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Abstract

The global imbalance (GI) measure is a way for checking balance of baseline covari-
ates that confound efforts to draw valid conclusions about treatment effects on outcomes
of interest. In addition, GI is tested by means of a multivariate test. The GI measure
and its test overcome some limitations of the common way for assessing the presence of
imbalance in observed covariates that were discussed in D’Attoma and Camillo (2011).
A user written SAS macro called %GI, to simultaneously measure and test global imbal-
ance of baseline covariates is described. Furthermore, %GI also assesses global imbalance
by subgroups obtained through several matching or classification methods (e.g., cluster
analysis, propensity score subclassification, Rosenbaum and Rubin 1984), no matter how
many groups are examined. %GI works with mixed categorical, ordinal and continuous
covariates. Continuous baseline covariates need to be split into categories. It also works in
the multi-treatment case. The use of the %GI macro will be illustrated using two artificial
examples.
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1. Introduction

Assessing balance of non-equivalent groups is fundamental before estimating effects of treat-
ments on outcomes of interest, especially in the presence of observational data where the rule
that governs treatment assignment is generally unknown, and either units are self-selected
into treatments or they are non randomly selected to receive a treatment. Various methods
are used to balance groups with unequal distribution of covariates – i.e., matching, cluster
analysis, propensity score (PS) adjustments. The most widely used and applied in various
fields is the PS adjustment (Rosenbaum and Rubin 1983). PS is the conditional probability
that a unit will be assigned to the treatment condition based on a set of observed covariates.
Then, propensity score adjustments (e.g., PS subclassification) are used to balance groups
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with unequal distributions of covariates. Another method is cluster analysis that balances
unequal group distributions by stratifying on clusters based on several covariates (Camillo and
D’Attoma 2010; D’Attoma and Camillo 2011; Peck 2005). Unlike PS, cluster analysis does
not create a single aggregate score, permitting each covariate to maintain its functional form.
In conjunction with the increasing use of methods to balance non-equivalent groups different
criteria for checking balance have been proposed (Rosenbaum and Rubin 1984; Rubin 2001;
Baser 2006), but most of them assess separately balance variable-by-variable. In this paper a
macro that allows to simultaneously measure and test imbalance of a set of baseline covariates
is provided. The macro computes and tests the global imbalance (GI) measure introduced
in D’Attoma and Camillo (2011), mainly based on the concept of between-groups inertia of
a factorial predictor space. According to it, perfect balance occurs when the between-groups
inertia equals zero; whereas, perfect imbalance occurs when the between-groups inertia equals
the total inertia (IT ), which indicates that the observed total variability of the X-space is
completely due to the selection mechanism. Thus, the proposed GI measure in data varies
in [0, IT ]. A SAS macro %GI is described that measures and tests global imbalance on sub-
groups. The macro mainly uses the SAS/IML language. The final summary about balance is
saved in a SAS dataset in the directory specified by the user. This paper after a review of
several tools that address the balance checking problem, briefly introduces the GI measure
and its related test, then describes the macro -its arguments, implementation and the output
dataset it produces- and finally presents two examples demonstrating the use of the macro
for assessing the global imbalance of a set of baseline covariates by subgroups: One for the
binary treatment case and another for the multi-treatment case.

2. Measuring balance: A review

The success of various methods in reducing bias of the estimated effects mainly depends on
the balance criterion adopted. According to Rubin (2001), balance concerns similarity in
covariate distributions across treatment groups. As reported in Ho, Imai, King, and Stuart
(2007) it holds when the treatment (T) and the covariates (X) are unrelated such that p̃(X |
T = 1) = p̃(X | T = 0); where p̃ denotes the observed empirical density of data. Balance
is commonly evaluated by conducting hypothesis testing. The standard practice involves
the use of t-test for the difference in means for each continuous covariate or the χ2 test for
each categorical covariate. However, this practice starts to be criticized (to cite few: (Imai,
King, and Stuart 2008; Iacus, King, and Porro 2011). The main critique is that researchers
used to ignore the multivariate balance. In recent works such multivariate aspect starts to
be taken into account (Hansen and Bowers 2008; Li, Maasoumi, and Racine 2009; Camillo
and D’Attoma 2010; D’Attoma and Camillo 2011; Iacus et al. 2011). Hansen and Bowers
(2008) propose a simultaneous balance test on multiple X. The hypothesis of no association
between a treatment variable and the X covariates is assessed by comparing the differences
of means (or regression coefficients), without standardization, to their distribution under
hypothetical shuffles of the treatment variable, a permutation or randomization distribution
(Bowers, Fredrickson, and Hansen 2011). This test balances not only on each X separately,
but also on all linear combinations of them. Its law is a χ2-approximation. The test is
implemented within the RItools package and the xBalance function (Bowers et al. 2011). It
should work also when the treatment variable is not binary, but it doesn’t seem clear with
which kind of covariates (categorical, continuous, ordinal) it works. Li et al. (2009) propose
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a nonparametric test for equality of two multivariate densities with mixed categorical and
continuous data. The test statistic, In (Li et al. 2009), is constructed based on the integrated
squared density difference given by I =

∫
[f(x)dF (x) + g(x)dG(x)− f(x)dG(x)− g(x)dF (x)]

where F (·) and G(·) are the cumulative distribution function for X and Y . X and Y are the
multivariate vectors of dimension q+r where q denotes the number of continuous variables and
r the number of discrete/categorical variables. Li et al. (2009) demonstrate that under the null
of equality of distributions the In statistics can be approximate by a normal standard. The
test is implemented within the R software using the np package (Hayfield and Racine 2008)
and the npdeneqtest function (Li et al. 2009; Racine 2012). The test has the advantage of
working with mixed categorical and continuous data. Iacus et al. (2011) propose a multivariate
imbalance measure based on the L1 difference between the multidimensional histogram of all
pre-treatment covariates in the treatment group and that in the control group. To obtain
the measure, they cross-tabulate the discretized variables and the categorical variables as
X1×X2 . . .×Xk for the treated and control groups separately, and record the k-dimensional
relative frequencies for the treated fl1...lk and control gl1...lk units. Finally, they take the
absolute difference over all the cell values:

L1(f, g) =
1

2

∑
l1...lk

|fl1...lk − gl1...lk | (1)

The L1 measure is implemented within R using the cem package and the imbalance function
(Iacus, King, and Porro 2009). It is also implemented in Stata using the cem package and the
imb function (Blackwell, Iacus, and King 2009). An undoubted advantage of such a measure
is its simplicity and intuitive interpretation. Furthermore, it should work with multicategory
treatments and with any kind of variables.

