
JSS Journal of Statistical Software
November 2012, Volume 51, Issue 12. http://www.jstatsoft.org/

MixSim: An R Package for Simulating Data to

Study Performance of Clustering Algorithms

Volodymyr Melnykov
The University of Alabama

Wei-Chen Chen
Oak Ridge

National Laboratory

Ranjan Maitra
Iowa State University

Abstract

The R package MixSim is a new tool that allows simulating mixtures of Gaussian dis-
tributions with different levels of overlap between mixture components. Pairwise overlap,
defined as a sum of two misclassification probabilities, measures the degree of interaction
between components and can be readily employed to control the clustering complexity
of datasets simulated from mixtures. These datasets can then be used for systematic
performance investigation of clustering and finite mixture modeling algorithms. Among
other capabilities of MixSim, there are computing the exact overlap for Gaussian mixtures,
simulating Gaussian and non-Gaussian data, simulating outliers and noise variables, calcu-
lating various measures of agreement between two partitionings, and constructing parallel
distribution plots for the graphical display of finite mixture models. All features of the
package are illustrated in great detail. The utility of the package is highlighted through a
small comparison study of several popular clustering algorithms.

Keywords: Gaussian mixture model, data simulation, pairwise overlap, parallel distribution
plot, R.

1. Introduction

The main goal of clustering is to form groups of similar observations while also separating dis-
similar ones. Many clustering algorithms have been developed, such as the iterative k-means
(Forgy 1965; MacQueen 1967) and k-medoids (Kaufman and Rousseuw 1990) algorithms, hier-
archical (both agglomerative and divisive) algorithms with different merging/splitting criteria
called linkages – e.g., Ward’s (Ward 1963), single (Sneath 1957), complete (Sorensen 1948)
and other – and the probabilistic model-based clustering algorithms, where the observations
are assumed to be sampled from an underlying finite mixture model (Melnykov and Maitra
2010). For a comprehensive review of clustering methods, see Xu and Wunsch (2009).

http://www.jstatsoft.org/

2 MixSim: Simulating Data for Clustering Algorithms in R

Clustering is a difficult problem with, consequently, many suggested methodologies, but no
uniformly best performer in all situations. Thus, it is of interest to understand the scenarios
in which different clustering algorithms perform better, worse, or indifferently. This requires
an objective measure that would allow the clustering complexity of a simulated dataset to
be controlled and different procedures to be calibrated with regard to this complexity. Per-
formance of clustering algorithms depends on many factors such as cluster representation,
orientation, elongation, multimodality, overlap, presence of noise, and others. The majority
of procedures aiming to control clustering complexity focus on finding a good measure for the
level of separation or overlap among clusters.

There have been many attempts made to define clustering complexity and to evaluate clus-
tering algorithms in different settings. We refer our reader to Steinley and Henson (2005)
and Maitra and Melnykov (2010) for a comprehensive review, while focusing our discussion
here on a few most recent ones. Dasgupta (1999)’s c-separation for two p-dimensional Gaus-
sian densities with mean vectors µi and covariance matrices Σi for i = 1, 2 is defined as

c ≤ ||µ1 − µ2||/
√
pmax{λ(p)(Σ1), λ(p)(Σ2)}, where λ(p) represents the largest eigenvalue in

the corresponding covariance matrix Σi. c-separation is widely used by researchers but can-
not serve as an adequate measure of the interaction between distributions as it does not take
into consideration the structure of both covariance matrices relying in its inference just on
the largest eigenvalue and the norm of two mean vectors. Another approach to generating
clustered data was proposed by Steinley and Henson (2005). The algorithm is implemented
in the MATLAB function OCLUS and conveniently generates clusters of different shapes from
various distributions. However, there are some limitations of this approach as well: clusters
are marginally independent by construction and the number of overlapping clusters is re-
stricted. A novel separation index was proposed by Qiu and Joe (2006b) and implemented in
their package clusterGeneration (Qiu and Joe 2006a) for R (R Development Core Team 2012).
In a univariate setting, the developed index is calculated as (ql,2 − qu,1)/(qu,2 − ql,1), where
ql,1 and qu,1 are the lower and upper quantiles of the first cluster and ql,2 and qu,2 are the
corresponding quantiles of the second cluster. The probability associated with the quantiles is
an additional parameter commonly chosen to be equal to 0.05. When two clusters are distant,
this index takes values close to 1. It can take negative values but no less than −1 for clusters
that are poorly separated. The advantage of this index is its simplicity and applicability for
clusters of any shapes. At the same time, while being exact in the univariate framework, this
index cannot be readily generalized to the case of two and more dimensions. The authors pro-
pose finding the best projection onto a one-dimensional space that maximizes the separation
of clusters first. Then, their index can be employed as in the univariate case. Unfortunately,
the substantial amount of information can be lost while projecting multidimensional clusters;
hence, conclusions can be partial or incorrect. Very recently, Maitra and Melnykov (2010)
have provided the only known exact measure capable of measuring interaction between two
clusters in terms of the pairwise overlap ω, which is defined for Gaussian mixtures as the
sum of two misclassification probabilities and can be calculated in a univariate as well as
multivariate framework. More details about this measure can be found in Section 2. Maitra
and Melnykov (2010) also developed algorithms which can be used to simulate data from a
finite mixture model with specified clustering complexity. Further, they developed the open-
source CARP package (Melnykov and Maitra 2011) to evaluate clustering algorithms from a
command-line interface.

This paper details the use and applicability of MixSim, an R package with kernel writ-

Journal of Statistical Software 3

ten in C. The package is available from the Comprehensive R Archive Network at http:

//CRAN.R-project.org/package=MixSim and allows for the simulation of mixtures with the
pre-specified level of average or/and maximum pairwise overlap. Thus, the package can be
employed by the user for convenient and systematic comparisons of existing and newly devel-
oped clustering procedures. We discuss the use of this package in Section 3, following up with
a small utility demonstrator in Section 4. The paper concludes with a discussion in Section 5.

2. Methodological and algorithmic details

This section briefly defines the basics of the overlap measure for the reader and discusses two
mixture simulating schemes adopted by MixSim. It also summarizes several indices frequently
used for comparing two partitionings.

2.1. Pairwise overlap

As mentioned in Section 1, the notion of pairwise overlap was recently introduced by Maitra
and Melnykov (2010). We refer the reader to their paper for the detailed analysis of the
measure and its properties. Here, we briefly explain mechanics behind the measure.

Let X be distributed according to the finite mixture model g(x) =
∑K

k=1 πkφ(x;µk,Σk),
where φ(x;µk,Σk) is a multivariate Gaussian density of the kth component with mean vector
µk and covariance matrix Σk. Then, the overlap between ith and jth components is defined
as ωij = ωi|j +ωj|i, where ωj|i is the misclassification probability that the random variable X
originated from the ith component but was mistakenly assigned to the jth component; ωi|j is
defined similarly. Thus, ωj|i is given by

ωj|i = Pr
[
πiφ(X;µi,Σi) < πjφ(X;µj ,Σj) |X ∼ Np(µi,Σi)

]
.

