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Abstract

This paper is devoted to the R package fda.usc which includes some utilities for func-
tional data analysis. This package carries out exploratory and descriptive analysis of
functional data analyzing its most important features such as depth measurements or
functional outliers detection, among others. The R package fda.usc also includes func-
tions to compute functional regression models, with a scalar response and a functional
explanatory data via non-parametric functional regression, basis representation or func-
tional principal components analysis. There are natural extensions such as functional
linear models and semi-functional partial linear models, which allow non-functional co-
variates and factors and make predictions. The functions of this package complement and
incorporate the two main references of functional data analysis: The R package fda and
the functions implemented by Ferraty and Vieu (2006).

Keywords: functional data regression, representation of functional data, non-parametric kernel
estimation, depth measures, outlier.

1. Introduction

The technological progress has led to the development of new, quick and accurate measure-
ment procedures. As a consequence, further possibilities for obtaining experimental data are
now available and some classical paradigms must be revised. For example, it is now possible
(and even frequent) to find problems where the number of data points is greater than the
number of variables. In many areas it is common to work with large databases, which of-
ten increase these observations of a random variable taken over a continuous interval (or in
increasingly larger discretizations of a continuous interval).

For example, in fields such as spectroscopy, the measurement result is a curve that, at least,
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has been evaluated in 100 points. This type of data, which we call functional data arise
naturally in many disciplines. In economics, one could consider curves intra-day stock quotes.
In environmental studies, one could find continuous measurements of atmospheric monitor-
ing networks. The importance of functional data in image recognition or spatio-temporal
information is also well-known.

Undoubtedly, package fda (Ramsay, Wickham, Graves, and Hooker 2012) is a basic reference
to work in R programming environment (R Development Core Team 2012) with functional
data. The books by Ramsay and Silverman (2005) and Ramsay and Silverman (2002) are
well-known references in this field. In both cases all the techniques included are restricted to
the space of L2 functions (the Hilbert space of all square integrable functions over a certain
interval). The book by Ferraty and Vieu (2006) is another important reference incorporating
non-parametric approaches as well as the use of other theoretical tools such as semi-norms and
small ball probabilities that allow us to deal with normed or metric spaces. These authors are
part of the French group STAPH maintaining the page http://www.lsp.ups-tlse.fr/staph
where R software can be downloaded.

Other R software provides implementation of functional data analysis (FDA) in different ar-
eas. The package rainbow (Shang and Hyndman 2012) for functional data representation, the
package ftsa (Hyndman and Shang 2012) for functional time series analysis, the package re-
fund (Crainiceanu, Reiss, Goldsmith, Huang, Huo, and Scheipl 2012) for functional penalized
regression, the package fpca (Peng and Paul 2011) implements the restricted maximum like-
lihood estimation for functional principal components analysis (FPCA), the package MFDF
(Dou 2009) for modeling functional data in finance via generalized linear models (GLM), the
package fdaMixed (Markussen 2011), for FDA in a mixed model framework and the package
geofd (Giraldo, Delicado, and Mateu 2010) for spatial prediction for function value data. In
MATLAB PACE package (see http://anson.ucdavis.edu/~ntyang/PACE/) provides imple-
mentation of various methods using FPCA as generalized functional linear models (GFLM)
for sparsely sampled functional data, this package is also in R (Liu 2011). Finally, from
a Bayesian perspective, Crainiceanu and Goldsmith (2010) have developed tools for GFLM
using WinBUGS.

The aim of the package fda.usc is to provide a broader, flexible tool for the analysis of func-
tional data. Therefore, we propose an integration of the work on non-parametric functional
methods implemented by Ferraty and Vieu (2006) with those from the group of the University
of Santiago de Compostela (USC), thus complementing and extending some of the functions
of package fda. The fda.usc package is available from the Comprehensive R Archive Network
at http://CRAN.R-project.org/package=fda.usc and it has the greedy objective of being
an integrate framework for all the functional data methods available.

In Section 2.1 we introduce a new R class for functional data: “fdata”. Section 2.2 describes
the functional representation of an object of class “fdata” by basis representation or kernel
smoothing. Section 2.3 is focused in normed and semi-normed functional spaces and in how
the metrics and semimetrics can be used as measures of proximity between functional data.
Section 2.4 is concerned with the concept of statistical depth for functional data see Cuevas,
Febrero-Bande, and Fraiman (2007). These depth measures are useful to define location and
dispersion measures, for classification and for outlier detection (Febrero-Bande, Galeano, and
González-Manteiga 2008) (Section 2.6). Section 3 is devoted to functional regression mod-
els with scalar response from different perspectives: Parametric, using basis representation
(Section 3.1, 3.2 and 3.3), non-parametric, using kernel smoothing (Section 3.4) and semi-
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parametric which combines both (Section 3.5). The Section 3.6 summarizes the functional
regression models using a classical example to show the capabilities of the package fda.usc.
Finally, Section 4 discusses the most important features of the package.

2. Functional data: Definition and descriptive analysis

After a brief introduction of the state of the art in functional data, we describe the most
important features, procedures and utilities of the new package. This article is not intended
to enter into many methodological details because most of the functions of the package are
adaptations of original functions studied in previous publications.

2.1. Functional data definition: The new R class “fdata”

A functional variable X is just a random variable taking values in a functional space E .
Thus, a functional data set is just a sample {X1, . . . ,Xn} (also denoted X1(t), . . . , Xn(t) when
convenient) drawn from a functional variable X . Usually, E is assumed to be a normed or semi-
normed metric space. If E is a Hilbert space, functional data can be represented using a basis.
This is the approach of the fda package for its methodological developments and it is also used
by refund, geofd or MFDF packages, among others. In practice, this representation projects
an infinite dimensional space into a finite one and has the drawback of the approximation of the
original data. However, the functional space E may not be Hilbertian and in this case, a more
flexible representation of functional data is needed. For this reason, this package introduces
the new class“fdata”. This new class uses only the values evaluated on a grid of discretization
points {t1, . . . , tm} that can be observed in a non-equispaced way. The drawback now is that
every calculation (distance, norms,...) must be made through numerical approximations and
the design or the density of this grid could affect the accuracy of the calculations. If functional
data is sparsely sampled or there are many missing data points, probably the representation
in a basis is mandatory and some other alternatives, as for example PACE package, should
be considered.

The fda.usc package defines an object called fdata as a list of the following components:

� data: Typically a matrix of (n,m) dimension which contains a set of n curves discretized
in m points or argvals.

� argvals: Locations of the discretization points, by default: {t1 = 1, . . . , tm = m}.

� rangeval: Range of discretization points, by default: range(argvals).

