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Abstract

Biomarker identification is an ever more important topic in the life sciences. With
the advent of measurement methodologies based on microarrays and mass spectrometry,
thousands of variables are routinely being measured on complex biological samples. Often,
the question is what makes two groups of samples different. Classical hypothesis testing
suffers from the multiple testing problem; however, correcting for this often leads to a
lack of power. In addition, choosing α cutoff levels remains somewhat arbitrary. Also in a
regression context, a model depending on few but relevant variables will be more accurate
and precise, and easier to interpret biologically.

We propose an R package, BioMark, implementing two meta-statistics for variable
selection. The first, higher criticism, presents a data-dependent selection threshold for
significance, instead of a cookbook value of α = 0.05. It is applicable in all cases where
two groups are compared. The second, stability selection, is more general, and can also
be applied in a regression context. This approach uses repeated subsampling of the data
in order to assess the variability of the model coefficients and selects those that remain
consistently important. It is shown using experimental spike-in data from the field of
metabolomics that both approaches work well with real data. BioMark also contains
functionality for simulating data with specific characteristics for algorithm development
and testing.

Keywords: biomarkers, higher criticism, stability selection, spike-in data, metabolomics.

1. Introduction

In the life sciences, comparing groups of individuals to find significant differences is more
and more important. The classical example is comparing patients and healthy controls using
microarray data, in order to find which genes are related to the illness under study. Similar
applications can be listed for many other fields, such as food science and agriculture. Apart
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Figure 1: Visualization of apple LC-MS data: the first control sample in the apple data set,
measured in positive ionization mode. In total, 1632 features have been identified. Each
feature is an intensity at a specific location in the retention time - m/z plane. To avoid high-
intensity features to dominate the plot completely, square roots of the intensities are plotted
here.

from microarrays, many other types of data can be used, such as next generation sequencing
data, measuring the abundance of RNA (and hence the expression of a gene) in the sample, and
proteomics and metabolomics data, estimating levels of proteins and metabolites, respectively.
In all cases the measurements are relatively complicated but present a wealth of information
for each sample. In metabolomics and proteomics the number of variables can range from
several hundreds to thousands, and in the case of gene expression measurements this number
is one or even two orders of magnitude larger. In these cases, variables that are significantly
different between the groups (in whatever way this is defined), are typically indicated with
the word “biomarkers”. The same term is used in a regression context for those variables
that are essential for the quality of the model – a more simple model, considering only these
biomarker variables, often has the same or even improved predictive performance and is much
easier to interpret biologically.

As an example from metabolomics, Figure 1 shows the result of one liquid chromatography-
mass spectrometric (LC-MS) measurement of an apple sample. Every vertical line segment
corresponds to a feature, defined by a retention time, a so-called m/z value (the weight-to-
charge ratio of a fragment of a molecule) and an intensity. Measurements like this provide
a fingerprint of the biological system under study, summarizing the abundances of all small
chemical molecules active in the metabolism. The example shown in Figure 1 is one sample
from a larger data set in which concentration differences have been introduced experimentally
for specific compounds, and which can serve as a testbed for algorithm development, included
in the BioMark package. We will come back to these data later.

Standard solutions for finding significant differences like the t test are often difficult to apply
in practice: because of the very unfavourable sample-to-variable ratios in omics fields their
power is low (see, e.g., Franceschi, Vrhovsek, Mattivi, and Wehrens 2012b), and what is
left is often decreased further by multiple-testing corrections. In addition, the choice of the
confidence level α is subjective in some cases this choice is used to tweak the outcome to
obtain manageable numbers of “significant” differences. Popular multivariate alternatives
such as partial least-squares discriminant analysis (PLSDA, Barker and Rayens 2003) require
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a substantial amount of tuning, which may be difficult for data with relatively few samples.
Explicit variable selection methods, aiming at minimizing prediction error with only a subset
of the variables, have a tendency to overtrain, which especially in cases with relatively few
samples is hard to detect. In short, all of these methods – henceforth indicated as “primary”
biomarker selection methods – leave something to be desired.

In recent years, examples of second-level significance testing have been published to ad-
dress these issues. Here, we describe package BioMark for the R language (R Development
Core Team 2012), implementing two of these. The first is an approach called higher criti-
cism (Donoho and Jin 2004, 2008) for selecting optimal α cutoff levels in two-class discrimina-
tion problems; the second is stability selection (Meinshausen and Bühlmann 2010; Wehrens,
Franceschi, Vrhovsek, and Mattivi 2011), for identifying variables that are consistently impor-
tant upon perturbation of the data. Both have been shown to work well for real data. Other
approaches that could be termed second-level selection methods are multiple-testing correc-
tions such as the false discovery rate (Benjamini and Hochberg 1995) and the q value (Storey
2002; Storey and Tibshirani 2003), and methods focusing on differences of predefined sets of
variables, rather than individual variables – these are sometimes also referred to as Enrichment
Analysis methods (see, e.g., Subramanian et al. 2005; Efron and Tibshirani 2007).