Overlap has nice closed form expressions in some special cases. For example, when πi = πj
as well as Σi = Σj ≡ Σ, we obtain

ωij = 2Φ

(
−1

2

√
(µj − µi)′Σ−1(µj − µi)

)
,

where Φ is the standard normal cumulative density function. For spherical clusters, the above
reduces to ωij = 2Φ

(
− 1

2σ ‖µi − µj‖
)
. In general, misclassification probabilities are given by

ωj|i = PrNp(µi,Σi)

 p∑
l=1

l:λl 6=1

(λl − 1)Ul + 2

p∑
l=1

l:λl=1

δlWl ≤
p∑
l=1

l:λl 6=1

λlδ
2
l

λl − 1
−

p∑
l=1

l:λl=1

δ2l + log
π2j | Σi |
π2i | Σj |

 ,
where λ1, λ2, . . . , λp are eigenvalues of the matrix Σ

1
2
i Σ−1j Σ

1
2
i and γ1,γ2, . . . ,γp are the corre-

sponding eigenvectors, Ul’s are independent noncentral χ2 random variables with one degree

of freedom and noncentrality parameter given by λ2l δ
2
l /(λl − 1)2 with δl = γ′lΣ

− 1
2

i (µi − µj),
independent of Wl’s, which are independent N(0, 1) random variables. This provides an effi-
cient way of calculating ωi|j and ωj|i due to the algorithm AS155 (Davies 1980) that computes
probabilities for linear combinations of noncentral χ2 random variables.

http://CRAN.R-project.org/package=MixSim
http://CRAN.R-project.org/package=MixSim

4 MixSim: Simulating Data for Clustering Algorithms in R

Note that if the covariance matrices are multiplied by some positive constant c, it causes
inflation (c > 1) or deflation (c < 1) of the components. Thus, we can manipulate the
value of c in order to reach the pre-specified level of overlap ωij(c) between the components.
According to Maitra and Melnykov (2010), the function ωij(c) does not have to be monotone
increasing; however, ωij(c) enjoys monotonicity in the overwhelming number of simulated
mixtures. In those rare cases when monotonicity is violated, the simplest solution is to drop
the current mixture and simulate a new one.

If c→∞ and clusters are heterogeneous, the above expression reduces to

ω∞j|i = PrNp(µi,Σi)

 p∑
l=1

l:λl 6=1

(λl − 1)Ul ≤ log
π2j | Σi |
π2i | Σj |

 ,
where Ul’s are independent central χ2 random variables with one degree of freedom.

Maitra and Melnykov (2010) do not discuss the case of homogenenous clusters but it can be
also addressed as follows. If all clusters are homogeneous, the expression for ωj|i reduces to

ωj|i = Φ

−1

2

√√√√ p∑
l=1

δ2l +
log πj/πi√∑p

l=1 δ
2
l

 .

When c→∞, δ2l → 0 for l = 1, 2, . . . , p. This yields ω∞j|i = 0 for πj < πi, ω
∞
j|i = 1

2 for πj = πi,
and ω∞j|i = 1 for πj > πi. This indicates that the value of asymptotic overlap for homogeneous
clusters is ω∞ij = ω∞j|i + ω∞i|j = 1 for any mixing proportions πi and πj .

2.2. Mixture model and data generation

Having detailed the pairwise overlap and its implementation in Section 2.1, the overlap can
now be employed to control the degree of interaction among mixture components. Before we
proceed to the next section describing algorithms for generating mixtures with a pre-specified
overlap characteristic, we discuss how mixture model parameters are simulated.

Mean vectors of Gaussian mixture components µk are obtained as K independent realizations
from a uniform p-variate hypercube with bounds specified by the user. Covariance matrices
Σk are taken as draws from the Wishart distribution with parameter p and p+ 1 degrees of
freedom. The low number of degrees of freedom provides us with random covariance matrices
of different orientation and elongation. Finally, mixing proportions πk are generated on the
[0, 1] interval subject to the restriction

∑K
k=1 πk = 1 with the lower bound pre-specified by

the user. To simulate a dataset from a generated mixture, first, cluster sizes are obtained as a
draw from a multinomial distribution based on mixing proportions. Then, the corresponding
number of realizations are obtained from each multivariate normal component.

2.3. Algorithms

Maitra and Melnykov (2010) provided two algorithms that simulate Gaussian mixtures ac-
cording to pre-specified values of average (ω̄) or/and maximum (ω̌) overlap. The algorithms
are briefly summarized below.

Journal of Statistical Software 5

Generate mixture model controlling the average or maximum overlap

The first algorithm generates a mixture model with respect to the level of average or maximum
overlap. The algorithm consists of the following three steps.

1. Generating initial parameters. Generate K mixing proportions, mean vectors and co-
variance matrices as discussed in Section 2.2. Compute limiting average (ω̄∞) (max-
imum (ω̌∞)) overlap. If ω̄ > ω̄∞ (ω̌ > ω̌∞), discard the realization and start Step 1
again.

2. Calculating pairwise overlaps. Compute all pairwise overlaps. Calculate the current
estimate of ˆ̄ω (ˆ̌ω). If the difference between ˆ̄ω and ω̄ (ˆ̌ω and ω̌) is negligible, stop the
algorithm and provide the current parameters.

3. Scaling clusters. Use root-finding techniques to find a covariance matrix multiplier c
such that the difference between ˆ̄ω(c) and ω̄ (ˆ̌ω(c) and ω̌) is negligible.

For finding roots, MixSim obtains bounds of an interval that contains the root by considering
positive or negative powers of 2, and then applies the approach of Forsythe, Malcolm, and
Moler (1980) to find the root.

Generate mixture model controlling the average and maximum overlap

The second algorithm deals with both characteristics ω̄ and ω̌ simultaneously. It can be
preferred over the first algorithm to better control the overlap between simulated components.

1. Scaling clusters to reach ω̌. Use the first algorithm to obtain the set of parameters that
satisfies ω̌ and fix two components that produced the highest overlap; their covariance
matrices will not be involved in inflation/deflation process.

2. Finding c∨. Find the largest value of c (say c∨) such that none of pairwise overlaps
ωij(c∨) exceeds ω̌. If ˆ̄ω(c∨) < ω̄, discard the realization and return to Step 1.

3. Limited scaling. While keeping the two fixed components unchanged, apply Step 3 of
the first algorithm to the rest of components to reach the desired ω̄. If the obtained
parameters satisfy ω̄ and ω̌, report them. Otherwise, start with Step 1 again.

It can be noticed that not every combination of ω̌ and ω̄ can be obtained. Immediate restric-
tions are ω̄ ≤ ω̌ and ω̌ ≤ ω̄K(K−1)/2, where K is the number of mixture components. Also,
some combinations of ω̌ and ω̄ can be more difficult to reach than the others. In this case, a
higher number of mixture resimulations may be needed to find a targeted mixture.