� names: Optional list with three components: main, an overall title, xlab, a title for the
x axis and ylab, a title for the y axis.

All the methods in the package can work with the new class “fdata”. Some basic operations
to handle this new class are introduced. For example, generic methods for the math group
abs, sqrt, round, exp, log, cumsum; for the OPS group “+”, “-”, “*”, “/”, “==”, “<”, ‘>”, “<=”,
‘>=”; the for summary group all, any, sum, min, max; and other operations is.fdata(),
c(), dim(), ncol(), nrow(), plot(), inprod.fdata() and norm.fdata(). To calculate
the derivative of functional data the fdata.deriv() function has been implemented, which
computes the derivative by different methods, some purely numerical and others based on a
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Figure 1: Spectrometric curves (left panel): curves with Fat < 20% (red lines) and curves
with Fat ≥ 20% (blue lines). Corresponding spectrometic curves after first order differencing
(right panel).

basis representation. The choice of the right method depends on the nature of the data and
on the grid of discretization.

The function fdata() converts a data object of class: “fd”, “fds”, “fts”, “sfts” or other
formats (“vector”, “matrix”, “data.frame”) to an object of class “fdata”. We have included
in the “fdata” format some popular datasets of functional data: tecator, phoneme, poblenou
and aemet. As an illustration we applied some of above methods to the tecator dataset
(data("tecator")) that has two components. The first component, tecator$absorp.fdata,
includes the curves of absorbance for the analysis of pieces of meat stored in the format of
class “fdata”. Each curve consists of a m=100-channel absorbance spectrum measured along
the discretized points: argvals = {t1 = 850, . . . , tm = 1050}. The second component,
tecator$y, is a dataframe including Fat, Water and Protein contents of each spectrometric
curve obtained by an analytical chemical processing. The tecator dataset presents interesting
features and it is a well known example in functional data analysis (available at http://

lib.stat.cmu.edu/datasets/tecator). The following code displays the absorbance curves
colored by the fat content, see Figure 1.

R> library("fda.usc")

R> data("tecator")

R> names(tecator)

[1] "absorp.fdata" "y"

http://lib.stat.cmu.edu/datasets/tecator
http://lib.stat.cmu.edu/datasets/tecator
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R> absorp <- tecator$absorp.fdata

R> Fat20 <- ifelse(tecator$y$Fat < 20, 0, 1) * 2 + 2

R> plot(tecator$absorp.fdata, col = Fat20)

R> absorp.d1 <- fdata.deriv(absorp, nderiv = 1)

R> plot(absorp.d1, col = Fat20)

The representation of a functional dataset should be consistent with the physical interpre-
tation of the phenomenon being described and so it is important to choose the space where
the data must be considered. For example, in left panel of Figure 1, the spectrometric curves
are plotted showing with different colors two levels of fat content. This representation which
implicitly assumes a L2 space, is not related with the information of fat content. In other
words, the vertical shift of these curves has no special relation with the fat content. So, if
we are interested in the relationship between the spectrometric curve and the fat content,
probably another choice of functional space would be more advisable as shown, for example,
in the right panel of Figure 1 with the first derivative of the spectrometric curves.

2.2. Smoothing

If we assume that our functional data Y (t) is observed through the model: Y (ti) = X(ti)+ε(ti)
where the residuals ε(t) are independent from X(t), we can get back the original signal X(t)
using a linear smoother,

x̂ =
n∑
i=1

sijyi or x̂ = Sy

where sij is the weight that the point tj gives to the point ti and yi = Y (ti). In the package
two procedures have been implemented for this purpose. The first one is the representation in
a L2 basis (or penalized basis) and the second one is based on the smoothing kernel methods.

Basis representation

A curve can be represented by a basis when the data is assumed to belong to L2 space. A
basis is a set of known functions {φk}k∈N that any function could be arbitrarily approximated
by a linear combination of a sufficiently large number kn of these functions, see Ramsay and
Silverman (2005, p. 43 and 44).

The procedure recovers the function X(t) by using a fixed truncated basis expansion in terms
of kn known basis elements,

X(t) =
∑
k∈N

ckφk(t) ≈
kn∑
k=1

ckφk(t) = c>Φ(t) (1)

The projection (or smoothing) matrix is given by: S = Φ(Φ>Φ)−1Φ>, with degrees of freedom
of the fit df = tr(Sν) = kn.

If smoothing penalization is required, a parameter λ will also be provided and in this case
the projection matrix S is: S = Φ(Φ>Φ + λR)−1Φ>, where R is the penalization matrix.
Typically R penalizes the integral of the square of the derivative of order 2.
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There are several different types of basis (Fourier, B-spline, Exponential, power, polynomial,
. . . ) that can be created using the function create.fdata.basis() or directly through
the create.basis-name.basis from the fda package. This package also includes the basis
functions based on the data: create.pc.basis() and create.pls.basis() that provides a
functional principal component and partial least square basis, respectively. The choice of the
basis should be based on the objective of the analysis and on the data. For example, it is
common to use the Fourier basis for periodic data, and B-spline basis for non-recurrent data.
Also, the function fdata2fd() converts an object of class “fdata” into an object of class “fd”
using the basis representation shown in (1).

R> class(absorp.fd <- fdata2fd(absorp, type.basis= "fourier", nbasis= 15))

[1] "fd"

R> class(absorp.fdata <- fdata(absorp.fd))

[1] "fdata"

Kernel smoothing

The non-parametric methodology and in particular, the kernel smoothing method, can also
be used to represent functional data. Now, the non-parametric smoothing of functional data
is given by the smoothing matrix S = (sij). For example, for the Nadaraya-Watson estimator

(function S.NW()): sj(ti) = K
(
ti−tj
h

)
/
∑m

k=1K
(
ti−tk
h

)
where K(·) is the kernel function.

Other possibilities for S are the k nearest neighbors estimator (function S.KNN()) or the
local linear regression estimator (function S.LLR()), see Wasserman (2006), Ferraty and Vieu
(2006) for futher details. Many different types of kernels are considered in the package:
Gaussian, Epanechnikov, triweight, uniform, cosine or any user-defined.

Validation criterion

The choice of the smoothing parameter is crucial and, in principle, there is no universal
rule that would enable an optimal choice. Among the different selection criterion to select
the parameter ν, we have implemented two: Cross-validation (CV) and generalized cross-
validation (GCV).

Cross-validation : CV (ν) =
1

n

n∑
i=1

(
yi − ŷν−i

)2
wi (2)

where ŷνi(−i) indicates the estimator based on leaving out the i pair (ti, yi) and wi is the weight
at point ti. This criterion is implemented by the function CV.S().