The paper is structured as follows. First we give some background on both higher criticism
and stability selection. Next, we describe the structure of the BioMark package, including the
experimental spike-in apple data, and possibilities for data simulation for algorithm testing.
Some examples will illustrate the potential of the implemented methods. The paper ends
with a short history of the package and a look forward.

2. Theory

2.1. Higher criticism

Higher criticism (HC) thresholding estimates the number of non-null hypotheses by compar-
ing p values with their expected uniform distribution under the null hypothesis (Donoho and
Jin 2004, 2008). It assumes that differences are rare (there are not many) and weak (each
individual difference between the groups is hard to detect). The method has only one param-
eter, the maximum fraction of variables to be considered as possible biomarkers. By default,
it is set to 0.1, but in most cases the results are insensitive to the exact setting. The test
statistic, which can be described as the “z score of the p value” (Donoho and Jin 2008), is
given by

HCi =

√
N(i/N − pi)√
i/N(1− i/N)

(1)

where pi is the ith of the ordered p values, and N is the total number of variables. The HC
threshold is defined as the position of the maximum deviation within the indicated fraction.
The result can be visualized in a graph, such as the one shown in Figure 2. Normally,
the maximum in the graph is reached well below the maximal number corresponding to ten
percent of the data, which explains why the one parameter to be set in the HC approach is
usually not very influential.

Note that Equation 1 can be used regardless of the origin of the p values: any statistical
test that under the null hypothesis leads to uniformly distributed p values can be used. This
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Figure 2: HC biomarker selection for the spiked apple data, positive ionization mode, Group
1 versus Controls. The x-axis shows the ordered measures of variable importance (here:
p values derived from t statistics), and the y-axis shows the HC statistic. The maximum is
indicated with a dashed line, and gives the number of variables to select (here: 38 out of 1632,
corresponding to α ≈ 0.023).

does imply, however, that it is not possible to use p values after multiple testing correction.
In cases where no p values can be obtained from theory, such as model coefficients in many
multivariate regression methods, simulation can be used. In particular, one can show that
simply permuting the class labels leads to null distributions from which p values can be
derived, which then can be used in Equation 1 (Wehrens and Franceschi 2012). This extends
the use of HC thresholding to multivariate methods like partial least squares (PLS) and the
variable importance of projection (VIP) statistics, which are popular tools in some of the
omics fields (Wold, Sjöström, and Eriksson 2001).

2.2. Stability selection

The central idea of stability selection is that real differences should be present consistently,
and therefore should be found even under perturbation of the data by subsampling or boot-
strapping. Two related flavours of stability selection exist. The first is based on the implicit
variable selection by methods like the lasso (Meinshausen and Bühlmann 2010); these will au-
tomatically lead to a sparse model coefficient vector, in which only very few coefficients have
non-zero values. Upon subsampling of the data, some coefficients will remain non-zero, others
will sometimes be zero and in other cases be non-zero, and the majority will always be zero.
The most convincing differences are in those variables that consistently show non-zero coef-
ficients. The second approach, also applicable for non-sparse coefficient vectors, simply takes
the top fraction, e.g., the top ten or the top ten percent, as putative biomarkers (Wehrens
et al. 2011). Again, variables included in the top fraction by chance are expected to drop out
when averaging over many perturbations.
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The exact form of the perturbations is not essential, as long as the perturbation is “large
enough”. We have found that, e.g., leave-one-out crossvalidation is not appropriate: essentially
the same model is found in every iteration, even when using random data. The strategy of
Meinshausen and Bühlmann (2010) is leaving out half of the samples; a further injection of
randomness is obtained by giving random weights to the variables. Wehrens et al. (2011) use
an approach inspired by random forests (Breiman 2001): apart from leaving out a sizeable
fraction of the samples (in their case 30%) they also leave out half of the variables in each
iteration. This is similar to the approach by Meinshausen and Bühlmann (2010) if only
binary weights are used. Both approaches again lead to very similar results, and testify of the
robustness of the stability selection approach. Likewise, results using bootstrapping rather
than subsampling to generate the perturbations will probably differ very little from current
results.