3. Description of the GI measure and its related test

The present section provides a brief description of the GI measure and its related test. For
a more comprehensive treatment of the theoretical framework within the GI measure and
its related test are developed see Camillo and D’Attoma (2010) and D’Attoma and Camillo
(2011), and for an application see Peck, Camillo, and D’Attoma (2010). The %GI macro uses
the SAS/IML language to compute the GI measure expressed as

GI =
1

Q

T∑
t=1

JQ∑
j=1

b2tj
k.tk.j

− 1 (2)

where Q denotes the number of baseline covariates, T denotes the number of treatment levels,
JQ denotes the set of all categories of the Q baseline variables, btj is the number of units with
category j ∈ JQ in the treatment group t ∈ T , k.t is the group size t ∈ T , and k.j is the
number of units with category j ∈ JQ. The GI measure is the result of using the conditional
multiple correspondence analysis (MCA) framework (Escofier 1988) to quantify the between
groups inertia1. In fact, when the dependence among categorical baseline covariates (X) and
the treatment assignment (T) is outside the control of researchers, displaying the relationship

1The term inertia is used by analogy with the definition in applied mathematics of moment of inertia which
stands for the integral of mass times the squared distance to the centroid (Greenacre 1984).
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among them on a factorial space represents a first step for discovering the hidden relation-
ship. In the presence of dependence, any descriptive factorial analysis may exhibit this link.
Commonly, the problem of the factorial decomposition of the variance related to the juxta-
position of the X matrix and T is faced within the MCA framework (Lebart, Morineau, and
Warwick 1984). With reference to MCA, the structure of the data matrix eigenvectors and
eigenvalues decomposition process, could be strongly influenced by the presence of an exter-
nal conditioning variable (i.e., the treatment assignment T). Hence, a conditional analysis is
used in order to isolate the part of the variability of the X-space due to T. With reference to
the Huygens’ inertia decomposition of total inertia (IT ) as within-groups (IW ) and between-
groups (IB), conditional MCA (Escofier 1988) consists in the factorial decomposition of the
within-group inertia. In this sense, it could be also considered as an intra analysis that detects
and describes differences among units within each group by not considering the effect due to
the partition’s structure induced by the non random selection process. The space generated
by the conditional MCA is continuous, and thus, in the computation of distances between
groups and between units, becomes possible to use a standard metric based on the criterion
of the variance minimization. The key result of using conditional MCA is represented by the
quantified between groups inertia that represents the measure of global imbalance in data
(D’Attoma and Camillo 2011).
Then, to determine the significance of the detected imbalance, %GI macro performs a multi-
variate imbalance test. The null hypothesis of no dependence among X and T is specified
as

H0 : IW = IT (3)

On the basis of the asymptotic distribution function of IB (Estadella, Aluja, and Thi-
Henestrosa 2005) expressed as

IB ∼
χ2
(T−1)(J−1),α

nQ
(4)

The interval of plausible values for GI is defined as

GI ∈
(

0,
χ2
(T−1)(J−1),α

nQ

)
(5)

With n as the sample size, Q as the number of baseline covariates and χ2
(T−1)(J−1) as the

χ2 value with (T − 1)(J − 1) degrees of freedom. If the measured GI is outside the interval,
then the null hypothesis of no dependence among X and T is rejected and data are deemed
unbalanced. The main advantage of the GI measure is its simplicity of interpretation. The
proposed measure varies in [0, It]. Perfect balance occurs when IB = 0; whereas, perfect
imbalance occurs when IW = 0 and IB = IT which indicates that the observed total variability
of the X-space is completely due to the influence of conditioning (T ). An index that ranges
between 0 and 1 is represented by the Multivariate Imbalance Coefficient (MIC) which is
defined as one minus the ratio between the within-groups inertia relative to the total inertia:

MIC = 1− IW
IT

(6)

MIC = 0 denotes perfect balance; whereas, MIC = 1 indicates perfect imbalance. The
GI measure works with categorical nominal or ordinal variables. Continuous variables need
to be previously discretized. Furthermore, it also works in a multitreatment environment.
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It is very similar for its simplicity to the measure proposed by Iacus et al. (2011). At the
same time, it is more exhaustive than the L1 measure since it considers the variability of
a global space, its decomposition in between and within variability and also the asymptotic
distribution function of IB, that allows to define an interval of plausible values of the Global
Imbalance measure. In addition, the use of the Bart table and the Burt band (for more
details see D’Attoma and Camillo 2011) in the computation of the between groups inertia
is more exhaustive than cross-tabulating the discretized and categorical variables for the
treated and control groups separately. The Burt table is the symmetric matrix of all two-way
crosstabulations between the categorical, nominal or ordinal variables, and has an analogy to
the covariance matrix of continuous variables. It simultaneously displays information on the
occurrence of category combinations (frequencies) for all variables. The Burt Band crosses
the categories of the X variables with T levels. Furthermore, in the computation of the
between groups inertia a more appropriate distance measure is used that is the χ2 metric.
The χ2 metric includes a coefficient that re-evaluates elements with low frequency and resizes
those with high frequency by weighting each element by the inverse of its importance on the
total frequencies. Such a metric avoids to pay attention in the data pre-processing to the
equilibrium between categories. It will be no more necessary to avoid categories with low
frequency or variables with a lot of categories. The %GI macro produces as output a SAS
dataset that reports for each group (e.g., a PS bin, a cluster, a stratum): The group size (n),
the number of units in the treatment group 1 (n_t1), the number of units in the treatment
group 2 (n_t2), the number of units in the treatment group n (n_tn), the group identifier
(id_clu), the Global Imbalance measure (GI), the upper limit of the interval of the plausible
values (CHI), the significance level used in the balancing test (alpha), the number of treatment
levels in the entire dataset considered (multitreat), the MIC coefficient (MIC), the number
of treatment levels in the specific subgroup (LEVELT) and the balance summary (Balance).
Balance equals yes if the group is balanced, equals no if the group is unbalanced and equals
no common support if units are observed only in a particular state without units in the other
state.