Generalized cross-validation : GCV (ν) =
1

n

n∑
i=1

(
yi − ŷνi

)2
wiΞ(ν) (3)

where Ξ(ν) denotes the type of penalizing function.

Generalized cross-validation criterion is implemented in GCV.S() function with the following
types of penalized functions (see Härdle 1990, for futher details):
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� Generalized cross-validation (GCV): Ξ(ν) = (1− tr(Sν)n−1)−2.

� Akaike’s information criterion (AIC): Ξ(ν) = exp(2tr(Sν)n−1).

� Finite prediction error (FPE): Ξ(ν) = (1 + tr(Sν)n−1)/(1− tr(Sν)n−1).

� Shibata’s model selector (Shibata): Ξ(ν) = (1 + 2tr(Sν)n−1).

� Rice’s bandwidth selector (Rice): Ξ(ν) = (1− 2tr(Sν)n−1)−1.

Smoothing FDA with fda.usc package

Let us now consider, for illustration purposes, the Phoneme dataset data("phoneme")1 see,
e.g., Ferraty and Vieu (2006). The phoneme$classlearn object contains 250 speech frames
with class membership: “sh” (1), “iy” (2), “dcl” (3), “aa” (4) and “ao” (5). From each speech
frame, a log-periodogram of length 150 has been stored in phoneme$learn which is used as
learning sample. The goal is to predict the class membership phoneme$classtest using the
test sample phoneme$test.

The purpose of the function min.basis() is to represent the functional data in terms of a
(truncated) expansion with respect to a given basis of functions in the corresponding space.
Such expansions depend on a parameter ν = (kn, λ), where kn is the number of basis elements
used in the truncated expansion and λ is the penalization parameter. In the following example
(see below R code), phoneme$learn is smoothed using min.basis() function.

R> data("phoneme")

R> learn <- phoneme$learn

R> l <- c(0, 2^seq(-2, 9, length.out = 30))

R> nb <- seq(7, 31, by = 2)

R> out0 <- min.basis(learn, lambda = l, numbasis = nb)

The minimum GCV (GCV.OPT=2.3815) is achieved with

the number of basis (numbasis.opt=27)

and lambda value (lambda.opt=81.27995)

In the left panel of Figure 2, the GCV criterion is drawn in function of the number of B-
spline basis elements ν1 = nbasis and the penalizing parameter ν2 = λ using min.basis()

function and the smoothed functional data x̂(t) (in out0$fdata.est object) can be used
as the signal we have tried to recover. Figure 3 shows the 11th curve of speech frame x11
(phoneme$learn[11]) and the smooth representation of the curve x̂11 (out0$fdata.est[11]).
The min.np() function returns the “optimal” value (in out1$h.opt) of the smoothing param-
eter ν = h that best represents the functional data for a range of values of bandwidth h
using the validation criterion (2) and (3) shown above. As an illustration, in the right panel
of Figure 2, the GCV criterion is drawn in function of the bandwidth h using the function
min.np() and Figure 3 shows smooth representation of 11th curve of phoneme$learn by
Nadaraya-Watson (S.NW()), local linear regression (S.LLR()) method and K nearest neigh-
bors (S.KNN()) method.

1This dataset includes the changes introduced in the file http://www.math.univ-toulouse.fr/staph/

npfda/npfda-phondiscRS.txt.

http://www.math.univ-toulouse.fr/staph/npfda/npfda-phondiscRS.txt
http://www.math.univ-toulouse.fr/staph/npfda/npfda-phondiscRS.txt
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Figure 2: GCV criterion as a function of the number of B-spline basis elements and the
penalizing parameter λ (left panel). GCV criterion as a function of bandwidth parameter
(right panel): Normal kernel and local linear smoothing matrix (blue line); Normal kernel and
Nadaraya-Watson smoothing matrix (green line) and uniform kernel and K nearest neighbors
smoothing matrix (red line).

Figure 3: Eleventh phoneme curve: Observed (grey dashed line), smoothed by 27 B-spline
basis elements and λ = 81.28 (black line), smoothed by normal kernel and Nadaraya-Watson
smoothing matrix with bandwidth h = 3.28 (green line), smoothed by normal kernel and
local linear smoothing matrix with bandwidth h = 7.85 (blue line) and smoothed by uniform
kernel and K nearest neighbors smoothing matrix with bandwidth h = 7 (red line).
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R> out1 <- min.np(learn, type.S = S.NW, par.CV = list(criteria = "GCV"))

The minimum GCV (GCV.OPT=2.4119) is achieved with

the h value (h.opt=3.2765)

R> out2 <- min.np(learn, type.S = S.LLR, par.CV = list(criteria = "GCV"))

The minimum GCV (GCV.OPT=2.5363) is achieved with

the h value (h.opt=7.9482)

R> out3 <- min.np(learn, type.S = S.KNN, h = 3:25, Ker = Ker.unif)

The minimum GCV (GCV.OPT=2.3746) is achieved with

the h value (h.opt=7)

2.3. Measuring distances

Sometimes, it is difficult to find the best plot to summarize a particular functional dataset
because the shape of the graphics depends strongly on the chosen proximity measure. As
shown in Figure 1, the plot of X(t) against t is not necessarily the most informative and
perhaps, considering another distance between curves we can obtain better results. This
package collects several metric and semi-metric functions which allow us to extract as much
information possible from the functional variable.

The most general spaces for functional data are the complete metric spaces where only the
notion of distance between elements of the space is given. If the metric d(·, ·) is associated
with a norm (so that d(X(t), Y (t)) = ‖X(t)− Y (t)‖) we have a normed space (or a Banach
space). In some important cases the norm ‖.‖ is associated with an inner product 〈., .〉 in the

sense that ‖X‖ = 〈X,X〉1/2. A complete normed space (Banach space) whose norm derives
from an inner product is called a Hilbert space. The best known example is the space L2 [a, b]

of real square-integrable functions defined on [a, b] with 〈f, g〉 =
∫ b
a fg.

Utilities for computing distances, norms and inner products are included in the package. If we
focused on Lp spaces (the set of functions whose absolute value raised to the p-th power has
finite integral), the function metric.lp() uses Simpson’s rule to compute distances between

elements: ‖f(t)− g(t)‖p =

(
1∫ b

a w(t)dt

∫ b
a |f(t)− g(t)|pw(t)dt

)1/p

where w are the weight and

the observed points on each curve t are equally spaced (by default) or not. norm.fdata()

computes the norm and, specifically for L2, inprod.fdata() calculates the inner product
between elements of the space.