3. The BioMark package

3.1. Test data

For algorithm development it is of essential importance to use data for which the real dif-
ferences are known. Some experimental data sets have been described in the area of tran-
scriptomics, where particular transcripts are spiked in the treatment samples – a biomarker
selection method should be able to distinguish between the spiked-in and the unchanged vari-
ables. A well known example is the “Golden Spike” experiment of Choe, Boutros, Michelson,
Church, and Halfon (2005); a subset of these data is available in the st package (Opgen-Rhein,
Zuber, and Strimmer 2012) as choe2.mat. A common characteristic of spike-in data from
microarrays is the extremely low number of replicates, making biomarker identification very
difficult indeed. An example from the field of proteomics can be found in Wessels et al. (2012).

Package BioMark comes with its own set of experimental spike-in data. The data are de-
scribed extensively in Franceschi, Masuero, Vrhovsek, Mattivi, and Wehrens (2012a). In
short, extracts of twenty Golden Delicious apples were prepared; ten of them were designated
“control” samples and analyzed by LC-MS without further manipulation, the other ten were
spiked in three different ways, leading to thirty “treatment” samples. Nine chemical com-
pounds were used for spiking, and the differences between the three sets of spiked samples
are the different concentration ratios between the spike-in compounds. Concentrations were
chosen to be 20% to 100% higher than the average concentration for those compounds that
occur naturally in apples; for the two compounds that are not, concentrations were chosen in
such a way that the feature intensities would be comparable to the other features. The forty
samples were injected in both positive and negative ion mode, leading to, in total, eighty raw
data files. Data processing with the Bioconductor package XCMS (Smith, Want, O’Maille,
Abagyan, and Siuzdak 2006) then leads to 1632 and 995 features detected in positive and
negative ion modes, respectively. The results are stored in data files SpikePos and SpikeNeg,
respectively. A smaller subset of the data, described in Wehrens et al. (2011) and available
as data file spikedApples, only considers the first set of spike-in concentrations. For further
information on the experimental data, see Franceschi et al. (2012a).

As an example of how to access the experimental spike-in data, here is the code used to
produce the plot in Figure 1 using the scatterplot3d (Ligges and Mächler 2003) package:
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R> library("scatterplot3d")

R> library("BioMark")

R> data("SpikePos")

R> scatterplot3d(SpikePos$annotation$rt, SpikePos$annotation$mz,

+ sqrt(SpikePos$data[1,]), mar = c(4, 3, 0, 3) + 0.1, type = "h",

+ highlight.3d = TRUE, angle = 110, box = FALSE,

+ xlab = "Retention time (s)", ylab = "m/z", zlab = "sqrt(Intensity)")

The manual pages for SpikePos, SpikeNeg and spikedApples show more visualization ex-
amples.

An often-used alternative to spike-in data is to rely on simulations. For the case of two-group
classification, BioMark contains the functions gen.data and gen.data2. Both generate a
number of data sets containing two matrices, a control matrix and a treatment matrix with
differences present in the first variables. Elements such as the sizes of the matrices, the
numbers of variables in which real differences are introduced, and the size of the differences
can be controlled by the user. As an example, consider the following:

R> simdata <- gen.data(ncontrol = 10, nvar = 800, group.diff = 1.5)

R> names(simdata)

[1] "X" "Y" "nbiomarkers"

R> dim(simdata$X)

[1] 20 800 100

This piece of code simulates 100 data sets (the default) of ten control samples and ten treated
samples, with 800 variables. The default number of biomarkers is five. We can assess the
effect of introducing differences in these variables as follows:

R> coldiffs <- sapply(1:100, function(i, x)

+ colMeans(x[11:20, , i]) - colMeans(x[1:10, , i]), simdata$X)

R> rowMeans(coldiffs)[1:10]

[1] 1.47199 1.46784 1.55777 1.50566 1.54334

[6] -0.01100 -0.02041 -0.03145 -0.01291 0.00426

The differences between control and treatment samples (we are looking only at the first ten
here), averaged out over all simulated data sets, correspond to what we asked them to be.
The default is to generate data with a diagonal covariance matrix. To obtain data with a
specific covariance structure (as done in, e.g., Zuber and Strimmer 2009; Meinshausen and
Bühlmann 2010; Wehrens et al. 2011), one can specify the cormat argument:

R> mycov <- matrix(0, 800, 800)

R> mycov[row(mycov) <= 50 & col(mycov) <= 50] <- 0.3

R> mycov[row(mycov) > 50 & col(mycov) > 50] <- 0.7

R> diag(mycov) <- 1

R> simdata2 <- gen.data(ncontrol = 10, nvar = 800, group.diff = 1.5,

+ cormat = mycov)
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This example generates data with a blocked covariance (or correlation) structure as in Wehrens
et al. (2011): the first fifty variables, in which the biomarkers are present, have a low corre-
lation of 0.3, and the last 750 variables have a much higher correlation of 0.7.