4. List of parameters in the macro

Based on the GI measure and its related test presented in Section 3, a SAS/IML (SAS Institute
Inc. 2008) macro program to measure and test Global Imbalance is written. A complete list
of the parameters in %GI is as follows:

%GI(library=, dsn=, out=, firstclu=, lastclu=, id=, group_var=,

balance_var=, Q=, treat=, alpha=, multitreat=);

where

� library: Name of the directory in which information is located.

� dsn: Name of the SAS data set to be read. It must contain Q categorical covariates,
the treatment indicator variable, the ID variable and the group membership variable.
A group could be the result of any classification analysis conducted separately before
running %GI.

� out: Name of the SAS output data set.
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� firstclu: Number of the first group to analyze. It is a numeric value.

� lastclu: Number of the last group to analyze. It is a numeric value.

� id: ID variable.

� group_var: Name of the variable that denotes the group membership.

� balance_var: Includes the name(s) of the baseline categorical variable(s) to be bal-
ance checked. The name(s) may be listed in any order and separated by blanks. The
variable(s) must be numeric. No missing values are allowed.

� Q: Number of categorical variables on which simultaneously check imbalance.

� treat: Name of the treatment indicator variable. It must be a numerical value.

� alpha: Significance level to be used in testing GI.

� multitreat: Denotes the number of treatment levels.

The macro computes for each group the GI measure using the SAS/IML language. At this
end, first it counts treatment and control units for each group, then creates a disjunctive
table for each group. In particular, to compute the GI measure the following matrices will
be created and used within the IML procedure: Z that includes the Q baseline categorical
covariates in disjunctive form, L that includes the t treatment levels indicators, B that is
the Burt table, the result of the inner product of the indicator matrix Z, the Band matrix
that is a contingency table which crosses the categories of the baseline categorical covariates
with each treatment level. Before quitting, the %GI macro deletes temporary datasets created
during the implementation to avoid cluttering and errors in case the macro is invoked again.

5. Examples

This section will work through the use of the %GI macro with two artificial examples: One
considering a binary treatment case and another a multi-treatment environment. Raw data
as well as code for performing both example analyses are provided with this article. In the
binary treatment case results are compared to the L1 distance measure of Iacus et al. (2011),
the In test statistic of Li et al. (2009) and to the Hansen and Bowers test. Whereas, in the
multitreatment case, for the sake of brevity, only the GI index is considered.

5.1. Binary treatment case

The dataset

The present example measures the effect of a binary treatment T on an outcome of interest by
subgroups. Assume that no random assignment to treatment conditions is feasible. The aim
is to show how the macro works to check balance. Assume to have a dataset containing 1775
instances and five baseline categorical variables with different levels: X1 with two levels, X2

with two levels, X3 with three levels, X4 with two levels and X5 with two levels. All possible
combinations of covariates (2× 2× 3× 2× 2 = 48 cells) are considered. Units within each of
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Combination Y (1) Y (0) ATE

X1 = 1;X3 = 1 = 0.88X1 + 2X2 + 3.33X3 + 0.31X4 + 8X5 = Y (1)− 19.18 19.18

X1 = 1;X3 = 2 = 6X1 + 3.3X2 + 4.1X3 + 0.31X4 + 8X5 = Y (1) + 29.24 −29.24

X1 = 1;X3 = 3 = −2.3X1 + 0.99X2 − 3X3 + 0.31X4 + 8X5 = Y (1)− 2.41 2.41

Others = 7X1 + 0.5X2 − 0.31X3 + 0.31X4 + 8X5 = Y (1)− 25.6 25.60

Table 1: Simulated outcomes.

those 48 cells are allocated on the basis of different proportions (π) to a different treatment
level in order to create dependence among X and T (see Table 9 in Appendix A).

Assume that all covariates involved in the assignment to treatment process are perfectly
known and no confounding variables exist. Assume this dataset is available before seeing
any outcome. Suppose that the 1775 instances are classified employing a cluster analysis on
multiple correspondence analysis coordinates and that 29 groups are chosen on the basis of the
visual inspection of the resulting dendrogram. Before estimating any treatment effect the GI
is measured and tested in each subgroup. Since in real applications may be less appropriate
to expect that treatment effects are the same on all units than considering treatment effect
heterogeneity within subgroups, heterogeneous treatment effects are simulated. At this end,
different potential outcomes Y (0) and Y (1) are generated for observations with a different set
of covariates combinations (Table 1).

Then, the observed outcomes (Yi,obs) are obtained as in the following equation:

Yi,obs = TiYi(1) + (1− Ti)Yi(0) (7)

By design, different average treatment effects (ATE) exist: 19.18; −29.24; 2.41; 25.6. The
effect of treatment is estimated as the comparison of means between treatment and comparison
cases. The dataset called example_binary contains the following information: The ID, the
treatment indicator variable (t), the baseline covariates (X1, X2, X3, X4, X5), the group
membership indicator (Cluster) and the observed continuous outcomes (Y_obs)2. Assume
that the data are in SAS format and are stored in the directory specified by the user. Finally,
invoke the %GI macro.

The implementation

Specify the %INCLUDE statement to indicate the location of the macro file, input values for
various arguments as shown in the previous section and in the code below and invoke the
macro. The macro will create a new SAS file, save it as balance_binary in the specified
directory. This would be accomplished with the following macro call in SAS:

%GI(library = work, dsn = example_binary, out = balance_binary,

firstclu = 1, lastclu = 29, id = id, group_var = cluster,

balance_var = X1 X2 X3 X4 X5, Q=5, treat = t, alpha = 0.05,

multitreat = 2)

2The observed outcome does not enter in the assessment of balance. It is not used when the macro is invoked.
But, it will be used after balance checking in order to understand if to a situation of balance corresponds a
reduction of bias in the treatment effect estimation. In this sense, the correspondence between balance and
bias reduction is considered as a measure of the success of the method used to check balance.
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Work.Balance_binary 
n_t1 n_t2 id_clu GI CHI MIC Balance alpha multitreat LEVELT n