In the next example, the distances between some training sample curves of phoneme data
(phoneme$learn) are calculated by the metric.lp() function. Figure 4 shows the dendro-
gram for a selection of 11 curves of class (3) (corresponding to the index from 110 to 120
curves) and 11 curves of class (5) (from 220 to 230). This example can be understood as a
classification problem in which the goal is to classify the curves in 2 classes.

R> mdist <- metric.lp(learn)
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Figure 4: Dendogram for 22 phoneme curves divided into 2 classes using L2 metric.

Other semi-metric functions are included in the fda.usc package to compute distances between
“fdata” objects under the assumption that these objects belongs to a metric o semi-metric
space. semimetric.basis() function calculates the semi-metric L2 of the derivatives of order

q (by default q = 0), dq(f, g) =
√

1√
T

∫
T (f (q)(t)− g(q)(t))2dt for functional data of two“fdata”

(or “fd”) class objects. An alternative, without using the basis function of fda package, is
to use the semi-metrics proposed by Ferraty and Vieu (2006); semimetric.deriv() and
semimetric.fourier() functions calculate distances between the derivative of order nderiv
using B-spline approximation and Fourier approximation, respectively. Other semi-metric
functions have been included in the package, see help(semimetric.NPFDA). The functions
semimetric.pca() and semimetric.mplsr() compute proximities between curves based on
the functional principal components analysis (FPCA) method and functional partial least-
squared (FPLS) method, respectively. The FPCA and FPLS semi-metric can be used only
if the curves are observed at the same discretized points and in a fine enough grid. Finally,
semimetric.hshift() computes proximities between curves taking into account a horizontal
shift effect of two functional objects.

The procedures of the package fda.usc which include the argument metric allow us the use
of metric or semi-metrics functions implemented or other user defined metric with the only
restriction that the first two arguments belong to the class “fdata”.

2.4. Exploring functional data

Exploratory functional data analysis can help the user to analyze datasets by summarizing
their main characteristics (identify features), detect possible errors or unexpected variability
and resume the data.

In fda.usc, the usual tools for summarizing functional data are included: func.mean(),
func.var(), fdata2pc() and fdata2pls() for computing the mean, the marginal variance,
the principal eigenfunctions and the partial least squared, respectively. The output of these
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tools is always an object of class “fdata”. Different depth notions have been proposed in the
literature, with the aim of measuring how deep a data point is in the sample. In univariate
data, the median would typically be the deepest point of a cloud of points. In functional
data, although there are more depth measures, this package includes those that are contained
in the work of Cuevas et al. (2007) as depth.FM() that is based on the median (proposed by
Fraiman and Muniz 2001), depth.RP() that is calculated through random projections (RP)
based on the Tukey depth or depth.RPD() that is calculated through random projections
of the curves and their derivatives and depth.mode() that is based on how surrounded the
curves are with respect to a metric or a semi-metric distance, selecting the trajectory most
densely surrounded by other trajectories of the process. The population h-depth of a datum
z is given by the function:

D(z) = E (Kh(d(z,X)))

where X is the random element describing the population, d(·, ·) is a suitable distance and
Kh(t) is a re-scaled kernel with tuning parameter h. Given a random sample X1, . . . , Xn of
X, the empirical h-depth is defined as:

D̂(z) =
1

n

n∑
i=1

Kh(d(z,Xi))

All depth functions return: The deepest curve median, the index of the deepest curve lmed,
the mean of (1−α)% deepest curves mtrim, the index of (1−α)% deepest curves ltrim and
the depth of each curve dep.

An interesting application of the proposed depth measures is their use as measures of location
and dispersion. In the following example we use data("poblenou") where each curve repre-
sents the evolution of NOx levels in 1 day had measured every hour {ti}23i=0 by a control station
in Poblenou in Barcelona (Spain). We split the whole sample into working and non-working
days.

R> data("poblenou")

R> nox <- poblenou$nox

R> dd <- as.integer(poblenou$df$day.week)

R> working <- poblenou$nox[poblenou$df$day.festive == 0 & dd < 6]

R> nonworking <- poblenou$nox[poblenou$df$day.festive == 1 | dd > 5]

The top row of Figure 5 displays the α-trimmed means and the medians for h-modal and RP
depth for working days (top left) and for non-working days (top right). The bottom row of
Figure 5 shows the marginal variance using trimmed subsets for working days (bottom left),
and for non-working days (bottom right).

R> plot(func.mean(working), ylim = c(10, 170),

+ main = "Centrality measures in working days")

R> legend(x = 11,y = 185, cex = 1, box.col = "white", lty = 1:5, col = 1:5,

+ legend = c("mean", "trim.mode", "trim.RP", "median.mode", "median.RP"))

R> lines(func.trim.mode(working, trim = 0.15), col = 2, lty =2)

R> lines(func.trim.RP(working, trim = 0.15),col = 3,lty = 3)

R> lines(func.med.mode(working, trim = 0.15),col = 4,lty = 4)

R> lines(func.med.RP(working, trim = 0.15),col = 5, lty = 5)
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Figure 5: Descriptive statistics for poblenou dataset based on depth: trend measures for
working days (top left) and non-working days (top right), dispersion measures for working
days (bottom left) and for non-working days (bottom right).

In the previous code (top left of Figure 5) we have employed some shortcut functions as
follows:

� For central trend: func.centr.depth

� For dispersion measures (or marginal variability measures): func.trimvar.depth

where centr = {med, trim} indicates whether it has used the median or trimmed mean and
depth = {FM, mode, RP, RPD} indicates the type of depth used. This implementation allows the
incorporation of other measures of depth that could be used easily and quickly as measures
of location and dispersion.

2.5. Bootstrap replications as dispersion measures

The dispersion of a location statistic for functional data can be estimated by smoothed
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Figure 6: Bootstrap replications of poblenou curves: Using the 25%-trimmed mean statistic
for working days curves (left) and for non-working days curves (right).

bootstrap (see Cuevas, Febrero-Bande, and Fraiman 2006, for theoretical details). The
fdata.bootstrap() computes a confidence ball using bootstrap in the following way:

� Let X1(t), . . . , Xn(t) the original data and T = T (X1(t), . . . , Xn(t)) the sample statistic.

� Calculate the nb bootstrap resamples {X∗1 (t), . . . , X∗n(t)}, using the following scheme
X∗i (t) = Xi(t) + Z(t) where Z(t) is normally distributed with mean 0 and covari-
ance matrix γΣx, where Σx is the covariance matrix of {X1(t), . . . , Xn(t)} and γ is the
smoothing parameter.

� Let T ∗j = T (X∗j1 (t), ..., X∗jn (t)) the estimate using the j resample.