Another possibility is to generate data with the covariance of the experimental control data:

R> simdata3 <- gen.data(ncontrol = 10, nvar = ncol(SpikePos$data),

+ group.diff = 1.5, cormat = cov(SpikePos$data[1:10, ]))

Such a simulation would lead to data that are more close to the experimental world. However,
even when using an experimental covariance matrix, the multivariate normality assumption
may be quite far from reality. To generate even more realistic data, we can simply take
experimental data and multiply the designated biomarker columns with a number different
from one, or add a constant difference, as is done, e.g., in Meinshausen and Bühlmann (2010)
and Wehrens and Franceschi (2012). This approach is implemented in function gen.data2.
The output has the same fields as gen.data, but the arguments are slightly different – an
example will be shown in Section 4. These functions make it easy to assess the performance
of variable selection methods over a large number of scenarios.

3.2. Package structure

Both stability selection and higher criticism are meta-statistics, further processing the results
of other statistical tests or modelling methods. Several default values have been defined in
the .biom.options object, accessible through the biom.options() function. To see which
primary biomarker selection methods are supported, e.g., use:

R> biom.options()$fmethods

[1] "studentt" "shrinkt" "pcr" "pls" "vip" "lasso"

The first two possibilities are univariate and refer to the classical t test and the shrinkage t
proposed in Zuber and Strimmer (2009), respectively. The others are multivariate methods,
possibly able to benefit from explicitly modelling correlation structure. Options pcr and pls

are based on principal component regression (PCR), and PLS regression, respectively – in
these cases, the sizes of the regression coefficients will determine whether variables are likely
to correspond to true differences or not. These functions are taken from the pls package (Mevik
and Wehrens 2007). The next option is the variable importance of projection (VIP, Wold et al.
2001), basically a weighted sum of the loadings of a PLS. Again, larger values indicate higher
variable importance. Finally, the lasso option provides access to the lasso and elastic net
functionality of R package glmnet (Friedman, Hastie, and Tibshirani 2010), which implements
not only the lasso but also the elastic net.

An overview of all possible combinations of methods and applications can be found in Table 1.
The HC criterion only makes sense in a two-class discrimination setting, and can be used with
all choices of fmethod except the lasso. Stability selection can be used for all forms of two-class
discrimination, and with all multivariate methods in the case of regression.

The primary function of BioMark is get.biom, which takes a matrix of measurements and
a response vector as the first two arguments. An example, using the spike-in apple data, is
given by:
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fmethod Two-class discrimination Regression

studentt HC, stability –
shrinkt HC, stability –
pcr HC, stability stability

pls HC, stability stability

vip HC, stability stability

lasso stability stability

Table 1: Variable selection methods and meta-statistics implemented in BioMark.

R> grp1.HC <- get.biom(X = SpikePos$data[1:20,], Y = SpikePos$class[1:20],

+ fmethod = c("studentt", "pls", "vip"), type = "HC")

For classification problems, the response vector Y is a factor; providing a numeric vector will
be interpreted as pointing to a regression situation. The third argument indicates which
modelling methods should be considered; by default this takes the value "all". In this
example, we only consider the Student t test. The fourth argument tells the function what
statistic should be returned. It can take one of three values: "coef" simply returns the
calculated statistics, i.e., t values, regression coefficients or VIP values. A value of "HC" leads
to the calculation of those variables that are important according to the higher criticism
approach. Likewise, defining type = "stab" leads to stability selection. Further arguments
can be used to determine the type of scaling (default is standardization to zero mean and
unit variance) and the number of components to use in the multivariate methods. Function
get.biom returns an object of class BMark, for which generic functions coef, summary and
print are available. The summary function, for example, shows how many variables are
selected for each of the methods:

R> summary(grp1.HC)

Result of HC-based biomarker selection using 3 modelling methods.

Number of different settings for each method:

studentt pls vip

1 1 1

Total number of variables in the X matrix: 1632

Number of variables selected:

studentt pls vip

38 22 27

The selected variables are available through function selection:

R> selection(grp1.HC)

$studentt

$studentt[[1]]

[1] 963 967 266 1034 1242 ...



Journal of Statistical Software 9

$pls

$pls[[1]]

[1] 30 266 963 967 985 ...

$vip

$vip[[1]]

[1] 30 266 399 847 963 ...

The output has been edited to show only the first five selected variables in each case. As can
be expected, there is overlap but the results are not completely the same.