2.4. Classification indices

One application of MixSim is the systematic investigation of the properties of clustering algo-
rithms. In order to assess the level of similarity between partitioning vectors, some measure
has to be used. There are multiple indices that have been developed for this purpose – see
Meilă (2006) for a detailed review. Here, we summarize those indices that are implemented
in MixSim. Meilă (2006) brackets all indices into one of three groups. The first group of
indices compares clusterings counting the pairs of points that are assigned to the same or

6 MixSim: Simulating Data for Clustering Algorithms in R

different clusters under both partitionings. The Rand (1971) index falls into this category
and is defined as

R(c1, c2) =
N11 +N00(

n
2

) ,

where c1 and c2 are the first and second partitioning vectors respectively, N11 is the number
of pairs of points in the same cluster under c1 and c2, and N00 is the number of pairs in
different clusters under c1 and c2; n represents the number of points in partitioning vectors.
The more commonly used modification of R(c1, c2) involves adjustment with its E(R(c1, c2)),
providing the adjusted Rand index (Hubert and Arabie 1985):

AR(c1, c2) =
R(c1, c2)− E(R(c1, c2))

1− E(R(c1, c2))
.

Another, albeit less popular, adjustment of the Rand index was proposed by Mirkin (1996):

M(c1, c2) = n(n− 1)(1−R(c1, c2)).

An interesting index proposed by Fowlkes and Mallows (1983) combines two asymmetric
criteria of Wallace (1983), W1(c1, c2) and W2(c1, c2) :

F (c1, c2) =
√
W1(c1, c2)W2(c1, c2),

where

Wi(c1, c2) =
2N11∑K(i)

k=1 n
(i)
k (n

(i)
k − 1)

for i = 1, 2 with n
(i)
k representing the size of the kth cluster according to the partitioning ci

and K(i) representing the number of clusters in ci. Indices R, AR, and F have upper bounds
equal to 1 which can be achieved only in the case of the same partitioning, i.e., c1 = c2.
On the contrary, the Mirkin index reaches 0 for identical partitioning vectors; otherwise,
it takes positive integer values. These four indices are implemented in MixSim’s function
RandIndex().

A second group of indices compares partitionings by set matching. The most well-known
index here is the proportion of observations that agree on classification for both partitioning
vectors. It may be noted that label-switching plays an important role here as the result is
label-dependent. MixSim’s function ClassProp() calculates this proportion considering all
possible permutations of labels and choosing the permutation yielding the highest proportion
of agreement between two partitionings. Of course, this approach becomes restrictive for a
high number of classes. In this case, heuristic approaches for matching classes, such as pro-
vided by the function matchClasses() from the package e1071 (Meyer, Dimitriadou, Hornik,
Weingessel, and Leisch 2012), can be applied.

The last category of indices is based on the analysis of the variation of information in two
partitioning vectors. Meilă (2006) developed an index defined as

VI (c1, c2) = H(c1) +H(c2)− 2I(c1, c2),

where H(ci) is the entropy associated with ci defined as

H(ci) = −
K(i)∑
k=1

n
(i)
k

n
log

n
(i)
k

n

Journal of Statistical Software 7

for i = 1, 2. I(c1, c2) represents the mutual information between two partitionings and is
defined as

I(c1, c2) =

K(1)∑
k=1

K(2)∑
r=1

nkr
n

log
nkrn

n
(1)
k n

(2)
r

,

where nkr is the number of observations being assigned simultaneously to the kth and rth
clusters under partitionings c1 and c2 respectively. When c1 = c2, VI (c1, c2) = 0. The
upper bound for VI is equal to log n. The MixSim function responsible for calculating VI is
called VarInf(). It is worth pointing out that all the indices listed above and implemented
in MixSim are symmetric, which means that for any index, Index (c1, c2) = Index (c2, c1).

3. Package description and illustrative examples

In this section we provide a detailed description of MixSim’s capabilities, along with illus-
trations. First, we briefly summarize MixSim’s functionality which includes the following
features:

� simulating Gaussian mixture models with homogeneous or heterogeneous, spherical or
ellipsoidal covariance matrices according to the pre-specified level of average or/and
maximum overlap;

� simulating datasets from Gaussian mixtures;

� calculating pairwise overlap for Gaussian mixture components;

� simulating outliers, noise and inverse Box-Cox transformed variables;

� constructing parallel distribution plots to display multivariate Gaussian mixtures;

� calculating various indices for measuring the classification agreement between two ex-
amined partitionings.

The complete list of functions included in the package along with their brief descriptions can
be found in Table 1. More details and illustrative examples for each function are provided
in the following sections. Our illustrative examples can be run by the function demo() in
all considered cases. For instance, the code of the first example in Section 3.1 can be repro-
duced using the command demo("sec3.1_ex1", package = "MixSim"). If there are several

Function Description

MixSim() Simulates a mixture with pre-specified level of ω̄ or/and ω̌
overlap() Calculates the exact overlap given the parameters of a mixture
simdataset() Simulates datasets given the parameters of a mixture
pdplot() Constructs a parallel distribution plot
RandIndex() Calculates Rand, adjusted Rand, Fowlkes-Mallows, and Merkin indices
ClassProp() Calculates the agreement proportion between two classification vectors
VarInf() Calculates the variation of information for two classification vectors
perms() Returns all permutations given the number of elements

Table 1: Summary of functions implemented in MixSim.

8 MixSim: Simulating Data for Clustering Algorithms in R

Section Demo names

Section 3.1 "sec3.1_ex1", "sec3.1_ex2", "sec3.1_ex3"
Section 3.2 "sec3.2_ex1"

Section 3.3 "sec3.3_ex1a", "sec3.3_ex1b", "sec3.3_ex2c", "sec3.3_ex2d"
"sec3.3_ex3a", "sec3.3_ex3b", "sec3.3_ex4c", "sec3.3_ex4d"

Section 3.4 "sec3.4_ex1", "sec3.4_ex2b", "sec3.4_ex2c"
Section 4 "sec4_ex1"

Table 2: Summary of demos included in MixSim.

plots produced in the example, the plot name is also included in the demo name, for ex-
ample: demo("sec3.3_ex1a", package = "MixSim"). The names of all demo programs are
provided in Table 2.

3.1. Simulating mixtures with the function MixSim()

MixSim() is the main function of the package and is responsible for finding a Gaussian mixture
model satisfying the user-specified level of average or/and maximum overlap. The command
has the following syntax:

MixSim(BarOmega = NULL, MaxOmega = NULL, K, p, sph = FALSE, hom = FALSE,

ecc = 0.90, PiLow = 1.0, int = c(0.0, 1.0), resN = 100, eps = 1e-06,

lim = 1e06)

The parameters of the function are listed in Table 3.