� Compute d(T, T ∗j), j = 1, . . . , nb. Define the bootstrap confidence ball of level 1−α as
CB(α) = X ∈ E such that d(T,X) ≤ dα being dα the quantile (1− α) of the distances
between the bootstrap resamples and the sample estimate.

The fdata.bootstrap() function allows us to define a statistic calculated on the nb resam-
ples, control the degree of smoothing by smo argument and represent the confidence ball with
level 1−α as those resamples that fulfill the condition of belonging to CB(α). The statistic
used by default is the mean (func.mean()) but also other depth-based functions can be used
(see help(Descriptive)). As an example, in next two code lines the confidence ball for
location statistic 25%-trimmed mean is computed and plotted in Figure 6 using the random
project depth.
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Figure 7: NOx levels measured by a control station split into two groups (gray lines): Working
days (left) and non-working days (right). The red lines correspond to days detected as outliers.

R> out.boot1 <- fdata.bootstrap(working, statistic = func.trim.RP, nb = 1000)

R> out.boot2 <- fdata.bootstrap(nonworking, statistic = func.trim.RP,

+ nb = 1000)

2.6. Functional outlier detection

In order to identify outliers in functional datasets, Febrero-Bande et al. (2008) make use of
the fact that depth and outlyingness are inverse notions, so that if an outlier is in the dataset,
the corresponding curve will have a significantly low depth. Therefore, a way to detect the
presence of functional outliers is to look for curves with lower depths. Two procedures for de-
tecting outliers are implemented: The first one is based on weighting outliers.depth.pond()

and the second one is based on trimming outliers.depth.trim(). Both methods are based
on bootstrap and therefore the CPU time can be high.

As an illustration of the outliers detection procedures we replicate the example used by
Febrero-Bande et al. (2008). Figure 7 shows the result of applying the outliers detection
method based on trimming with FM depth for the case of working days and non-working
days. The curves in red correspond to those identified as outliers in the original paper.

R> out <- outliers.depth.trim(working, dfunc = depth.FM, nb = 1000,

+ smo = 0.1, trim = 0.06)

R> out2 <- outliers.depth.trim(nonworking, dfunc = depth.FM, nb = 1000,

+ smo = 0.1, trim = 0.06)
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3. Functional regression models

A regression model is said to be “functional” when at least one of the involved variables
(either a predictor variable or response variable) is functional. This section is devoted to all
the functional regression models where the response variable is scalar and at least, there is
one functional covariate. For illustration, we will use the tecator dataset to predict the fat
contents from the absorbance as a functional covariate X(t) = X and the water contents as a
non-functional covariate (Z = Water). We will use the first 165 curves to fit the model. The
last 50 records will be used to check the predictions. The explanatory variables to introduce
in the models are: The curves of absorbance X as functional data or one of its two first
derivatives (X.d1,X.d2) and water content (Water) as non-functional variable.

R> ind <- 1:165

R> tt <- absorp[["argvals"]]

R> y <- tecator$y$Fat[ind]

R> X <- absorp[ind, ]

R> X.d1 <- fdata.deriv(X, nbasis = 19, nderiv = 1)

R> X.d2 <- fdata.deriv(X, nbasis = 19, nderiv = 2)

In the following sections, regression methods implemented in the package are presented and
illustrated with examples for estimating the Fat content of the tecator dataset. Finally, we
show in Section 3.6 a summary focused in prediction of the presented methods.

3.1. Functional linear model with basis representation: fregre.basis()

In this section we will assume a functional linear model of type:

y = 〈X,β〉+ ε =
1√
T

∫
T
X(t)β(t)dt+ ε (4)

where 〈·, ·〉 denotes the inner product on L2 and ε are random errors with mean zero and
finite variance σ2.

Ramsay and Silverman (2005) model the relationship between the scalar response and the
functional covariate by basis representation of the observed functional data X(t) and the
unknown functional parameter β(t) =

∑
bkφk(t). The functional linear model in Equation 4

is estimated by the expression:

ŷ =
〈
X, β̂

〉
≈ C>ψ(t)φ>(t)b̂ = X̃b̂ (5)

where X̃(t) = C>ψ(t)φ>(t), and b̂ = (X̃>X̃)−1X̃>y and so, ŷ = X̃b̂ = X̃(X̃>X̃)−1X̃>y =
Hy where H is the hat matrix with degrees of freedom: df = tr(H).

If we want to incorporate a roughness penalty λ > 0 then the above expression is now:
ŷ = X̃b̂ = X̃(X̃>X̃ + λR0)−1X̃>y = Hλy where R0 is the penalty matrix.

fregre.basis() function computes functional regression between functional explanatory
variable and scalar response using basis representation. This function allows covariates of
class “fdata”, “matrix”, “data.frame” or directly covariates of class “fd”. The function also
gives default values to arguments basis.x and basis.b for representation on the basis of func-
tional data X(t) and the functional parameter β(t), respectively. In addition, the function
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Figure 8: Summary plots for fitted object (res.basis1) from a functional linear model with
basis representation (fregre.basis()).

fregre.basis.cv() uses validation criterion defined in Section 2.2 by argument type.CV to
estimate the number of basis elements and/or the penalized parameter (λ) that best predicts
the response.

Going on with the example, the next code illustrates how to estimate the fat contents (y =

Fat) using a training sample of 1st derivative absorbance curves X.d1.

R> rangett <- absorp$rangeval

R> basis1 <- create.fourier.basis(rangeval = rangett, nbasis = 5)

R> res.basis1 <- fregre.basis(X.d1, y, basis.x = basis1)

The fitted object (res.basis1) contains useful information as the smoothing parameter (ν),
the degrees of freedom (df ), the residual variance (S2

R): S2
R =

∑n
i=1 (yi − ŷi)2 /(n − df) (an

unbiased estimator of σ2), the coefficient of determination (R2) or the hat matrix (H). This
information is used in summary.fregre.fd() and print.fregre.fd() to show summaries of
the functional regression fitted model, see Figure 8.
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3.2. Functional linear model with functional PC basis: fregre.pc()

Similarly, Cardot, Ferraty, and Sarda (1999) used a {νk}∞k=1 orthonormal basis of functional
principal components to represent the functional data as Xi(t) =

∑∞
k=1 γikνk and the func-

tional parameter as β(t) =
∑∞

k=1 βkνk, where γik = 〈Xi(t), νk〉 and βk = 〈β, νk〉. Now, the
estimation of β(t) can be made by a few principal components (PCs) under the assumption
that βk = 0, for k > kn and the integral can be approximated by:

ŷ =
〈
X, β̂

〉
≈

kn∑
k=1

γikβ̂k (6)

where, β̂(1:kn) =

(
γ>.1y
nλ1

, . . . ,
γ>.kny

nλkn

)
and γ(1:kn) is the (n,kn) matrix with kn principal compo-

nents estimation of β scores and λi the eigenvalues of the PC.