1 5 45 1 0 0.038 0 Yes 0.05 2 2 50
2 15 15 2 0 0.0738 0 Yes 0.05 2 2 30
3 20 20 3 0 0.0474 0 Yes 0.05 2 2 40
4 24 16 4 0.025 0.0554 0.125 Yes 0.05 2 2 40
5 10 40 5 0 0.038 0 Yes 0.05 2 2 50
6 8 42 6 0 0.038 0 Yes 0.05 2 2 50
7 25 25 7 0 0.038 0 Yes 0.05 2 2 50
8 25 25 8 0 0.038 0 Yes 0.05 2 2 50
9 35 15 9 0 0.038 0 Yes 0.05 2 2 50

10 30 20 10 0 0.038 0 Yes 0.05 2 2 50
11 48 2 11 0 0.038 0 Yes 0.05 2 2 50
12 25 25 12 0 0.038 0 Yes 0.05 2 2 50
13 5 45 13 0 0.038 0 Yes 0.05 2 2 50
14 5 45 14 0 0.038 0 Yes 0.05 2 2 50
15 25 25 15 0 0.038 0 Yes 0.05 2 2 50
16 99 1 16 0 0.019 0 Yes 0.05 2 2 100
17 45 5 17 0 0.038 0 Yes 0.05 2 2 50
18 30 30 18 0 0.0369 0 Yes 0.05 2 2 60
19 5 75 19 0 0.0237 0 Yes 0.05 2 2 80
20 11 56 20 0.0623 0.0376 0.1558 No 0.05 2 2 67
21 25 23 21 0.005 0.0586 0.0083 Yes 0.05 2 2 48
22 33 33 22 0 0.0382 0 Yes 0.05 2 2 66
23 60 20 23 0 0.0237 0 Yes 0.05 2 2 80
24 5 75 24 0 0.0237 0 Yes 0.05 2 2 80
25 8 72 25 0 0.0237 0 Yes 0.05 2 2 80
26 5 75 26 0 0.0237 0 Yes 0.05 2 2 80
27 8 66 27 0.0183 0.038 0.0304 Yes 0.05 2 2 74
28 95 5 28 0 0.019 0 Yes 0.05 2 2 100
29 17 83 29 0.0123 0.0252 0.0308 Yes 0.05 2 2 100

Figure 1: The output dataset in the binary treatment example.

The output

The output includes a dataset called balance_binary (Figure 1) that contains information
about balance for each subgroup.

Specifically, it displays the number of units within treatment group (n_t1), the number of units
in the control group (n_t2), the group membership indicator (Id_clu), the GI measure (GI),
the upper limit of the confidence interval (CHI), the MIC coefficient (MIC), the significance
level (alpha), the number of treatment levels present in the entire dataset (multitreat) and
the balance result (Balance). Balance equals yes if the GI measure is lower than the upper
limit of the interval; otherwise, it equals no. Finally, Balance equals no common support in
case lacks the common support. As reported in Figure 1 only one group over 29 is deemed
unbalanced. In the remaining 28 balanced clusters the treatment effect of interest is computed.
Table 2 reports the estimated effects with standard errors and shows that in 25 over 28 clusters
the simulated heterogeneous effects are exactly reproduced. Results do support the conclusion
that the estimated effects are unbiased where baseline characteristics are by the GI measure
computation exogenous to the treatment and this is confirmed by the percent bias reduction
(Rubin 1973) that reaches its maximum in almost all balanced subgroups.

Comparison of results

Results in terms of L1 distance are obtained running the imbalance function of the cem
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Cluster Effect Std. error Bias reduction (%)

1 2.41 0 100
2 2.41 0.0552 100
3 25.6 0 100
4 22.99 0.876 69
5 25.6 0 100
6 25.6 0 100
7 19.18 0 100
8 19.18 0 100
9 −29.24 0 100

10 −29.24 0 100
11 19.18 0 100
12 19.18 0 100
13 25.6 0 100
14 25.6 0 100
15 2.41 0 100
16 19.18 0 100
17 19.18 0 100
18 25.6 0.9904 100
19 25.6 0 100
20 – – –
21 −16.54 5.0859 73
22 25.6 0.8505 100
23 −29.24 0 100
24 2.41 0 100
25 25.6 0 100
26 25.6 0 100
27 14.52 1.53 −141
28 19.18 0 100
29 25.62 0.0408 100

Table 2: Estimated effects by clusters.

Sample size 1775
BalanceTreated 751

Untreated 1024

GI 0.079
No

Interval (0; 0.002)

L1 0.584 No

In 121.462
No

p value <2.22e-16

H&B
Noχ2 552

p value 4.62e-117

Table 3: Binary treatment case: Comparison of results on the entire dataset.
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Cluster GI Balance L1 Balance In p value Balance
H&B

Balance
p value

1 0 Yes 0 Yes 0 <2.22e-16 No 0.019 No

2 0 Yes 0 Yes −0.233 0.909 Yes 1 Yes

3 0 Yes 0 Yes 0 <2.22e-16 No 2.57e-78 No

4 0.025 Yes 0.312 Yes 1.221 0.015 No 0.027 No

5 0 Yes 0 Yes 0 <2.22e-16 No 8.69e-21 No

6 0 Yes 0 Yes 0 <2.22e-16 No 2.11e-27 No

7 0 Yes 0 Yes 0 <2.22e-16 No 6.56e-98 No

8 0 Yes 0 Yes 0 <2.22e-16 No 6.56e-98 No

9 0 Yes 0 Yes 0 <2.22e-16 No 9.43e-88 No

10 0 Yes 0 Yes 0 <2.22e-16 No 5.07e-89 No

11 0 Yes 0 Yes 0 <2.22e-16 No 4.29e-30 No

12 0 Yes 0 Yes 0 <2.22e-16 No 6.56e-98 No

13 0 Yes 0 Yes 0 <2.22e-16 No 0 No

14 0 Yes 0 Yes 0 <2.22e-16 No 0 No

15 0 Yes 0 Yes 0 <2.22e-16 No 6.56e-98 No

16 0 Yes 0 Yes No common support – 0 No

17 0 Yes 0 Yes 0 <2.22e-16 No 2.76e-14 No

18 0 Yes 0 Yes −0.348 0.882 Yes 1 Yes

19 0 Yes 0 Yes 0 <2.22e-16 No 0 No

20 0.062 No 0.566 No 6.849 0.002 No 9.48e-05 No

21 0.005 Yes 0.132 Yes −0.675 0.827 Yes 0.755 Yes

22 0 Yes 0 Yes −0.310 0.889 Yes 1 Yes

23 0 Yes 0 Yes 0 <2.22e-16 No 3.44e-14 No

24 0 Yes 0 Yes 0 <2.22e-16 No 0 No

25 0 Yes 0 Yes 0 <2.22e-16 No 0 No

26 0 Yes 0 Yes 0 <2.22e-16 No 0 No

27 0.018 Yes 0.477 Yes 3.711 0.002 No 0.107 Yes

28 0 Yes 0 Yes 0 <2.22e-16 No 0 No

29 0.012 Yes 0.255 Yes 2.069 0.007 No 0.053 Yes

Table 4: Comparison of results by subgroups in the binary treatment case.