When both parameters BarOmega and MaxOmega are specified, the second algorithm from
Section 2.3 is run. If only one of the above parameters is provided, the first algorithm from
Section 2.3 is employed. The smallest allowed number of components K is 2; in this case,
BarOmega ≡ MaxOmega. MixSim() allows the simulation of mixtures with spherical or general
covariance structure as well as with homogenenous or nonhomogeneous components. In order
to better control the shape of produced components, the parameter ecc specifying the max-
imum eccentricity can be used. Maitra and Melnykov (2010) defined the multidimensional
eccentricity by extending its definition for two-dimensional ellipses: e =

√
1− λmin/λmax

with λmin and λmax being correspondingly the smallest and largest eigenvalues of the (co-
variance) matrix. If some simulated dispersion matrices have e > emax specified by ecc, all
eigenvalues will be scaled in order to have enew = emax. PiLow controls the minimum of
the mixing proportions, with PiLow = 1 indicating equality of all mixing proportions. Op-
tion int specifies a side of a hypercube on which mean vectors are generated. If int is not
provided, the default interval is (0, 1). The last three options resN, eps, and lim described
in Table 3 specify technical parameters used in MixSim(). resN sets the maximum number
of resimulations allowed when the desired overlap cannot be reached easily. This happens,
for example, when asymptotic maximum or average overlap is lower than the corresponding
value specified by the user. eps represents the error bound used in our root-finding procedure
and Davies (1980)’s algorithm approximating the distribution of a linear combination of χ2

random variables based on the numerical invertion of the characteristic function. Finally, lim
specifies the maximum number of terms allowed in numerical integration involved in Davies
(1980)’s procedure. We next illustrate three sample usages of MixSim().

Journal of Statistical Software 9

Arguments Description

BarOmega Average pairwise overlap ω̄
MaxOmega Maximum pairwise overlap ω̌
K Number of mixture components
p Number of dimensions
sph Nonspherical (FALSE) or spherical (TRUE) mixture components
hom Nonhomogeneous (FALSE) or homogenenous (TRUE) mixture components
ecc Maximum eccentricity
PiLow Smallest mixing proportion
int Side of a hypercube for simulating mean vectors
resN Maximum number of mixture resimulations
eps Error bound
lim Maximum number of integration terms according to Davies (1980)

Values Description

$Pi Vector of mixing proportions
$Mu Mean vectors
$S Covariance matrices
$OmegaMap Map of misclassification probabilities
$BarOmega Average pairwise overlap ω̄
$MaxOmega Maximum pairwise overlap ω̌
$rcMax Index of the pair of clusters producing maximum overlap
$fail Flag of successful completion

Table 3: Summary of available arguments and values returned by the function MixSim().

Simulating a mixture with non-homogeneous mixture components, equal mixing propor-
tions and pre-specified values of maximum and average pairwise overlap

Here, we illustrate the use of MixSim() in simulating a 5-dimensional mixture with 4 com-
ponents, and average and maximum overlaps equal to 0.05 and 0.15 correspondingly. The
following example ("sec3.1_ex1") beginning with set.seed(1234) for reproducibility illus-
trates the use of the function. Since the parameter PiLow is not specified, the mixture model
has equal mixing proportions. As options sph and hom are not provided, nonhomogeneous
and general (ellipsoidal) covariance matrices are simulated.

R> set.seed(1234)

R> (ex.1 <- MixSim(BarOmega = 0.05, MaxOmega = 0.15, K = 4, p = 5))

K = 4, p = 5, BarOmega = 0.04999942, MaxOmega = 0.1499996, success = TRUE.

Pi:

[1] 0.25 0.25 0.25 0.25

Mu:

p.1 p.2 p.3 p.4 p.5

K.1 0.8446347 0.02955681 0.59976935 0.26841977 0.12060890

K.2 0.1007055 0.74816114 0.01596063 0.04946115 0.74762379

10 MixSim: Simulating Data for Clustering Algorithms in R

K.3 0.3572377 0.75895820 0.37595634 0.79946271 0.02569277

K.4 0.5063586 0.82122865 0.54475658 0.26668445 0.34463732

S: ... too long and skipped. Use operator $ to access.

R> summary(ex.1)

OmegaMap:

k.1 k.2 k.3 k.4

k.1 1.0000000000 0.0004152306 0.002332968 0.01901556

k.2 0.0009103698 1.0000000000 0.014849260 0.08575316

k.3 0.0031164483 0.0079691289 1.000000000 0.02517269

k.4 0.0355134505 0.0642464525 0.040701777 1.00000000

rcMax: 2 4

From the output, we can see that mixture components with numbers 2 and 4 provide the
largest overlap (see vector ex.1$rcMax). The corresponding probabilities of mislcassifica-
tion can be found in the matrix ex.1$OmegaMap: they are 0.0642 and 0.0858. The map of
misclassification probabilities as well as the numbers of components producing the largest
pairwise overlap can be conveniently accessed by function summary(). Both desired values,
ω̌ and ω̄, have been reached within the error bound as we can see from ex.1$BarOmega and
ex.1$MaxOmega correspondingly.

Simulating a mixture with non-homogeneous spherical mixture components, unequal
mixing proportions and pre-specified value of maximum pairwise overlap

The following example ("sec3.1_ex2") simulates a bivariate mixture with three spherical
components, mixing proportions no less than 0.1 and maximum pairwise overlap 0.1. Param-
eter hom is not provided, thus nonhomogeneous components are simulated.

R> set.seed(1234)

R> (ex.2 <- MixSim(MaxOmega = 0.1, K = 3, p = 2, sph = TRUE, PiLow = 0.1))

K = 3, p = 2, BarOmega = 0.03672386, MaxOmega = 0.09999973, success = TRUE.

Pi:

[1] 0.1048634 0.4386534 0.4564832

Mu:

p.1 p.2

K.1 0.2325505 0.6660838

K.2 0.5142511 0.6935913

K.3 0.5449748 0.2827336

S: ... too long and skipped. Use operator $ to access.

R> summary(ex.2)

Journal of Statistical Software 11

OmegaMap:

k.1 k.2 k.3

k.1 1.000000e+00 0.075664063 4.520316e-05

k.2 2.433567e-02 1.000000000 6.629426e-03

k.3 9.497808e-06 0.003487719 1.000000e+00

rcMax: 1 2

As we can see from the above output, the desired maximum overlap has been reached. It is
produced by the components 1 and 2 with misclassification probabilities 0.0243 and 0.0757
respectively.

Simulating a mixture with homogeneous spherical components, equal mixing proportions
and pre-specified value of average pairwise overlap

The last illustration ("sec3.1_ex3") of the function MixSim() deals with a 4-dimensional
mixture with 2 components. The average overlap is specified at the level 0.05. To increase
accuracy, we let eps be equal to 1e-10. Coordinates of mean vectors are simulated between 0
and 10. Since arguments sph and hom are specified as TRUE, clusters should be spherical and
homogeneous.

R> set.seed(1234)

R> (ex.3 <- MixSim(BarOmega = 0.05, K = 2, p = 4, sph = TRUE, hom = TRUE,

+ int = c(0, 10), eps = 1e-10))

K = 2, p = 4, BarOmega = 0.05, MaxOmega = 0.05, success = TRUE.

Pi:

[1] 0.5 0.5

Mu:

p.1 p.2 p.3 p.4

K.1 1.137034 6.222994 6.09274733 6.233794

K.2 8.609154 6.403106 0.09495756 2.325505

S: ... too long and skipped. Use operator $ to access.