The three possibilities for the type argument in the get.biom function lead to model coeffi-
cients, p values and stability fractions for "coef", "HC" and "stab", respectively. To extract
them, the generic function coef.BMark is available. For example, Figure 2 was produced by
providing HCthresh with a vector of p values from the grp1.HC object:

R> grp1.HCsel <- HCthresh(coef(grp1.HC)$studentt[[1]], plot = TRUE)

Finally, to assess the performance of the separate approaches, receiver operating character-
istics (ROC) curves are implemented according to the suggestions in Lumley (2004). These
simply plot the fraction of false positives (also called the complement of the specificity) versus
the fraction of true positives (the sensitivity), where the order of inclusion is from big to small.
The data for the ROC curve can be calculated by:

R> real.markers <- which(SpikePos$annotation$found.in.standards > 0)

R> grp1.troc <- ROC(1/coef(grp1.HC)$studentt[[1]], real.markers)

Since the smallest p values correspond to the largest t statistics, we can simply use the inverse
of the p values as input for the ROC function, which expects the biggest values to be included
first. Individual values in a ROC plot can be calculated by presenting the list of selected
variables, together with the“true”markers and the number of variables to function roc.value.
The following example calculates how well the variables selected by the combination of the
t test and HC thresholding do:

R> grp1.HC.troc <- roc.value(selection(grp1.HC)$studentt[[1]],

+ real.markers, totalN = ncol(SpikePos$data))

Function selection is used here to extract the selected variables from the BMark object.
Finally, then, the ROC curve can be created:

R> plot(grp1.troc, type = "l", main = "Student t")

R> points(grp1.HC.troc, col = "red", pch = 19, cex = 1.5)

The result is shown in the left plot of Figure 3. The top left corner, as usual, corresponds to
the ideal situation where all biomarkers are found without any false positives. The t values
selected early (those with large absolute sizes) in general correspond to true biomarkers, as
can be expected. The result shows that HC in this case does an excellent job in finding an
appropriate cutoff value, and puts it right at the point where the number of false positives
starts to increase. This effect is even stronger in the plots for PLS and VIP in the same figure,
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Figure 3: ROC curves for t statistics (left), PLSDA model coefficients (middle) and VIP values
(right), comparing Group 1 with controls; apple data, positive ionization. In each case, the
HC threshold is indicated with a red dot. For the PLS and VIP curves, two latent variables
are employed (the default).

prepared by very similar code. In some practical applications one may be prepared to accept
many more false positives in order to maximize the number of true positives.

It is important to realize that ROC curves such as the ones in Figure 3 can only be made
when knowledge is available about what are the real biomarkers, stressing the importance of
the availability of real and simulated data sets with known class differences.

3.3. Parameters

For both HC and stability selection, it has been found previously that the exact parameter
values do not influence the results very much and that the methods are fairly robust (Donoho
and Jin 2008; Meinshausen and Bühlmann 2010) – the default values should be appropriate
in a wide range of applications. The HC approach has only two parameters: HCalpha, de-
termining the maximal number of significant differences to be found, and, for multivariate
discrimination methods, nset, which sets the number of permutations for establishing null
distributions for PCLDA, PLSDA and the VIP.

For stability selection, one parameter is min.present, i.e., the minimal fraction of perturbed
sets in which a variable needs to be selected in order to be considered a possible biomarker.
This value is by default set to 0.1; setting it to higher values will lead to fewer variables
being selected. Other parameters, common for all primary methods, are concerned with how
the data are perturbed: oob.fraction defines the fraction of the samples that is left out
in each subsampling, and variable.fraction the fraction of the variables. These are set
by default to 0.3 and 0.5, respectively. Using oob.size rather than oob.fraction allows
the user to define the real number of left-out samples rather than the fraction. Parameter
max.seg defines how many subsamplings are to be provided: for very small data sets in a
two-class setting, it is possible to assess all possible combinations, but in the majority of cases
a random selection of max.seg will be returned.

The main difference within the stability selection parameters is found between the lasso and
the other methods. The lasso itself already provides a primary selection paradigm, in that
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most of the coefficients will be zero for a given value of the lambda parameter. On the other
hand, stability selection applied to t tests or regression coefficients from models like PLS will
have to decide for each iteration which variables are“in”and which are“out”. This is governed
by ntop, one of the arguments in biom.options(), by default set to 10. That is, a particular
variable will be selected by the primary method if it is among the ten biggest values. Setting
ntop to a larger value will lead to the selection of more variables.