The model of Equation 6 is expressed as: ŷ = Hy where H =

(
γ.1γ>.1y
nλ1

, . . . ,
γ.knγ

>
.kn

y

nλkn

)
with

degrees of freedom: df = tr(H) = kn.

We have implemented the functional principal regression in the function fregre.pc(). The
call for tecator example is shown below:

R> res.pc1 <- fregre.pc(X.d1, y, l = 1:6)

For the fitted object of fregre.pc() function, the function summary.fregre.fd() also shows:

� Variability of explicative variables explained by principal components.

� Variability for each principal component.

How to select kn: fregre.pc.cv()

The novelty of the procedure used in fregre.pc.cv() is that the algorithm selects the prin-
cipal components that best estimated the response. The selection is done by cross-validation
(CV) or model selection criteria (MSC).

� Predictive cross-validation: PCV (kn) = 1
n

∑n
i=1

(
yi −

〈
Xi, β̂(−i,kn)

〉)2
, criteria =

"CV".

� Model selection criteria: MSC (kn) = log

[
1
n

∑n
i=1

(
yi −

〈
Xi, β̂(i,kn)

〉)2]
+ pn

kn
n with

pn = log(n)
n for criteria = "SIC" (by default),

pn = log(n)
n−kn−2 for criteria = "SICc",

pn = 2 for criteria = "AIC",
pn = 2n

n−kn−2 for criteria = "AICc",

where criteria is an argument of the function fregre.pc.cv() that controls the type of
validation used in the selection of the smoothing parameter kn.

In the following example the regression model is fitted using the best selection of first 7 func-
tional principal components (FPCs). The minimum MSC (MSC = 2.128167) is achieved with
the FPC 1, 2, 7, 3 and 6 using the SIC criterion.
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R> res.pc2 <- fregre.pc.cv(X.d2, y, kmax = 7)

R> res.pc2$pc.opt

PC1 PC2 PC7 PC3 PC6

1 2 7 3 6

R> res.pc2$MSC

PC(1) PC(2) PC(3) PC(4) PC(5) PC(6) PC(7)

rn=0 2.852951 2.258292 2.144443 2.13227 2.128167 2.159107 2.190052

Functional linear model with functional PLS basis: fregre.pls()

In the previous section, the dimension reduction by FPCs is a good solution for the estimation
of the functional linear model. Another good alternative is the use of the criterion that
maximizes the covariance between X(t) and the scalar response Y via the partial least squares
(PLS) components. Let {ν̃k}∞k=1 the functional PLS components (Preda and Saporta 2005)
and as before Xi(t) =

∑∞
k=1 γ̃ikν̃k and β(t) =

∑∞
k=1 β̃kν̃k. The functional linear model is

estimated by:

ŷ =
〈
X, β̂

〉
≈

kn∑
k=1

γ̃ikβ̃k (7)

We have implemented the FPLS regression in the function fregre.pls() where the PLS fac-
tors have been calculated using an alternative formulation of the NIPALS algorithm proposed
by Krämer and Sugiyama (2011). The call for tecator example and the print of the fitted
object are shown below:

R> fregre.pls(X.d1, y, l = 1:5)

-Call: fregre.pls(fdataobj = X.d1, y = y, l = 1:5)

-Coefficients:

(Intercept) PLS1 PLS2 PLS3 PLS4 PLS5

17.39 491.92 142.44 230.95 134.00 186.78

-R squared: 0.9508922

-Residual variance: 7.927896

Functional influence measures: influence.fdata()

This section focuses on how to identify influential observations in the FLM discussed in
the previous sections. Febrero-Bande, Galeano, and González-Manteiga (2010) studied three
statistics for measuring the influence: Cook prediction distance (CPi), Cook estimation dis-
tance (CEi) and Peña’s distance (Pi), respectively.
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Figure 9: Influence measures for tecator dataset calculated from fitted model (res.basis0):
Matrix of scatter plots for Cook prediction distance (CPi), Cook estimation distance (CEi)
and Peña’s distance (Pi).

1. The functional Cook’s measure for prediction (CPi) detects observations whose deletion
may entail important changes in the prediction of the rest of the data. It is defined as

CPi =
(ŷ − ŷ−i)>(ŷ − ŷ−i)

S2
R

where ŷ−i is the prediction of the response y excluding the i -th observation (Xi, yi).

2. The functional Cook’s measure for estimation (CEi) detects observations whose deletion
may entail important changes in the estimation.

CEi =

∥∥∥β̂ − β̂−i∥∥∥2
S2
R
n

∑kn
k=1

1
λk

where β̂−i is the estimator of the parameter β excluding the i -th observation (Xi, yi) in
the process.

3. The functional Peña’s measure for prediction (Pi) detects observations whose prediction
is most affected by the deletion of other data.

Pi =
(ŷi − ŷ(−1,i), ..., ŷi − ŷ(−n,i))>(ŷi − ŷ(−1,i), ..., ŷi − ŷ(−n,i))

S2
RHii

where ŷ(−h,i) is the i -th component of the prediction vector ŷ(−h) for h = 1, ..., n.
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Once estimated the functional regression model with scalar response (by fregre.basis(),
fregre.pc() or fregre.pls()), the influence.fdata() function is used to obtain the in-
fluence measures, see Figure 9.

Febrero-Bande et al. (2010) propose to approximate quantiles of the above statistics by means
of a procedure which uses smoothed bootstrap samples of the set of observations of the above
statistics. This package includes the above procedure in influence.quan() function. When
the goal is to make inferences about the functional parameter and not on influence measures,
one advantage derived from this procedure is that the calculation takes into account the
mue.boot curves of the functional parameter β(t) in the functional Cook’s measure for esti-
mation. However, this procedure has a very high computational cost. In order to reduce sub-
stantially the computational time we have created the fregre.bootstrap() function which
is explained below.

Bootstrap for functional linear model

We can study the variability of functional beta parameter β, which is estimated by the pre-
viously functional regression models (fregre.basis(), fregre.pc() and fregre.pls()),
using the confidence ball (CB) defined as follows,

CB(β̂ν) =
{
β ∈ L2 :

∥∥∥β − β̂ν∥∥∥ < Dα

}
(8)

where Dα such that Pr
(
β ∈ CB(β̂ν)

)
= 1 − α. To do this, we have followed the smoothed

bootstrap procedure proposed by Febrero-Bande et al. (2010). Given n scalar responses Y
and n functional data X.