package in R (Iacus et al. 2009)3. Results from the In test statistic of Li et al. (2009) are
obtained within R software using the np package and the npdeneqtest function (Racine 2012).
Finally, results about the Hansen and Bowers simultaneous balance test are obtained using
the RItools package and the xbalance function (Bowers et al. 2011). First, balance on the
overall dataset is assessed using our GI measure and its related test and compared to the L1

distance, the In statistic and the Hansen and Bowers (H&B) simultaneous test. As emerges
from Table 3 all compared measures let us conclude that balance does not hold in the entire
dataset. By considering subgroups, our GI measure and L1 distance give the same results
(Table 4). As confirmed by the treatment effect estimation and the percent bias reduction
reported in Table 2 both measures correctly assess balance. Whereas, only in 5 clusters
over 29 the In statistic confirms GI and L1 results. An important difference between the In
statistic and the other measures concerns the definition of common support. According to
all measures, with the exception of the In statistic, the common support set holds if at least
one observation is present in all treatment options. This allows to measure balance in any
case and let practitioners to define how much restrictive the definition of common support

3The multitreatment version of the L1 distance could be obtained using the most recent R version of the
cem package.
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must be. We suppose the In statistic fails in checking balance because data are not a mix
of continuous and discrete/categorical variables. Also the Hansen and Bowers test fails in
detecting balance. It gives results different from those of GI and L1 in 22 clusters over 29.
We can conclude that only the GI measure and the L1 distance correctly detect balance, and
this conclusion is supported by the estimated effects that are unbiased in almost all cases, as
showed by the percent bias reduction reported in Table 2.

5.2. Multitreatment case

The dataset

In the present example, a treatment T with 3 levels is considered. Assume to have a dataset
containing 15645 instances and five baseline categorical variables with different levels: X1

with two levels, X2 with two levels, X3 with three levels, X4 with two levels and X5 with two
levels. As in the binary case, all possible combinations of covariates (2×2×3×2×2 = 48 cells)
are considered. Then, units within each of those 48 cells are allocated on the basis of different
proportions (π) to a different treatment level in order to create dependence among X and T
(Table 9, Appendix A). As in the binary treatment example, this dataset is available before
seeing any outcome. After balance checking, in order to verify if treatment effects are unbiased
in balanced clusters, the presence of heterogeneous treatment effects is simulated. Assume to
have 3 multiple treatments (T = {1, 2, 3}). Therefore, each subject has 3 potential outcomes,
Y (1), Y (2) and Y (3). At this end, Y (1), Y (2), Y (3) are generated for each observation who
receives a treatment t. For each unit, potential outcomes, Yi(t), are generated with the
following model and assuming a zero error term and a zero intercept:

Yi(t) = α(t) + β1(t)X1i + β2(t)X2i + β3(t)X3i + β4(t)X4i + β5(t)X5i (8)

In particular, four different set of parameters are generated in order to create heterogeneous
treatment effects (Table 5). Despite three potential outcomes exist, only one outcome under
the assigned treatment can be observed. Following Feng, Zhou, Zou, Fan, and Li (2012) the
observed outcome for each subject i, Yi,obs, is computed as:

Yi,obs =
m∑
t=1

Yi(t)I(Ti = t) (9)

where I(Ti = t) is the indicator of receiving treatment t:

I(T ) = 1, if T = t

= 0, otherwise (10)

Parameters Set 1 Set 2 Set 3 Set 4

β1(1) β1(2) β1(3) [1,−7.5, 4] [1,−7.5, 44] [−1,−7.5,−44] [0.5,−7.5,−4]

β2(1) β2(2) β2(3) [3, 2, 11] [0.3,−3, 11] [−0.3,−2,−11] [3,−2,−1]

β3(1) β3(2) β3(3) [2, 4, 8.3] [2.2,−4, 83] [−2.2,−4,−83] [22,−4,−8.3]

β4(1) β4(2) β4(3) [6, 3.3, 10] [0.6,−3.3, 10] [−0.6,−3.3,−10] [0.6,−3.3, 10]

β5(1) β5(2) β5(3) [7, 0.31,−15] [7,−0.31, 15] [−7,−0.31,−15] [17,−0.31,−1.5]

Table 5: Parameter sets.
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Parameters ATE 12 ATE 13 ATE 23

Set 1 30.05 5.22 −24.82

Set 2 106.96 118.77 11.80

Set 3 8.58 327.69 319.10

Set 4 40.95 −246.22 −287.18

Table 6: Simulated true treatment effects in multi-treatment case.

nt1 nt2 nt3 n GI CHI MIC Balance

5198 5377 5070 15645 0.0007 0.0004 0.00057 No

Table 7: Balance in the overall data in multi-treatment case.

and Yi(t) denotes the potential outcome of subject i if the subject has been assigned treatment
t. Finally, the true ATEs are estimated. If all the potential outcomes are observed, the ATE
of treatment j versus treatment k with j 6= k are estimated by

ATE jk =
1

n

n∑
i=1

Yi(j)−
1

n

n∑
i=1

Yi(k) (11)

As displayed in Table 6, by design, 3 true treatment effects exist for each simulated parameter
set and they are estimated as the comparison of means of potential outcomes.4 Once the sim-
ulated data are ready, balance is checked on the overall simulated data. Being the overall data
unbalanced (Table 7) a subgroup analysis is performed using a cluster analysis on multiple
correspondence analysis coordinates. On the basis of the examination of the dendrogram, 29
groups are retained. Before estimating the treatment effect of interest the GI is measured and
tested in each subgroup. At this end, assume that the data are in SAS format and are stored
in the directory specified by the user. Finally, invoke the the %GI macro. The dataset called
example_multi contains the following information: The ID, the multi-treatment indicator
(t), the baseline covariates (x1, x2, x3, x4, x5), the group membership indicator (cluster) and
the observed continuous outcome (Yobs).