R> summary(ex.3)

OmegaMap:

k.1 k.2

k.1 1.000 0.025

k.2 0.025 1.000

rcMax: 1 2

As we can see from the obtained output, the average and maximum overlaps provided in
ex.3$BarOmega and ex.3$MaxOmega respectively are equal to each other. It happens because

12 MixSim: Simulating Data for Clustering Algorithms in R

Arguments Description

Pi Vector of mixing proportions
Mu Mean vectors
S Covariance matrices
eps Error bound
lim Maximum number of integration terms according to Davies (1980)

Values Description

$OmegaMap Map of misclassification probabilities
$BarOmega Average pairwise overlap ω̄
$MaxOmega Maximum pairwise overlap ω̌
$rcMax Index of the pair of clusters producing maximum overlap

Table 4: Summary of available arguments and values returned by the function overlap().

we have only two mixture components. Misclassification probabilities provided in the matrix
ex.3$OmegaMap are both equal to 0.025 because the components are homogeneous and mixing
proportions are equal to each other. From the output, we can also see the effect of the increased
accuracy.

3.2. Calculating exact overlap with the function overlap()

In this section we discuss the capability of MixSim to calculate the exact overlap when given
the parameters of a Gaussian mixture model. This feature is useful if it is desired to estimate
the level of clustering complexity for an existing classification dataset. This is another im-
portant application of MixSim. There exist numerous classification datasets widely used for
testing clustering algorithms. However, the knowledge about these datasets is usually very
limited: the investigator typically knows only which clusters are problematic having no infor-
mation about the level of interaction among the clusters. Function overlap() provides the
user with the map of misclassification probabilities. The command has the following syntax:

overlap(Pi, Mu, S, eps = 1e-06, lim = 1e06)

The parameters accepted by overlap as well as values returned by the function are provided
in Table 4. All five arguments – Pi, Mu, S, eps, and lim – have the same meaning as in the
function MixSim() discussed in Section 3.1. The returned values are also discussed in the
same section.

Finding exact overlap for the Iris dataset

Here, we analyze the celebrated Iris dataset of Anderson (1935) and Fisher (1936). The data
consist of 150 4-dimensional points measuring the width and length of petals and sepals;
there are 50 observations from each of three different species of Iris: Setosa, Versicolor, and
Virginica. It is well-known that Virginica and Versicolor are difficult to separate while Setosa
creates a very distinct cluster. The following code ("sec3.2_ex1") estimates the parameters
of a Gaussian mixture model with three components for Iris, provided the true classification
vector. Then, the exact overlap is calculated using the function overlap().

R> data("iris", package = "datasets")

R> p <- ncol(iris) - 1

Journal of Statistical Software 13

R> id <- as.integer(iris[, 5])

R> K <- max(id)

R> Pi <- prop.table(tabulate(id))

R> Mu <- t(sapply(1:K, function(k){ colMeans(iris[id == k, -5]) }))

R> S <- sapply(1:K, function(k){ var(iris[id == k, -5]) })

R> dim(S) <- c(p, p, K)

R> overlap(Pi = Pi, Mu = Mu, S = S)

$OmegaMap

[,1] [,2] [,3]

[1,] 1.000000e+00 7.201413e-08 0.00000000

[2,] 1.158418e-07 1.000000e+00 0.02302315

[3,] 0.000000e+00 2.629446e-02 1.00000000

$BarOmega

[1] 0.01643926

$MaxOmega

[1] 0.0493176

$rcMax

[1] 2 3

As we can see from the output, the substantial maximum overlap of 0.0493 is produced by the
second and third components: Virginica and Versicolor. At the same time, these two clusters
almost do not overlap with Setosa. This explains why the majority of clustering methods
prefer two-cluster solutions combining Virginica and Versicolor together.

3.3. Simulating datasets with the function simdataset()

In this section, we discuss some capabilities of MixSim for simulating datasets, along with
outliers, from a given (perhaps simulated) mixture model. The function responsible for data
generation is called simdataset() and has the following form:

simdataset(n, Pi, Mu, S, n.noise = 0, n.out = 0, alpha = 0.001,

max.out = 100000, int = NULL, lambda = NULL)

The arguments and returned values are listed in Table 5. Parameters Pi, Mu, and S have
the same meaning as before. The size of a generated dataset is defined as n + n.out, where
n.out specifies the number of outliers needed. If the parameter n.out is not specified, no
outliers are produced by simdataset. Parameter max.out specifies the maximum number
of outlier resimulations with the default value of 1e05. alpha specifies ellipsoidal contours
beyond which outliers have to be simulated. The number of dimensions for the dataset is
defined as dim(Mu)[2] + n.noise. By default, n.noise = 0. The interval int defines a side
of a hypercube for outlier simulation. It is also used for simulating noise variables if n.noise
is greater than 0. Both outliers and noise variables are simulated from a uniform hypercube.
When int is not provided, the interval bounds are chosen to be equal to the smallest and

14 MixSim: Simulating Data for Clustering Algorithms in R

Arguments Description

n Sample size
Pi Vector of mixing proportions
Mu Mean vectors
S Covariance matrices
n.noise Number of noise variables
n.out Number of outliers
alpha Level for 1 - alpha contour for simulating outliers
max.out Maximum number of trials to simulate outliers
int Interval to simulate outliers or/and noise variables
lambda Vector of coefficients for an inverse Box-Cox transformation

Values Description

$X Produced dataset
$id Classification vector for the produced dataset

Table 5: Summary of available arguments and values returned by the function simdataset().

largest coordinates in mean vectors correspondingly. The last parameter, lambda, specifies
a vector of size dim(Mu)[2] + n.noise that performs an inverse Box-Cox transformation
for every coordinate. By default, simdataset() generates datasets from Gaussian mixture
models. If the user wants to produce data that are not normally distributed, the argument
lambda can be helpful. The procedure uses the multivariate Box-Cox transformation given
by x∗ = (xλ − 1)/λ, where x and x∗ represent the original and transformed observations,
respectively. x∗ is approximately normally distributed for some value λ. We use an idea
related to inverting the Box-Cox transformation to provide non-normally distributed data.
The transformation we propose is given by x = (λx∗ + 1)

1
λ − 1. When λ = 1, the identity

transformation is employed. Thus, the parameter lambda specifies desired transformations
for each coordinate.

The following examples illustrate the capabilities of the function.

Simulating datasets from Gaussian mixtures

The following code illustrates how simdataset() can be used to simulate data from the
mixture obtained by MixSim. Here, we obtain a two-dimensional mixture with 5 components,
average overlap 0.05 and maximum overlap 0.20. Then, 500 observations are simulated from
the mixture. Two samples obtained this way are provided in Figure 1a,b. The following
commands ("sec3.3_ex1a") construct the Figure 1a:

R> set.seed(1234)

R> Q <- MixSim(MaxOmega = 0.20, BarOmega = 0.05, K = 5, p = 2)

R> A <- simdataset(n = 500, Pi = Q$Pi, Mu = Q$Mu, S = Q$S)

R> colors <- c("red", "green", "blue", "brown", "magenta")

R> par(mar = c(0.1, 0.1, 0.1, 0.1))

R> plot(A$X, col = colors[A$id], pch = 19, cex = 0.8,

+ xlab = "", ylab = "", axes = FALSE)

R> box()

Journal of Statistical Software 15

(a) (b)

(c) (d)

Figure 1: Simulated datasets obtained (a–b) from Gaussian mixture models and (c–d) by an
inverse Box-Cox transformation.

