.59518519

groupthiour:time4 98.90000 10 0.72888889

Wald-Type Statistc (WTS):

Statistic df p-value

group 12.52657 2 1.904977e-03

time 3619.03739 4 0.000000e+00

group:time 70.34311 8 4.199050e-12

ANOVA-Type Statistc (ATS):

Statistic df p-value

group 5.286582 1.922792 5.654723e-03

time 1008.512138 1.990411 0.000000e+00

group:time 11.093940 3.516933 3.616929e-08

Modified ANOVA-Type Statistic for the Whole-Plot Factors:

Statistic df1 df2 p-value

group 5.286582 1.922792 19.23468 0.01563658

The summary() function automatically creates output tables for the hypotheses of “no treat-
ment effect”, “no time effect”, and “no interaction” using both WTS in (3) and ATS in (4).



16 nparLD: Nonparametric Longitudinal Data Analysis in R

In this study, the hypothesis of no interaction, i.e., parallel time profiles, is rejected at the
1% level using both WTS and ATS with the p values of 4.199 × 10−12 and 3.617 × 10−8, re-
spectively. To investigate the question of whether the hypothesis of no interaction is rejected
at each time point, multiple comparisons can be performed by using the nparLD() function
repeatedly with the baseline and week 1 values, followed by comparison of the baseline, week
1, and week 2 values, etc. Similarly as in the dental study, the Bonferroni adjustment can be
applied to control the Type I error.

4.3. Respiratory disorder study

Our last example concerns about a clinical trial for patients with a respiratory disorder (Koch,
Carr, Amara, Stokes, and Uryniak 1990). A total of 111 patients from two centers were ran-
domly assigned to two treatments (active or placebo). The status of each patient was recorded
on an ordinal scale (0 = terrible, 1 = poor, 2 = fair, 3 = good, 4 = excellent) at baseline and
subsequent four visits. An advantage of the rank-based nonparametric methods is that they
can handle ordinal data in the same manner without requiring any further transformation.
We analyze the effects of treatment, center, visit, and their interactions similar to the study
conducted by Koch et al. (1990, pp. 458) using the ordinal scale from 0 to 4. The main ques-
tion of this trial is whether or not the active treatment group (A) reveals a significantly better
clinical record than the placebo group (P). Since there are two whole-plot factors (treatment
and center), an appropriate factorial design to consider is F2-LD-F1. We start our analysis
by observing the relative treatment effect and its corresponding confidence interval at each
time point for the two centers, using the following code:

R> library("nparLD")

R> data("respiration")

R> par(mfrow = c(1, 2))

R> center <- respiration[,"center"]

R> boxplot(resp ~ treatment * time, data = respiration[which(center == 1),],

+ names = FALSE, ylim = c(-1, 5), col = c("grey", 2), lwd = 2,

+ main = "Center 1")

R> axis(1, at = 2, labels = "Time 1", font = 2, cex = 2)

R> axis(1, at = 5, labels = "Time 2", font = 2, cex = 2)

R> axis(1, at = 8, labels = "Time 3", font = 2, cex = 2)

R> axis(1, at = 11, labels = "Time 4", font = 2, cex = 2)

R> axis(1, at = 14, labels = "Time 5", font = 2, cex = 2)

R> legend(2, 5, c("Treat A", "Treat P"), lwd = c(2, 2), col = c("grey", 2),

+ cex = 1.2)

R> boxplot(resp ~ treatment * time, data = respiration[which(center == 2),],

+ names = FALSE, ylim = c(-1, 5), col = c("grey", 2), lwd = 2,

+ main = "Center 2")

R> axis(1, at = 2, labels = "Time 1", font = 2, cex = 2)

R> axis(1, at = 5, labels = "Time 2", font = 2, cex = 2)

R> axis(1, at = 8, labels = "Time 3", font = 2, cex = 2)

R> axis(1, at = 11, labels = "Time 4", font = 2, cex = 2)

R> axis(1, at = 14, labels = "Time 5", font = 2, cex = 2)

R> legend(2, 5, c("Treat A", "Treat P"), lwd = c(2, 2), col = c("grey", 2),
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+ cex = 1.2)

R> ex.f2f1np <- nparLD(resp ~ time * center * treatment, data = respiration,

+ subject = "patient", description = FALSE)

R> plot(ex.f2f1np)

F2 LD F1 Model

-----------------------

Check that the order of the time, group1, and group2 levels are correct.

Time level: 1 2 3 4 5

Group1 level: 1 2

Group2 level: A P

If the order is not correct, specify the correct order in time.order,

group1.order, or group2.order.

As the box plots suggest (see the upper panel of Figure 4), scores under the active treatment
are larger than under placebo, and that there exists a difference in scores between the two
centers. The lower panel of Figure 4 shows the 95% confidence intervals for the relative
treatment effects pijs. We observe that, in both centers, the effects for the placebo group
seem to remain constant over time, while the effects for the active treatment group increase.
In Center 1, the clinical record seems to decrease at the last visit, which cannot be observed
in Center 2. The time effect, treatment effect, center effect, and their interactions can be
analyzed using the print() function.