The implementation

Specify the %INCLUDE statement to indicate the location of the macro file, input values for
various arguments as shown in the previous section and in the code below and invoke the
macro. The macro will create a new SAS file, save it as balance_multi in the specified
directory. This would be accomplished with the following macro call in SAS:

%GI(library = work, dsn = example_multi, out = balance_multi, id = id,

firstclu = 1, lastclu = 29,group_var = cluster,

balance_var = X1 X2 X3 X4 X5, Q = 5, treat = t, alpha = 0.05,

multitreat = 3)

The output

The output will include a dataset called balance_multi (Figure 2).

4In fact, given 3 treatment groups, all possible comparisons between all couples of means are 3(3 − 1)/2.
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Work.Balance_multi 
n_t1 n_t2 n_t3 id_clu GI CHI MIC Balance alpha multitreat LEVELT n

1 214 213 184 1 0.0066 0.006 0.0331 No 0.05 3 3 611
2 211 168 193 2 0.0063 0.0064 0.0316 Yes 0.05 3 3 572
3 227 243 166 3 0.0033 0.0058 0.0164 Yes 0.05 3 3 636
4 198 252 227 4 0.0068 0.0054 0.0341 No 0.05 3 3 677
5 245 198 227 5 0.0043 0.0055 0.0217 Yes 0.05 3 3 670
6 255 243 209 6 0.0025 0.0052 0.0125 Yes 0.05 3 3 707
7 247 199 250 7 0.0013 0.0053 0.0067 Yes 0.05 3 3 696
8 114 136 112 8 0 0.0086 0 Yes 0.05 3 3 362
9 135 136 135 9 0 0.0076 0 Yes 0.05 3 3 406

10 155 257 250 10 0.0003 0.0055 0.0013 Yes 0.05 3 3 662
11 236 195 162 11 0.0003 0.0062 0.0015 Yes 0.05 3 3 593
12 215 222 213 12 0.0057 0.0056 0.0287 No 0.05 3 3 650
13 209 231 184 13 0.0047 0.0059 0.0236 Yes 0.05 3 3 624
14 101 134 125 14 0 0.0086 0 Yes 0.05 3 3 360
15 133 132 106 15 0 0.0084 0 Yes 0.05 3 3 371
16 157 219 229 16 0.0012 0.0061 0.0058 Yes 0.05 3 3 605
17 161 204 229 17 0.0043 0.0062 0.0215 Yes 0.05 3 3 594
18 140 136 124 18 0 0.0078 0 Yes 0.05 3 3 400
19 273 177 225 19 0.0005 0.0054 0.0024 Yes 0.05 3 3 675
20 183 210 183 20 0.0041 0.0064 0.0207 Yes 0.05 3 3 576
21 105 129 130 21 0 0.0085 0 Yes 0.05 3 3 364
22 135 135 109 22 0 0.0082 0 Yes 0.05 3 3 379
23 221 169 212 23 0.0057 0.0061 0.0284 Yes 0.05 3 3 602
24 188 273 228 24 0.0004 0.0053 0.0022 Yes 0.05 3 3 689
25 135 126 82 25 0 0.009 0 Yes 0.05 3 3 343
26 93 122 139 26 0 0.0088 0 Yes 0.05 3 3 354
27 208 202 171 27 0.0038 0.0063 0.0189 Yes 0.05 3 3 581
28 109 132 98 28 0 0.0091 0 Yes 0.05 3 3 339
29 195 184 168 29 0.0043 0.0067 0.0214 Yes 0.05 3 3 547

Figure 2: The output dataset in the multi-treatment example.

It displays the number of units within treatment group 1 (n_t1), the number of units in the
treatment group 2 (n_t2), the number of units in the treatment group 3 (n_t3) the group size
(n), the group membership indicator (Id_clu), the GI measure (GI), the upper limit of the
confidence interval (CHI), the significance level (alpha), the MIC coefficient (MIC), the number
of treatment levels present in the entire dataset (multitreat), the number of treatment levels
present in the specific subgroup (LEVELT) and the balance result (Balance). Balance equals
yes if the GI measure is lower than the upper limit of the interval; otherwise, it equals
no. Finally, Balance equals no common support in case lacks the common support5. As
reported in Figure 2, only 3 groups over 29 are deemed unbalanced. In the remaining clusters
the treatment effects of interest are computed. Table 8 reports the estimated effects with
simultaneous confidence limits in brackets and shows that, on average, the bias is reduced
around 60%.

We acknowledge that it is a result not so excellent as that obtained in the binary case (Table 2).
Such a result might be due to the increased number of combinations of treatment levels and
covariates. At the same time, we consider the result satisfactory if compared to bias reduction
obtained by adopting a PS Subclassification analysis6(Figure 3), where, on average, bias is
reduced around 30% in case the propensity score is forced to be split in 29 bins. From Figure 3

5For the multiple treatment case the common support set is in general determined by the minimum of
the maximum and the maxima of the minimum participation probabilities for the various treatment options
(Frölich, Hesmati, and Lechner 2004)

6The propensity score is estimated using a generalized multinomial logit and the SAS catmod proc and
using as independent variables all the five simulated variables X1, X2, X3, X4, X5
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Cluster Estimated Effects Bias reduction (%)

T1 vs. T2 T1 vs. T3 T2 vs. T3 T1 vs. T2 T1 vs. T3 T2 vs. T3

2
32.67 18.52 -14.15

93.54 81.85 67.37
[31.85; 33.50] [17.72; 19.32] [−15.00;−13.30]

3
35.10 15.71 -19.39

87.55 85.687 83.39
[34.42; 35.78] [14.96; 16.46] [−20.13;−18.65]

5
87.20 97.24 10.03

45.62 46.52 54.71
[86.52; 87.90] [96.57; 97.90] [9.33; 10.73]