The code for the Figure 1b is identical with the only difference in the seed value. The user
needs to run set.seed(1235).

Simulating datasets with inverse Box-Cox transformation

The following short example ("sec3.3_ex1c") provides an illustration to an inverse Box-Cox
transformation. First, we simulate a bivariate mixture with three components and maximum

16 MixSim: Simulating Data for Clustering Algorithms in R

overlap 0.1; mean vectors are simulated from a hypercube with a side (0, 1). Then, a dataset
with 300 observations is simulated. The dataset is transformed using coefficients provided by
option lambda. Two illustrative plots are included in Figure 1c,d. In both cases, we can see
that obtained clusters do not follow patterns typical for normal distributions. The plots can
be constructed running the following commands:

R> set.seed(1238)

R> Q <- MixSim(MaxOmega = 0.1, K = 3, p = 2, int = c(0.2, 1))

R> A <- simdataset(n = 300, Pi = Q$Pi, Mu = Q$Mu, S = Q$S,

+ lambda = c(0.1, 10))

R> colors <- c("red", "green", "blue")

R> par(mar = c(0.1, 0.1, 0.1, 0.1))

R> plot(A$X, col = colors[A$id], pch = 19, cex = 0.8,

+ xlab = "", ylab = "", axes = FALSE)

R> box()

To obtain the Figure 1d, use lambda = c(10, 10) instead of lambda = c(0.1, 10) used for
the construction of the Figure 1c. This is the only change needed in the above code.

Simulating datasets with outliers

If it is desired to include outliers into a simulated dataset to increase clustering complexity or
check the performance of clustering algorithms in the presence of scatter, the corresponding
option n.out has to be specified. The following example demonstrates how simdataset()

can be employed for simulating datasets with outlying observations. First, bivariate normal
mixtures with 4 components and average overlap 0.01 are simulated similar to the previous
examples. Then, the function simdataset() is employed to generate a dataset of 500 obser-
vations and introduce 10 outliers. Figure 2a,b demonstrates two datasets obtained this way.
Red color points represent outlying observations. id is equal to 0 for such points. To obtain
the plots, the user needs to run the following commands ("sec3.3_ex3a").

R> set.seed(1234)

R> Q <- MixSim(BarOmega = 0.01, K = 4, p = 2)

R> A <- simdataset(n = 500, Pi = Q$Pi, Mu = Q$Mu, S = Q$S, n.out = 10)

R> colors <- c("red", "green", "blue", "brown", "magenta")

R> par(mar = c(0.1, 0.1, 0.1, 0.1))

R> plot(A$X, col = colors[A$id+1], pch = 19, cex = 0.8,

+ xlab = "", ylab = "", axes = FALSE)

R> box()

In order to obtain the Figure 2b, the seed 1237 has to be used: set.seed(1237).

Simulating datasets with noise variables

To increase the complexity of clustering or test procedures reducing dimensionality, it can be
needed to simulate datasets with noise variables. Here, we illustrate the use of simdataset()
for simulating data from a one-dimensional mixture with 4 components and maximum overlap
0.1. One noise variable is added after that. As we can see from Figure 2c,d, it is obvious

Journal of Statistical Software 17

(a) (b)

(c) (d)

Figure 2: Simulated datasets with (a–b) outlying observations and (c–d) noise variables.

that the second variable introduces substantial clustering complexity. The Figure 2c can be
obtained by running the following code ("sec3.3_ex4c").

R> set.seed(1235)

R> Q <- MixSim(MaxOmega = 0.1, K = 4, p = 1)

R> A <- simdataset(n = 300, Pi = Q$Pi, Mu = Q$Mu, S = Q$S, n.noise = 1)

R> colors <- c("red", "green", "blue", "brown")

R> par(mar = c(0.1, 0.1, 0.1, 0.1))

18 MixSim: Simulating Data for Clustering Algorithms in R

R> plot(A$X, col = colors[A$id], pch = 19, cex = 0.8,

+ xlab = "", ylab = "", axes = FALSE)

R> box()

For the Figure 2d, the seed has to be changed to 1236.

3.4. Constructing a parallel distribution plot with the function pdplot()

The next function illustrated here is pdplot() – parallel distribution plot – described in detail
by Maitra and Melnykov (2010). This plot is a convenient tool for visualizing multidimensional
mixture models and components’ interaction. The plot displays the principal components of
a Gaussian mixture model. The first several components can serve as a good indicator of the
major source of variability in a mixture. Table 6 lists the arguments acceptable in pdplot().
Pi, Mu, and S are the usual mixture parameters. file is the name of the pdf-file the plot
has to be written to. Parameters Nx and Ny provide the numbers of horizontal and vertical
smoothing intervals respectively. MaxInt sets the level of maximum color intensity while marg
specifies plot margins. The function call has the following form:

pdplot(Pi, Mu, S, file = NULL, Nx = 5, Ny = 5, MaxInt = 1,

marg = c(2, 1, 1, 1))

We illustrate the use of the function with several examples.

Parallel distribution plot for the Iris dataset

For the Iris dataset, we first estimate mixture parameters using the true classification vector.
Then, we employ pdplot() function to construct a parallel distribution plot and save it into
the file “Iris.pdf”. The obtained plot is presented in Figure 3a. It can be clearly seen that
the blue and green components have substantial overlap being close to each other in every
principal component while the red one is well separated. It agrees well with our findings in
Section 3.2. To construct the plot, the user has to estimate the mixture parameters using the
code from the example in Section 3.2 first, and then to run the following command:

R> pdplot(Pi = Pi, Mu = Mu, S = S)

Parallel distribution plot for simulated mixtures

Arguments Description

Pi Vector of mixing proportions
Mu Mean vectors
S Covariance matrices
file Name of the output pdf-file
Nx Number of horizontal smoothing regions
Ny Number of vertical smoothing regions
MaxInt Maximum color intensity
marg Plot margins

Table 6: Summary of available arguments in the function pdplot().

Journal of Statistical Software 19

1 2 3 4

(a)

1 2 3 4

(b)

1 2 3 4

(c)

Figure 3: Parallel distribution plots for (a) Iris dataset, (b) 6-component mixture with well-
separated clusters (ω̄ = 0.001), and (c) 6-component mixture with substantial overlap (ω̄ =
0.05).

This example illustrates the difference between parallel distribution plots for well and poorly
separated mixtures. We simulate two 4-dimensional mixtures with 6 components and average
overlap 0.001 and 0.05 correspondingly. Figure 3b,c provides their parallel distribution plots.
As can be seen, there is substantial difference between patterns in pictures. In the plot b,
between-cluster variability dominates over within-cluster variability. This is an indication of
well-separated clusters. The plot c suggests that in-cluster variability dominates over between-
cluster variability implying larger overlap. The two plots can be easily reproduced with the
following code ("sec3.4_ex1b" and "sec3.4_ex1c").