1. Fit the functional linear model in Equation 4 and compute the residuals e.

2. Obtain B standard bootstrap samples of size n of the residuals: eb1, . . . , e
b
n, for b =

1, . . . , B. Similarly, obtainB standard bootstrap samples of the functional data: Xb
1, . . . , X

b
n.

3. Smooth the two previous samples as follows:
(i) Obtain X̃b

i = Xb
i + Zbi such Zbi is a Gaussian process with zero mean and the

covariance operator γXΓX , where γX is a smoothed bootstrap parameter.
(ii) Obtain ẽbi = ebi +Zbi such zbi is normally distributed with mean 0 and variance γeS

2
R,

where γe is a smoothed bootstrap parameter.

4. Obtain: ỹbi =
〈
X̃b
i , β̃ν

〉
+ ẽbi for b = 1, . . . , B, i = 1, . . . , n, where β̃ν is the estimate of β

obtained in step 1.

5. Fit the model 4 to the smoothed bootstrap Ỹ b and X̃b.

6. Dα in Equation 8 is estimated by the (1− α) quantile D̂α of
∥∥∥β̂ν − β̂iν∥∥∥B

i=1
.

7. Plot the bootstrap replicates
{
β̂iν

}B
i=1

such that
∥∥∥β̂ν − β̂iν∥∥∥ < D̂α.

In Figure 10, the bootstrap confidence ball is plotted for the three fitted models (res.basis1,

res.pc1 and res.pls1), with
{
β̂iν

}1000

i=1
and (1 − α) = 0.999. Those replicates belonging to
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Figure 10: Estimated regression function β̂ν joint with a 99.9% bootstrap confidence ball
by: fregre.basis() (left), fregre.pc() (center) and fregre.pls() (right). Red curve
correspond to that resample not in the bootstrap confidence ball.

the confidence ball are drawn in gray whereas the curve falling outside is drawn in red.
The parameter β̂ν (blue line) is clearly significant (different from 0) showing the maximum
difference in the first half of wavelength interval.

In the function fregre.bootstrap(), the smoothed bootstrap parameters γX and γe are the
arguments smoX and smo, respectively. In step 4, the argument kmax.fix can be selected by
an appropriated cutoff ν in each b iteration or fixed its value in the step 1.

In the example, we have used a small resample nb = 1000 and we have fixed the parameter
kmax.fix (5 Fourier basis, 6 FPC and 5 FPLS) to have a reasonable computing time. Still,
the calculation procedure is computationally high demanding.

R> fregre.bootstrap(res.basis1, nb = 1000, kmax.fix = TRUE, alpha = 0.999)

R> fregre.bootstrap(res.pc1, nb = 1000, kmax.fix = TRUE, alpha = 0.999)

R> fregre.bootstrap(res.pls1, nb = 1000, kmax.fix = TRUE, alpha = 0.999)

3.3. Functional linear model with functional and non-functional covariate:
fregre.pls()

This section is presented as an extension of the previous linear regression models. Now, the
scalar response Y is estimated by more than one functional covariate Xj(t) and also more
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than one non-functional covariate Zj . The regression model is given by:

yi = α+ β1Z
1
i + · · ·+ βpZ

p
i +

1√
T1

∫
T1

X1
i (t)β1(t)dt+ · · ·+ 1√

Tq

∫
Tq

Xq
i (t)βq(t)dt+ εi (9)

where Z =
[
Z1, · · · , Zp

]
are the non-functional covariates and X(t) =

[
X1(t1), · · · , Xq(tq)

]
are the functional ones.

The functional linear model (9) is estimated by the expression:

ŷ = X̃b̂ = X̃(X̃>X̃)−1X̃>y = Hy

where X̃ =
[
Z1, · · · , Zp, (C1)>ψ(t1)φ>(t1), · · · , (Cq)>ψ(tq)φ>(tq)

]
The arguments are as follows:

� formula: A symbolic description of the model to be fitted.

� data: List containing the variables in the model. The first item in the data list is a
“data.frame” called df with the response and non-functional explanatory covariates.
Functional covariates (“fdata” or “fd” class) are introduced in the following items in
the data list.

� basis.x: List with a basis object for every functional covariate.

� basis.b: List with a basis object for estimating the functional parameter β(t).

For the tecator data example, the content of Fat is estimated from the second derivative of
absorbances curves X.d2 and the content of Water by fregre.lm() function.

R> ind <- 1:165

R> dataf <- as.data.frame(tecator$y[ind, ])

R> newdataf <- as.data.frame(tecator$y[-ind, ])

R> ldata <- list(df = dataf, X = X, X.d1 = X.d1, X.d2 = X.d2)

R> f2 <- Fat ~ Water + X.d2

R> basis.x1 <- list(X.d2 = basis1)

R> basis2 <- create.bspline.basis(rangeval = rangett, nbasis = 5)

R> basis.b1 <- list(X.d2 = basis2)

R> res.lm2 <- fregre.lm(f2, ldata, basis.x = basis.x1, basis.b = basis.b1)

[1] "Non functional covariate: Water"

[1] "Functional covariate: X.d2"

3.4. Non-parametric functional regression model: fregre.np()

An alternative to model of Equation 4 is the non-parametric functional regression studied by
Ferraty and Vieu (2006). In this case, the regression model is written as

yi = r(Xi(t)) + εi, (10)
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where the unknown smooth real function r is estimated using kernel estimation by means of

r̂(X) =

∑n
i=1K(h−1d(X,Xi))yi∑n
i=1K(h−1d(X,Xi))

where K(·) is an kernel function, h is the smoothing parameter and d(·, ·) is a metric or a
semi-metric. Now, the kernel is applied to a metric or semi-metrics that provides non-negative
values, so it is common to use asymmetric kernels.

This procedure is implemented in the fregre.np() function and some of its arguments are:

� Ker: Type of asymmetric kernel function, by default asymmetric normal kernel.

� metric: Type of metric or semi-metric, by default L2 (metric.lp(...,lp = 2)).

� type.S: Type of smoothing matrix S, by default Nadaraya Watson (S.NW()).

Again, the function fregre.np.cv() is used to choose the smoothing parameter h by the
validation criterion described in Section 2.2.

� type.CV: Type of validation criterion, by default GCV criterion (GCV.S()).