6
70.24 76.74 6.50 −1.04 −4.39 −35.11

[69.63; 70.85] [76.10; 77.37] [5.85; 7.14]

7
82.71 86.46 3.75

33.27 19.75 −105.08
[81.55; 83.87] [85.37; 87.55] [2.59; 4.90]

8
94.4 105.5 11.1

65.43 67.03 81.93
[94.4; 94.4] [105.5; 105.5] [11.1; 11.1]

9
77.11 87.00 9.89

17.86 21.09 51.14
[77.11; 77.11] [87.00; 87.00] [9.89; 9.89]

10
10.56 337.48 326.86

96.82 96.07 97.50
[9.36; 11.76] [336.22; 338.63] [325.81; 327.91]

11
126.74 145.64 18.90

45.57 33.26 −80.41
[126.47; 127.00] [145.36; 145.92] [18.61; 19.19]

13
10.37 318.75 308.38

97.13 96.41 96.55
[9.67; 11.07] [318.00; 319.49] [307.65; 309.10]

14
120.21 133.00 12.79

63.54 64.65 75.06
[120.21; 120.21] [133.00; 133.00] [12.79; 12.79]

15
125.21 137.00 11.79

49.78 54.72 99.49
[125.21; 125.21] [137.00; 137.00] [11.79; 11.79]

16
74.60 227.00 152.39 −6.42 59.60 46.44

[49.54; 99.64] [202.17; 251.81] [129.75; 175.04]

17
3.81 326.29 322.47

92.29 99.44 98.92
[2.99; 4.64] [325.49; 327.09] [321.72; 323.23]

18
137.5 151.5 14.0

15.96 18.70 44.27
[137.5; 137.5] [151.5; 151.5] [14.0; 14.0]

19
113.95 123.24 9.28

80.76 88.89 35.62
[113.69; 114.22] [122.99; 123.48] [9.00; 9.56]

20
47.09 −255.22 −302.31

79.33 97.23 94.87
[46.32; 47.86] [−256.02;−254.43] [−303.08;−301.55]

21
120.42 135.80 15.38

62.96 57.70 9.16
[135.8; 135.8] [135.80; 135.80] [15.38; 15.38]

22
115.42 131.80 16.38

76.72 67.63 9.16
[115.42; 115.42] [131.80; 131.80] [16.38; 16.38]

23
40.90 −245.18 −286.08

99.80 99.68 99.63
[39.72; 42.08] [−246.29;−244.06] [−287.28;−284.88]

24
38.10 −236.00 −274.11

90.36 95.85 95.57
[37.04; 39.17] [−237.11;−234.90] [−275.12;−273.10]

25
12.3 323.00 310.60

94.02 98.12 97.27
[12.3; 12.3] [323.00; 323.00] [310.60; 310.60]

26
38.31 −242.10 −280.41

91.06 98.73 97.70
[38.31; 38.31] [−242.10;−242.10] [−280.41;−280.41]

27
95.81 108.67 12.85

69.32 74.91 73.54
[95.13; 96.50] [107.96; 109.38] [12.14; 13.57]

28
99.21 106.70 7.49

78.67 70.02 −9.92
[99.21; 99.21] [106.70; 106.70] [7.49; 7.49]

29
79.33 −69.65 −148.99 −29.36 45.62 53.16

[57.40; 101.26] [−92.11;−47.19] [−171.76;−126.22]

Table 8: Effects by subgroups in multi-treatment case.
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Figure 3: Balance and percent bias reduction in PS subclassification.

emerges that in most of splitting cases bias is increased rather than reduced and such a result
might be due to the fact that propensity score subclassification in the present multi-treatment
example is not able to balance pre-treatment covariates.

6. Concluding remarks

The %GI macro enables one to measuring and testing balance of categorical, ordinal and
continuous covariates according to the GI measure and its related test introduced in D’Attoma
and Camillo (2011). The macro is illustrated using two artificial examples showing that
it works in both binary and multi-treatment environments. The macro described in this
paper encourages analysts to globally checking balance rather than performing variable-by-
variable tests, which do not consider interactions among baseline covariates. Compared to
other measures, in the binary case it correctly detects balance as the L1 distance, and such
correcteness is supported by the percent bias reduction that reaches its maximum in most
of examined clusters. The In test statistic and the Hansen and Bowers test fail in correctly
detect balance. The In test statistic and the Hansen and Bowers test probably fail for two
main reasons. First, the nature of covariates used in the present examples might be not
appropriate for the mentioned two tests. Second, the two tests might be influenced by the
sample size of the groups being compared. Furthermore, the In test statistic is designed to
work with mixed categorical and continuous data. We think it might not work when data
are not mixed, but exclusively categorical or continuous as in the examples here presented.
For what concerns the multi-treatment case, only the GI measure is considered. In terms
of percent bias reduction its performance is worse than in the binary case and such a result
might be due to the increased number of combinations of treatment levels and combinations.
It was not our intent here to provide proofs of the theoretical superiority of GI measure over
other examined measures; instead, we provide a brief introduction to the concept of GI and
a simple illustration of its computation using the proposed %GI SAS macro. Our main goal
has been to show how the macro works in both binary and multi-treatment case. Comparing
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the GI measures and %GI macro to the other measures and their related tools, we learn
that not all examined tools work with all kind of covariates and not all tools produce the
same results. The limit of our proposed measure is that it does not work with continuous
covariates that must be previously discretized with some discretization method that we do
not suggest. In sum, the macro makes easy to check balance by subgroups on which estimate
binary or multiple treatment effects of interest under non-experimental conditions, where a
subgroup could be the result of any classification analysis or a bin of a PS subclassification
(Dehejia and Wahba 2002). In doing that, the multivariate structure of data is taken into
account. The main strength of the %GI macro is that it allows to solve complex problems,
because especially in a data mining perspective, it does not suffer from the number of variables
and observations. This paves the way for applications business-oriented (e.g., marketing or
redemption campaigns) that might need a continuous monitoring. In fact the use of the %GI

macro for its simplicity makes easy to monitor the effect of any kind of private or public
policy by subgroups and even in a continuous way and, as such, might reverse the concept of
evaluation, that might be considered not only as a one-time action, but as a process.