R> set.seed(1234)

R> Q <- MixSim(BarOmega = 0.001, K = 6, p = 4)

R> pdplot(Pi = Q$Pi, Mu = Q$Mu, S = Q$S)

R> set.seed(1232)

R> Q <- MixSim(BarOmega = 0.05, K = 6, p = 4)

R> pdplot(Pi = Q$Pi, Mu = Q$Mu, S = Q$S)

3.5. Calculating indices with functions RandIndex(), ClassProp(), VarInf()

MixSim implements all indices described in Section 2.4. Three functions responsible for them
are RandIndex(), ClassProp(), and VarInf(). Table 7 provides their brief description. The
first function returns values of four indices based on counting the pairs of points in clusterings,
ClassProp() calculates the agreement proportion for two classifications, while the latter one,
VarInf(), computes the variation in information for two clusterings. The functions have the
following syntax:

RandIndex(id1, id2)

ClassProp(id1, id2)

VarInf(id1, id2)

The following examples are illustrations of the use of all the three functions.

20 MixSim: Simulating Data for Clustering Algorithms in R

Function Values Description

RandIndex() $R Rand index
$AR Adjusted Rand index
$F Fowlkes and Mallows index
$M Mirkin index

ClassProp() Agreement proportion in classification vectors
VarInf() Variation in information of classification vectors

Table 7: Summary of values returned by functions RandIndex(), ClassProp(), and VarInf().
All three functions take two arguments id1 and id2 with the first and second classification
vector, respectively.

R> id1 <- c(1, 1, 1, 1, 2, 2, 2, 3, 3, 3)

R> id2 <- c(1, 1, 1, 2, 2, 2, 3, 2, 3, 3)

R> RandIndex(id1, id2)

$R

[1] 0.6888889

$AR

[1] 0.2045455

$F

[1] 0.4166667

$M

[1] 28

R> ClassProp(id1, id2)

[1] 0.7

R> VarInf(id1, id2)

[1] 1.213685

3.6. Other auxiliary capabilities

The last function discussed in this section is perms(), which returns all possible permutations
given the number of elements in a vector. Although this function is not directly related to
other capabilities of MixSim, it is needed in the construction of ClassProp() since it is a faster
implementation of the capability also provided by permn() available from package combinat
(Chasalow 2012). The function has the following syntax:

perms(n)

A small example below illustrates the use of the function.

Journal of Statistical Software 21

R> perms(3)

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 1 3 2

[3,] 2 1 3

[4,] 2 3 1

[5,] 3 1 2

[6,] 3 2 1

4. Illustrative use of the package

This section provides a brief illustration of the utility of MixSim. Here, we investigate and
compare performances of four clustering methods realized in R. The first method is model-
based clustering by means of the EM algorithm, the second and third ones are k-means
and partitioning around medoids algorithms respectively, while the last method is hierarchi-
cal clustering with Ward’s linkage. The algorithms are tested on datasets simulated from
4-dimensional mixtures with 6 heterogeneous non-spherical components and equal mixing
proportions. The value of average overlap ω̄ varies from extreme (0.4) to very low (0.001).
For each overlap, 100 mixtures are simulated with MixSim(), then a dataset of size 200 is
generated from each mixture using function simdataset(). It is worth mentioning that we
obtain exactly one dataset from each simulated mixture. Indeed, one can simulate more than
one set from a mixture and even multiple datasets from the only mixture model. In this
experiment, however, we are interested in examining as widely varying datasets as possible,
subject to the only condition that simulated mixture models satisfy the pre-specified degree of
average overlap. Variation in data patterns is substantially higher when we use different mix-
tures. Hence, we simulated just one set from each mixture, although in some other problems,
a different strategy can be preferred.

The performance of methods is evaluated based on the adjusted Rand index, proportion of
correct classifications, and variation in information for two partitionings. We use the original
true and estimated classifications obtained from each clustering method to calculate the value
of each index. Functions RandIndex(), ClassProp(), and VarInf() were employed. We
calculate sample mean µ and standard deviation s for each characteristic over 100 simulated
datasets for every level of ω̄. The results are provided in Table 8. Function Mclust() from
the package mclust (Fraley and Raftery 2006) was employed for the EM algorithm. Functions
kmeans() and hclust() were used for k-means and hierarchal clustering algorithms. The
partitioning around medoids algorithm was employed by means of the function PAM() from
the package cluster (Mächler, Rousseeuw, Struyf, Hubert, and Hornik 2012). The experiment
can be reproduced by running the demo "sec4_ex1" or by using the code provided in the
supplementary materials.

The obtained results are summarized in Table 8. As we can see, there is no uniform winner
among the considered four clustering methods. The results suggest that k-means algorithm
should be preferred over the rest of the field for substantial and moderate overlaps. The
model-based clustering, however, is the clear winner for well-separated clusters (ω̄ ≤ 0.01).
Hierarchical clustering with Ward’s linkage slightly outperforms k-means for well-separated

22 MixSim: Simulating Data for Clustering Algorithms in R

ω̄ 0.400 0.300 0.250 0.200 0.150 0.100 0.050 0.010 0.005 0.001

M
o
d

el
-b

as
ed AR

µ 0.057 0.106 0.143 0.200 0.272 0.409 0.608 0.900 0.938 0.986
s 0.024 0.043 0.054 0.061 0.064 0.086 0.081 0.055 0.044 0.021

P
µ 0.321 0.761 1.185 0.454 0.520 0.621 0.768 0.951 0.970 0.993
s 0.032 3.863 5.506 0.054 0.055 0.078 0.065 0.038 0.032 0.017

VI
µ 2.972 2.737 2.579 2.382 2.086 1.640 1.064 0.278 0.181 0.044
s 0.125 0.178 0.200 0.193 0.200 0.247 0.186 0.118 0.099 0.049

k
-m

ea
n
s

AR
µ 0.082 0.141 0.188 0.240 0.309 0.423 0.611 0.865 0.919 0.974
s 0.026 0.033 0.042 0.047 0.045 0.070 0.066 0.059 0.043 0.038

P
µ 0.349 0.406 0.443 0.493 0.552 0.634 0.772 0.929 0.959 0.986
s 0.035 0.042 0.048 0.048 0.048 0.071 0.060 0.052 0.037 0.034

VI
µ 2.938 2.681 2.480 2.280 2.002 1.635 1.077 0.362 0.232 0.077
s 0.117 0.129 0.155 0.157 0.133 0.196 0.161 0.119 0.091 0.074

P
A

M

AR
µ 0.075 0.128 0.179 0.229 0.295 0.412 0.593 0.864 0.918 0.974
s 0.023 0.031 0.043 0.052 0.051 0.069 0.074 0.051 0.039 0.020

P
µ 0.340 0.390 0.436 0.483 0.540 0.623 0.758 0.933 0.962 0.989
s 0.034 0.038 0.048 0.052 0.057 0.069 0.068 0.038 0.025 0.009