4. Two-class discrimination

4.1. Higher criticism

To further illustrate the application of biomarker selection in two-class discrimination, we
consider a simulated data set, based on the experimental metabolomics apple data. First, we
remove those variables that we know correspond to true biomarkers:

R> real.markers <- which(SpikePos$annotation$found.in.standards > 0)

R> full.data <- SpikePos$data[1:20, -real.markers]

Next, we generate a treatment class, where differences are introduced in the first ten variables

R> sim.data <- gen.data2(full.data, ncontrol = 10, nbiom = 10,

+ spikeI = c(1.5, 1.75, 2), nsimul = 1)

The spikeI argument is used to define the difference between the assigned biomarker variables
and the non-biomarkers. In this case, the default way of spiking is used, which is a multipli-
cation of a biomarker variable with one of the numbers from spikeI; if type = "additive"

is used, these numbers will be added to the biomarker variables. Note that the non-biomarker
variables and the controls will not be changed in these simulated data sets.

The HC threshold selection is then performed in the following way:

R> biclass.HC <- get.biom(sim.data$X[,,1], sim.data$Y, type = "HC",

+ fmethod = c("studentt", "pls", "vip"))

This takes some time, because for the pls and vip methods many data permutations are
needed to obtain p values for the regression coefficients. Efficient calculations enable us to
calculate both (related) statistics at the same time; the same goes for the numbers of latent
variables. The HC threshold for the studentt statistic is very fast since no simulation is
needed (Wehrens and Franceschi 2012).

The structure of the biclass.HC object is a nested list, with entries for each of the primary
selection methods, as well as an info field containing information on the function call. The
result can be inspected by using some of the functions described earlier. The selection made
by the VIP, e.g., is given by:

R> selection(biclass.HC)$vip[[1]]

[1] 1 2 4 5 7 8 10 9



12 BioMark: Meta-Statistics for Variable Selection in R

The simulation used as true spike-in variables the first ten: only variables three and six are
missed here. The pls selection chooses the same variables, but the HC-Student t combination
selects many more. Yet also this selection misses number three, and places number six only
at place 112 – the simulated data, just like real-life data, do not always present differences in
the way that is expected. However, the first eight selected variables from the Student t are
the same ones selected by the two multivariate methods. One should average the results over
many data sets, consisting both of real data and simulations before drawing any conclusions
on the behaviour of individual methods. An initial assessment indicates that pls is probably
the most appropriate method when the cost of false positives is high and selections need to
be very efficient; if, on the other hand, it is important not to miss true positives, the Student
t test can be better (Wehrens and Franceschi 2012).

4.2. Stability selection

The stability selection for the simulated data in Section 4.1 can be obtained in a perfectly
analogous way. Now also the lasso is an option – let us include that in the list of primary
selection methods.

R> biclass.stab <- get.biom(X = sim.data$X[,,1], Y = sim.data$Y,

+ fmethod = c("studentt", "pls", "vip", "lasso"), ncomp = 2:3,

+ type = "stab")

R> summary(biclass.stab)

Result of stability-based biomarker selection using 4 modelling methods.

Number of different settings for each method:

studentt pls vip lasso

1 2 2 87

Total number of variables in the X matrix: 1610

Number of variables selected:

$studentt $pls $vip

[1] 2 2

27 22 27

$lasso

0.4799 0.4581 0.4373 0.4174 0.3985 0.3803 0.3631 0.3466 0.3308 0.3158 0.3014

0 3 4 5 5 5 5 5 5 5 5

...

0.0134 0.0127 0.0122 0.0116 0.0111 0.0106 0.0101 0.0096 0.0092 0.0088

14 14 14 14 14 14 14 14 15 15

The (edited) output shows that the differences between the number of selected variables for
each of the methods are much smaller than in the HC example: the t test now gives results
that are very close to the ones from PLS and the VIP: the multivariate methods select more
variables than with HC, the t test fewer. The lasso seems to select slightly fewer variables than
the other methods – only in 38 out of the 87 settings chosen for the regularization method λ it
selects more than ten variables. In all methods, the first eight selected variables correspond to
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Figure 4: Lasso stability trace for simulated data: the y-axis indicates the fraction with
which a certain variable is selected in the subsampling iterations. The x-axis indicates the
lasso penalty. Red solid lines correspond to true biomarkers; gray dashed lines to unchanged
variables.

true biomarkers, with the exception of some values for λ in the lasso, where variable number
eight sometimes enters at position 10.

A convenient visualization method for the lasso result, similar to the stability plots in Mein-
shausen and Bühlmann (2010), can be obtained using the function traceplot:

R> traceplot(biclass.stab, lty = rep(1:2, c(10, 1600)),

+ col = rep(c("red", "gray"), c(10, 1600)))

The result is shown in Figure 4. Here, true biomarkers are indicated in red solid lines, and non-
biomarker variables in gray dashed lines. The threshold for stability selection, here taking the
default value of 0.1, is indicated with a blue dashed line. Clearly, only a few variables achieve
any kind of stability in the selection, and these invariably correspond to true biomarkers.
With decreasing values for λ, it can be seen that two more true biomarkers become apparent,
whereas variable eight, a true biomarker, is for some λ values overshadowed by non-biomarker
variables.