References

Baser O (2006). “Too Much Ado about Propensity Score Models? Comparing Methods of
Propensity Score Matching.” Value in Health, 9, 377–385.

Blackwell M, Iacus SM, King G (2009). “cem: Coarsened Exact Matching in Stata.” The
Stata Journal, 9(4), 524–546.

Bowers J, Fredrickson M, Hansen B (2011). RItools: Randomization Inference Tools. R pack-
age version 0.1-11, URL http://CRAN.R-project.org/package=RItools.

Camillo F, D’Attoma I (2010). “A New Data Mining Approach to Estimate Causal Effects of
Policy Interventions.” Expert System with Applications, 37(1), 171–181.

D’Attoma I, Camillo F (2011). “A Multivariate Strategy to Measure and Test Global Imbal-
ance in Observational Studies.” Expert System with Applications, 38(4), 3451–3460.

Dehejia RH, Wahba S (2002). “Propensity Score-Matching Methods for Nonexperimental
Causal Studies.” The Review of Economics and Statistics, 84(1), 151–161.

Escofier B (1988). “Analyse des Correspondances Multiples Conditionelle.” In E Diday (ed.),
Data Analysis and Informatics, pp. 333–342. Elsevier Science, North Holland, Amsterdam.

Estadella JD, Aluja T, Thi-Henestrosa S (2005). “Distribution of the Inter and Intra Inertia
in Conditional MCA.” Computational Statistics, 20(3), 449–463.

Feng P, Zhou X, Zou Q, Fan M, Li X (2012). “Generalized Propensity Score for Estimating
the Average Treatment Effect of Multiple Treatments.” Statistics in Medicine, 31, 681–697.
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A. Design details

Binary treatment Multi-treatment

Combinations X1 X2 X3 X4 X5 πt=1 πt=0 Ntot πt=1 πt=2 πt=3 Ntot

1 1 1 1 1 1 50% 50% 50 34.15% 42.15% 23.69% 325
2 2 1 1 1 1 50% 50% 40 33.15% 32.32% 34.53% 362
3 1 2 1 1 1 50% 50% 50 36.01% 26.57% 37.41% 286
4 2 2 1 1 1 50% 50% 30 31.62% 30.48% 37.89% 351
5 1 1 2 1 1 63% 38% 8 26.42% 38.35% 35.23% 352
6 2 1 2 1 1 6% 94% 50 35.10% 40.40% 24.50% 302
7 1 2 2 1 1 70% 30% 50 31.23% 25.58% 43.19% 301
8 2 2 2 1 1 6% 94% 80 32.15% 38.94% 28.91% 339
9 1 1 3 1 1 20% 80% 5 32.80% 29.20% 38.00% 250

10 2 1 3 1 1 20% 80% 50 28.06% 37.22% 34.72% 360
11 1 2 3 1 1 6% 94% 80 40.18% 32.74% 27.08% 336
12 2 2 3 1 1 16% 84% 50 35.85% 35.58% 28.57% 371
13 1 1 1 2 1 99% 1% 100 22.06% 37.06% 40.88% 340
14 2 1 1 2 1 50% 50% 40 39.13% 36.52% 24.35% 345
15 1 2 1 2 1 90% 10% 50 36.50% 37.39% 26.11% 337
16 2 2 1 2 1 50% 50% 20 33.25% 33.50% 33.25% 406
17 1 1 2 2 1 75% 25% 80 26.27% 34.46% 39.27% 354
18 2 1 2 2 1 10% 90% 50 36.56% 28.67% 34.77% 279
19 1 2 2 2 1 60% 40% 50 28.17% 36.51% 35.32% 252
20 2 2 2 2 1 10% 90% 80 42.03% 31.19% 26.78% 295
21 1 1 3 2 1 4% 96% 50 39.36% 36.73% 23.91% 343
22 2 1 3 2 1 30% 70% 10 39.72% 31.36% 28.92% 287
23 1 2 3 2 1 25% 75% 4 23.44% 37.19% 39.38% 320
24 2 2 3 2 1 20% 80% 5 39.87% 34.31% 25.82% 306
25 1 1 1 1 2 95% 5% 100 28.69% 37.06% 40.88% 251
26 2 1 1 1 2 50% 50% 20 37.31% 35.17% 27.52% 327
27 1 2 1 1 2 96% 4% 50 43.30% 23.05% 33.64% 321
28 2 2 1 1 2 50% 50% 6 39.42% 26.67% 33.91% 345
29 1 1 2 1 2 50% 50% 4 28.19% 40.95% 30.86% 337
30 2 1 2 1 2 20% 80% 5 39.82% 28.32% 31.86% 339
31 1 2 2 1 2 60% 40% 10 42.00% 31.00% 27.00% 301
32 2 2 2 1 2 6% 94% 80 41.07% 24.11% 34.82% 336
33 1 1 3 1 2 10% 90% 50 23.73% 40.82% 35.44% 316
34 2 1 3 1 2 30% 70% 10 35.00% 34.00% 31.00% 400
35 1 2 3 1 2 50% 50% 20 26.29% 39.46% 34.35% 294
36 2 2 3 1 2 17% 83% 30 25.72% 33.12% 41.16% 311
37 1 1 1 2 2 90% 10% 10 29.75% 41.10% 29.14% 326
38 2 1 1 2 2 50% 50% 30 40.00% 52.00% 8.00% 25
39 1 2 1 2 2 50% 50% 50 41.94% 35.16% 22.90% 310
40 2 2 1 2 2 50% 50% 10 31.49% 37.57% 30.94% 362
41 1 1 2 2 2 50% 50% 20 25.69% 42.01% 32.29% 288
42 2 1 2 2 2 10% 90% 50 35.62% 35.62% 28.76% 379
43 1 2 2 2 2 60% 40% 10 30.98% 42.02% 26.99% 326
44 2 2 2 2 2 38% 63% 8 28.85% 35.44% 35.71% 364
45 1 1 3 2 2 50% 50% 50 30.94% 26.98% 42.09% 278
46 2 1 3 2 2 40% 60% 10 27.11% 41.57% 31.33% 332
47 1 2 3 2 2 50% 50% 10 23.39% 40.35% 36.26% 342
48 2 2 3 2 2 10% 90% 50 39.31% 26.42% 34.28% 318

Table 9: Simulation designs.
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