R> print(ex.f2f1np)

Model:

F2 LD F1 Model

Call:

resp ~ time * center * treatment

Wald-Type Statistc (WTS):

Statistic df p-value

center 10.2569587 1 0.001361700

treatment 9.3451482 1 0.002235766

time 17.4568433 4 0.001575205

center:treatment 1.2365618 1 0.266134717

center:time 8.7200395 4 0.068491057

treatment:time 17.5434583 4 0.001515158

center:treatment:time 0.2898785 4 0.990458142

ANOVA-Type Statistc (ATS):

Statistic df p-value

center 10.25695866 1.000000 0.0013616998

treatment 9.34514819 1.000000 0.0022357657

time 4.43527016 3.320559 0.0028528788

center:treatment 1.23656176 1.000000 0.2661347165
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Figure 4: Box plot and 95% confidence intervals for pijs in the respiratory disorder study.
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center:time 1.60699585 3.320559 0.1802120504

treatment:time 5.46185031 3.320559 0.0005867392

center:treatment:time 0.05915234 3.320559 0.9866660535

Modified ANOVA-Type Statistic for the Whole-Plot Factors:

Statistic df1 df2 p-value

center 10.256959 1 104.9255 0.001803091

treatment 9.345148 1 104.9255 0.002836284

center:treatment 1.236562 1 104.9255 0.268676117

The print() function automatically prints out tables of results for all main effects and in-
teractions in the F2-LD-F1 design using WTS, ATS, and a modified ATS for the whole-plot
factors. Both WTS and ATS indicate a significant interaction between treatment and time
at the 5% level, with the p value of 0.0006 using ATS. This confirms the interpretation of
the confidence intervals regarding the time profiles in Figure 4. Moreover, both a significant
treatment (p value of 0.0028) and center effect (p value of 0.0018) are observed from the
modified ATS, where the significant center effect should be further investigated.

Now, let us compare the obtained results with the conclusions provided by the parametric
methods. In particular, we apply lme() from nlme to our respiratory data below:

R> library("nlme")

R> ex.f2f1lme <- lme(resp ~ time * treatment * center, data = respiration,

+ random = ~ 1 | patient)

R> summary(ex.f2f1lme)

Linear mixed-effects model fit by REML

Data: respiration

AIC BIC logLik

1585.142 1628.187 -782.5712

Random effects:

Formula: ~1 | patient

(Intercept) Residual

StdDev: 0.8673626 0.8073981

Fixed effects: resp ~ time * treatment * center

Value Std.Error DF t-value p-value

(Intercept) 1.3148148 0.5216425 440 2.5205287 0.0121

time 0.1740741 0.1098730 440 1.5843212 0.1138

treatmentP 0.3729931 0.7261302 107 0.5136724 0.6085

center 0.8111111 0.3299157 107 2.4585408 0.0156

time:treatmentP -0.1399608 0.1529440 440 -0.9151113 0.3606

time:center -0.0407407 0.0694898 440 -0.5862840 0.5580

treatmentP:center -0.2782293 0.4604257 107 -0.6042872 0.5469

time:treatmentP:center -0.0209588 0.0969789 440 -0.2161167 0.8290

Note that, the parametric method of lme() yields completely different conclusions compared
to the nonparametric procedure of nparLD(). In particular, the results from lme() imply that
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time is an insignificant variable, i.e., the obtained p value is 0.1138, while nparLD() provides
a highly statistically significant p value of 0.0029, concluding that the scores do not evolve in
time. Similarly, treatment is declared as an insignificant factor by lme(), with the p value
of 0.6085; in contrast, nparLD() concludes that there exists a significant treatment effect,
with the resulting p value of 0.0022. Such contradictory results are not surprising since the
respiratory data are observed on an ordered categorical scale and, hence, parametric methods
are inapplicable. Thus, following the output of nparLD(), we are inclined to conclude that
scores are dynamic in treatment and time, and that interaction between treatment and time
is significant. These results are also confirmed by the graphical diagnostics provided by the
box plots of the respiratory data (see the upper panel of Figure 4).

5. Conclusion and future work

The R package nparLD implements a broad range of rank-based nonparametric methods for
analyzing longitudinal data in factorial experiments. A notable novel feature of nparLD is that
it accommodates various factorial designs, including higher-way layouts. The users can easily
evaluate the treatment and time effects as well as their interactions via the robust ANOVA-
type statistic (ATS), which accurately controls the Type I error rate even for small sample
sizes, and the classical Wald-type statistic (WTS). We plan to update the package nparLD
on a regular basis with new nonparametric statistical procedures available for longitudinal
data. In particular, we aim to implement the multiple contrast testing procedures discussed
by Konietschke et al. (2010). In addition, we plan to undertake a major update of the code
and release nparLD in the S4 style.
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