The code for the tecator example is:

R> fregre.np(X.d1,y)

-Call: fregre.np(fdataobj = X.d1, y = y)

-Bandwidth (h): 0.006498587

-R squared: 0.9873025

-Residual variance: 3.036685

3.5. Semi-functional partially linear model: fregre.plm()

An extension of the non-parametric functional regression models is the semi-functional partial
linear model proposed in Aneiros-Pérez and Vieu (2006). This model uses a non-parametric
kernel procedure as that described in Section 3.4. The output y is scalar. A functional
covariate X and a multivariate non-functional covariate Z are considered.

y = r(X) +

p∑
j=1

Zjβj + ε (11)

The unknown smooth real function r is estimated by means of

r̂h(X) =
n∑
i=1

wn,h(X,Xi)(Yi − Z>i β̂h)

where Wh is the weight function: wn,h(X,Xi) = K(d(X,Xi)/h)∑n
j=1K(d(X,Xj)/h)

with smoothing parameter

h, an asymmetric kernel K(·) and a metric or semi-metric d(·, ·). In fregre.plm() by de-
fault Wh is a functional version of the Nadaraya-Watson-type weights (type.S = S.NW) with



24 fda.usc: Functional Data Analysis in R

asymmetric normal kernel (Ker = AKer.norm) in L2 (metric = metric.lp with p = 2). The
unknown parameters βj for the multivariate non-functional covariates are estimated by means

of β̂j = (Z̃>h Z̃h)−1Z̃>h Z̃h where Z̃h = (I −Wh)Z with the smoothing parameter h. The errors
ε are independent, with zero mean, finite variance σ2 and E[ε|Z1, . . . , Zp, X(t)] = 0.

Coming back to the example of Section 3.3, the fitted model for the case of a real variable
Z = Water and the second derivative of the absorbance curves (X.d2) as functional covariate
can be obtained by:

R> res.plm2 <- fregre.plm( Fat ~ Water + X.d2, ldata)

-Call: fregre.plm(formula = Fat ~ Water + X.d2, data = ldata)

-Coefficients:

Estimate Std. Error t value Pr(>|t|)

Water -5.934e-01 6.463e-02 -9.181e+00 2.085e-13

-Bandwidth (h): 0.0003614096

-R squared: 0.9972631

-Residual variance: 0.6986455

3.6. Prediction methods for functional regression model fits

Once the model is estimated we can obtain predictions by means of:

� predict.fregre.fd() corresponds to the model fitted from fregre.basis(),
fregre.pc(), fregre.pls() or fregre.np() functions.

� predict.fregre.lm() corresponds to the model fitted from fregre.lm() function.

� predict.fregre.plm() corresponds to the model fitted from fregre.plm() function.

A sample test of the last 50 curves of absorbance (or one of the two first derivatives) and
Water content can be used to predict the Fat content. We provide below the complete code
for the prediction process.

R> newy <- matrix(tecator$y$Fa[-ind], ncol = 1)

R> newX.d1 <- fdata.deriv(absorp[-ind, ], nbasis = 19, nderiv = 1)

R> newX.d2 <- fdata.deriv(absorp[-ind, ], nbasis = 19, nderiv = 2)

R> res.basis2 <- fregre.basis.cv(X.d2, y, type.basis = "bspline")

R> pred.basis2 <- predict.fregre.fd(res.basis2, newX.d2)

R> res.np2 <- fregre.np.cv(X.d1, y, metric = semimetric.deriv)

R> pred.np2 <- predict.fregre.fd(res.np2, newX.d1)

R> newldata <- list("df" = newdataf, "X.d1" = newX.d1, "X.d2" = newX.d2)

R> f1 <- Fat ~ Water + X.d1

R> basis.x1 <- list(X.d1 = basis1)

R> basis.b1 <- list(X.d1 = basis2)

R> res.lm1 <- fregre.lm(f1, ldata, basis.x = basis.x1, basis.b = basis.b1)
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Function df R2 S2
R MEP

fregre.basis(X.d1, Fat) 6.0 0.928 11.470 0.0626
fregre.basis.cv(X.d2, Fat) 12.0 0.965 5.817 0.0566
fregre.pc(X.d1, Fat) 7.0 0.950 7.975 0.0580
fregre.pc(X.d2, Fat) 6.0 0.954 7.239 0.0556
fregre.pls(X.d1, Fat) 8.4 0.951 7.928 0.0567
fregre.pls(X.d2, Fat) 6.5 0.962 6.015 0.0487
fregre.lm(Fat ~ X.d1 + Water) 7.0 0.987 2.140 0.0097
fregre.lm(Fat ~ X.d2 + Water) 7.0 0.986 2.251 0.0119
fregre.np(X.d1, Fat) 59.3 0.987 3.037 0.0220
fregre.np(X.d2, Fat) 68.1 0.996 1.128 0.0144
fregre.plm(Fat ~ X.d1 + Water) 61.0 0.996 0.914 0.0090
fregre.plm(Fat ~ X.d2 + Water) 66.0 0.997 0.699 0.0115

Table 1: Results for functional regression models. df degrees of freedom, R2, S2
R residual

variance, and mean square error of prediction (MEP).

R> pred.lm1 <- predict.fregre.lm(res.lm1, newldata)

R> res.plm1 <- fregre.plm(f1, ldata)

R> pred.plm1 <- predict.fregre.plm(res.plm1, newldata)

We make predictions for the rest of models fitted in this paper (code not shown). Following
the ideas by Aneiros-Pérez and Vieu (2006), we calculated the mean square error of pre-

diction (MEP): MEP =
(∑n

i=1 (yi − ŷi)2 /n
)
/ (Var (y)), which is used for comparing the

predictions of different fitted models. Table 1 resumes the statistics of the fitted models and
their predictions.

4. Conclusion

The package fda.usc presented in this paper is the result of the integration of our codes with
other procedures from different authors, such as the package fda or the functions from the
STAPH group. One major advantage of this software is that it avoids the need of a basis
representation of functional data. Using the new class “fdata”, the proposed methods can
represent the functional data using discretized versions in a given grid of points.

The fda.usc package includes most of the methods recently developed for exploratory func-
tional data analysis and for functional regression with scalar response. This package also
incorporates other utilities for statistical computing within the field of functional data anal-
ysis (FDA). Some useful additions are:

� Generalized functional linear models (FGLM): fregre.glm().

� Functional analysis of variance: anova.RPm().

� Functional supervised classification: classif.knn(), classif.kernel(), and
classif.glm().

� Functional non-supervised classification: kmeans.fd().
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� Other utilities and auxiliary functions, as the cond.F() function that calculates the
conditional distribution function of a scalar response with functional data.

The fda.usc package is an attempt to obtain an integrated framework for FDA. It is under
continuous development therefore updates will be available in CRAN. We are working to
incorporate new depth measures and methods for functional regression and classification.
Further information, as script files and a beta version of package, is also available at the project
website whose URL http://eio.usc.es/pub/gi1914/, also given in the DESCRIPTION file.
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