4.3. HC versus stability selection

Both stability selection and HC have their advantages and disadvantages – they aim at slightly
different goals, too. The HC selections will by definition always lie on the ROC curve for a
particular primary selection method, whereas stability selection may lead to points that are
away from the curve, and can be closer to the ideal top-left corner of the plot (Meinshausen
and Bühlmann 2010; Wehrens et al. 2011). As an example, Figure 5 shows the ROC curves
of comparing Group 2 samples with controls, positive ionization mode. HC selections, shown
in red, are (by definition) located on the ROC curve defined by the model coefficients. Also
the PLSDA stability selection lies right on top of the ROC curve; for the Student t test and
the VIP statistic, however, the stability selection shows a small advantage. Even though the
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Figure 5: ROC plots for comparing Group 2 samples with controls, positive ionization. For
the t test and the VIP, stability selection shows a slight improvement over the standard ROC
curve.

difference may be small (the figures are showing only a small part of the complete ROC plane),
it can still be relevant, in that for the same number of true positives fewer false positives are
found – note that with many variables, a small distance on the x axis can still correspond
to many variables. Earlier it has been found that in some cases the advantage of stability
selection may be substantial (Meinshausen and Bühlmann 2010; Wehrens et al. 2011). In
principle, it is also possible that stability selection leads to results that are less good than the
ROC curve, but we have not seen examples where the difference is big.

Whereas HC selection is very fast for methods directly giving p values, like (variants of) the
Student t test, multivariate methods take more time, and in these cases stability selection is
faster. Typical running times for multivariate cases are a couple of minutes for HC selection
and a couple of seconds for stability selection. Stability selection also is the more general
method of the two: it can not only be applied in a two-class discrimination setting, but also
in a regression context, as we will see in Section 5. The applicability of stability selection in
discrimination, however, can be limited by the requirement that number of samples in each
of the groups should be reasonably large: subsampling a group of five samples is probably
not useful, and at least eight to ten samples per class are required. In the microarray and
sequencing world this is still a relatively large number, but with prices dropping rapidly and
the possibility for efficient multiplexing, it is expected that these numbers of replicates per
class will be the rule rather than the exception within one to two years. HC selection is
not directly limited by the number of replicates, although obviously better results should be
expected with more information. One should, however, take into account that the method
has been explicitly devised for finding differences in cases where these differences are rare and
weak. The aforementioned spike-in microarray data of Choe et al. (2005) are therefore not
very well suited for analysis by HC: the fraction of spike-ins is rather high. The HC default
of α = 0.1, also suggested by the original authors, indicates that the true differences should
be present in less than ten percent of the variables.

5. Regression

Variable selection in regression is typically performed by minimizing a measure of prediction



Journal of Statistical Software 15

900 1100 1300 1500 1700

●●●●●●●●●●● ●●●● ●● ●● ● ●● ●●● ● ● ●● ●●

●● ●●●● ●●

●●●●● ●●●● ● ●● ●●●●● ●● ● ●●● ●● ●● ●● ●●●●● ● ● ●● ●● ● ●●●● ●●● ●●

●

●

●

full model
PLS−stability model
Lasso−stability model
Elnet−stability model

(401 vars):
(31 vars):

(8 vars):
(50 vars):

RMSEP = 0.209
RMSEP = 0.216
RMSEP = 0.411
RMSEP = 0.356

Figure 6: Stability selection in regression: the gasoline data from the pls package. Selecting
only four regions, PLS stability selection achieves a comparable prediction error to the full
spectrum model.

error, such as a crossvalidation error. In cases with few samples, however, this measure is
usually not very reliable and one runs the risk of overfitting: this can only be evaluated by
leaving out more samples and using these as a test set. Stability selection, on the other hand,
does not explicitly seek to minimize prediction error, but only identifies those variables that
are consistently important. As an example, consider the gasoline data, available in the pls
package. These data have been used extensively in literature as test data for variable selection:
the aim is to predict the octane number of the samples based on near-infrared spectral data,
containing intensities at 401 wavelengths.

Stability selection with PLS (using three latent variables) and the lasso can be performed in
the following steps. First, we load the data (here, the gasoline data from the pls package), and
create indices for training and test sets, consisting of the odd and even samples, respectively.
Next, we define the values for the lasso regularization parameter that we want to use, and
call get.biom:

R> data("gasoline")

R> train.idx <- seq(1, 60, by = 2)

R> test.idx <- seq(2, 60, by = 2)

R> .biom.options$lasso$lambda <- exp(seq(-6, -4, length = 100))

R> gasoline.stab <- get.biom(gasoline$NIR[train.idx,],

+ gasoline$octane[train.idx], ncomp = 3, fmethod = c("pls", "lasso"),

+ type = "stab", scale.p = "none")

We can also calculate the results of the elastic net, here taking a (rather arbitrary) value of
α = 0.5:

R> .biom.options$lasso$alpha <- 0.5

R> gasoline.elnetstab <- get.biom(gasoline$NIR[train.idx,],

+ gasoline$octane[train.idx], ncomp = 3, fmethod = "lasso",

+ type = "stab", scale.p = "none")

The results are shown in Figure 6. The full PLS model, using 401 wavelengths, achieves the
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lowest error, but the stability-selected PLS model (shown with red plotting symbols) is not
far behind. What is interesting is that the variables are selected in only four distinct regions,
evidently reflecting physical phenomena in these areas related to the property of interest. The
variables selected by the lasso model are in two of these four regions: the ones selected by
the elastic net add another, fifth region, and considerably expand the region in the right of
the figure. For both the lasso and the elastic net, the λ values shown have been selected by
calling cv.glmnet on the training data and picking the λ value with the absolute smallest
crossvalidation error. Prediction errors for the two lasso-based models are quite a bit larger
than for the PLS models. However, it should be noted that PLS was designed to work just
with data of this type: highly correlated and smooth spectra, for which a low number of latent
variables is able to extract virtually all relevant information. It should also be noted that the
wavelength selection here is not based on an explicit minimization of prediction error, the
criterion in virtually all other variable selection methods.

6. Outlook

BioMark is available from the Comprehensive R Archive Network at http://CRAN.R-project.
org/package=BioMark under the GPL license (version 2 or later). The first version to be re-
leased, 0.2.6, contained stability-selection functions for PLS, PCR and the t test (Wehrens
et al. 2011). The next release, 0.3.0, added the higher-criticism functions to the reper-
toire (Wehrens and Franceschi 2012), while the version 0.4.0 introduced the lasso option
of the stability selection. This is also the first version that – for stability selection – allows
variable selection in regression problems.

Future developments will primarily focus on stability selection. One extension will be the
implementation of variable weights, leading to the randomized stability selection as advocated
by Meinshausen and Bühlmann (2010). Since the differences between the random-forest type
of stability selection, currently implemented, and the weighted stability selection are not likely
to be very large, the main purpose of this extension is completeness and easier comparison
between the two approaches. Another extension is the possibility of incorporating user-defined
tests in a simple way. At this point, this cannot be done without editing the source and
recompiling the package. We hope that the package will provide a user-friendly approach
to variable selection in many areas of science, and remain open to suggestions for further
improvements.

References

Barker M, Rayens W (2003). “Partial Least Squares for Discrimination.” Journal of Chemo-
metrics, 17, 166–173.

Benjamini Y, Hochberg Y (1995). “Controlling the False Discovery Rate: A Practical and
Powerful Approach to Multiple Testing.” Journal of the Royal Statistical Society B, 57,
289–300.

Breiman L (2001). “Random Forests.” Machine Learning, 45(1), 5–32.

http://CRAN.R-project.org/package=BioMark
http://CRAN.R-project.org/package=BioMark


Journal of Statistical Software 17

Choe SE, Boutros M, Michelson AM, Church GM, Halfon MS (2005). “Preferred Analy-
sis Methods for Affymetrix GeneChips Revealed by a Wholly Defined Control Dataset.”
Genome Biology, 6(2), R16.

Donoho D, Jin J (2004). “Higher Criticism for Detecting Sparse Heterogeneous Mixtures.”
The Annals of Statistics, 32, 962–994.

Donoho D, Jin J (2008). “Higher Criticism Thresholding: Optimal Feature Selection When
Useful Features Are Rare and Weak.” Proceedings of the National Academy of Sciences,
105(39), 14790–14795.

Efron B, Tibshirani R (2007). “On Testing the Significance of Sets of Genes.” The Annals of
Statistics, 1, 107–129.

Franceschi P, Masuero D, Vrhovsek U, Mattivi F, Wehrens R (2012a). “A Benchmark Spike-
In Data Set for Biomarker Identification in Metabolomics.” Journal of Chemometrics, 26,
16–24.

Franceschi P, Vrhovsek U, Mattivi F, Wehrens R (2012b). “Metabolic Biomarker Identification
with Few Samples.” In K Varmuza (ed.), Chemometrics. InTech Open Access Publishers.
URL http://www.intechopen.com/download/pdf/33610.

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear
Models via Coordinate Descent.” Journal of Statistical Software, 33(1). URL http://www.

jstatsoft.org/v33/i01/.
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