VI
µ 2.995 2.740 2.533 2.322 2.065 1.679 1.126 0.373 0.245 0.085
s 0.114 0.121 0.153 0.177 0.157 0.194 0.184 0.112 0.100 0.059

W
ar

d

AR
µ 0.070 0.125 0.168 0.219 0.286 0.403 0.586 0.866 0.922 0.980
s 0.025 0.035 0.042 0.051 0.053 0.070 0.070 0.062 0.045 0.022

P
µ 0.335 0.389 0.425 0.476 0.533 0.619 0.753 0.935 0.963 0.991
s 0.033 0.038 0.047 0.047 0.052 0.064 0.065 0.037 0.028 0.011

VI
µ 2.971 2.716 2.536 2.330 2.060 1.665 1.108 0.360 0.222 0.064
s 0.128 0.139 0.154 0.177 0.168 0.190 0.166 0.142 0.102 0.061

Table 8: Performance of the model-based, k-means, partitioning around medoids, and hierar-
chical clustering with Ward’s linkage algorithms in clustering 4-dimensional datasets of size
200 with 6 groups. µ and s represent the sample mean and standard deviation for the adjusted
Rand index (AR), proportion of correct classifications (P), and variation in information (VI)
obtained over 100 replications.

clusters but loses to it in the cases of substantial and moderate overlap. Overall, k-means
performs slightly better than the partitioning around medoids algorithm. All three indices
considered agree on the suggested conclusions. Of course, this is a small example demonstrat-
ing the potential of MixSim, but it illustrates the utility of the package well.

5. Summary

This paper describes the R package MixSim which provides a convenient and friendly tool
for simulating Gaussian mixture models and datasets according to the pre-specified level of
clustering complexity expressed in terms of the average and maximum pairwise overlap among
mixture components. MixSim’s functions are described and carefully illustrated on multiple
examples. A small study illustrating the utility of the package is provided. The package is
meant to be of interest to a broad audience working in the area of machine learning, clustering
and classification.

Journal of Statistical Software 23

Acknowledgments

The authors acknowledge partial support by the National Science Foundation CAREER Grant
DMS-0437555. We also thank the associate editor and reviewers whose comments and
suggestions substantially improved the paper.

References

Anderson E (1935). “The Irises of the Gaspe Peninsula.” Bulletin of the American Iris Society,
59, 2–5.

Chasalow S (2012). combinat: Combinatorics Utilities. R package version 0.0-8, URL http:

//CRAN.R-project.org/package=combinat.

Dasgupta S (1999). “Learning Mixtures of Gaussians.” In Proceedings of the IEEE Symposium
on Foundations of Computer Science, pp. 633–644. New York.

Davies R (1980). “The Distribution of a Linear Combination of χ2 Random Variables.” Applied
Statistics, 29, 323–333.

Fisher RA (1936). “The Use of Multiple Measurements in Taxonomic Poblems.” The Annals
of Eugenics, 7, 179–188.

Forgy E (1965). “Cluster Analysis of Multivariate Data: Efficiency vs. Interpretability of
Classifications.” Biometrics, 21, 768–780.

Forsythe G, Malcolm M, Moler C (1980). Computer Methods for Mathematical Computations.
Mir, Moscow.

Fowlkes E, Mallows C (1983). “A Method for Comparing Two Hierarchical Clusterings.”
Journal of American Statistical Association, 78, 553–569.

Fraley C, Raftery AE (2006). “mclust Version 3 for R: Normal Mixture Modeling and Model-
Based Clustering.” Technical Report 504, University of Washington, Department of Statis-
tics, Seattle, WA.

Hubert L, Arabie P (1985). “Comparing Partitions.” Journal of Classification, 2, 193–218.

Kaufman L, Rousseuw PJ (1990). Finding Groups in Data. John Wiley & Sons, New York.

Mächler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2012). cluster: Cluster Analysis
Basics and Extensions. R package version 1.14.3, URL http://CRAN.R-project.org/

package=cluster.

MacQueen J (1967). “Some Methods for Classification and Analysis of Multivariate Observa-
tions.” Proceedings of the Fifth Berkeley Symposium, 1, 281–297.

Maitra R, Melnykov V (2010). “Simulating Data to Study Performance of Finite Mixture
Modeling and Clustering Algorithms.” Journal of Computational and Graphical Statistics,
19(2), 354–376.

http://CRAN.R-project.org/package=combinat
http://CRAN.R-project.org/package=combinat
http://CRAN.R-project.org/package=cluster
http://CRAN.R-project.org/package=cluster

24 MixSim: Simulating Data for Clustering Algorithms in R

Meilă M (2006). “Comparing Clusters – An Information Based Distance.” Journal of Multi-
variate Analysis, 98, 873–895.

Melnykov V, Maitra R (2010). “Finite Mixture Models and Model-Based Clustering.” Statis-
tics Surveys, 4, 80–116.

Melnykov V, Maitra R (2011). “CARP: Software for Fishing Out Good Clustering Algo-
rithms.” Journal of Machine Learning Research, 12, 69 – 73.

Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F (2012). e1071: Misc Functions
of the Department of Statistics (e1071), TU Wien. R package version 1.6-1, URL http:

//CRAN.R-project.org/package=e1071.

Mirkin B (1996). Mathematical Classification and Clustering. Kluwer Academic Press, Dor-
drecht.

Qiu W, Joe H (2006a). “Generation of Random Clusters with Specified Degree of Separation.”
Journal of Classification, 23, 315–334.

Qiu W, Joe H (2006b). “Separation Index and Partial Membership for Clustering.” Compu-
tational Statistics & Data Analysis, 50, 585–603.

Rand WM (1971). “Objective Criteria for the Evaluation of Clustering Methods.” Journal of
the American Statistical Association, 66, 846–850.

R Development Core Team (2012). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org/.

Sneath P (1957). “The Application of Computers to Taxonomy.” Journal of General Micro-
biology, 17, 201–226.

Sorensen T (1948). “A Method of Establishing Groups of Equal Amplitude in Plant Sociology
Based on Similarity of Species Content and Its Application to Analyses of the Vegetation
on Danish Commons.” Biologiske Skrifter, 5, 1–34.

Steinley D, Henson R (2005). “OCLUS: An Analytic Method for Generating Clusters with
Known Overlap.” Journal of Classification, 22, 221–250.

Wallace D (1983). “Comment on “A Method for Comparing Two Hierarchical Clusterings”.”
Journal of American Statistical Association, 78, 569–576.

Ward JH (1963). “Hierarchical Grouping to Optimize an Objective Function.” Journal of the
American Statistical Association, 58, 236–244.

Xu R, Wunsch DC (2009). Clustering. John Wiley & Sons, Hoboken.

http://CRAN.R-project.org/package=e1071
http://CRAN.R-project.org/package=e1071
http://www.R-project.org/
http://www.R-project.org/

Journal of Statistical Software 25

Affiliation:

Volodymyr Melnykov
Department of Information Systems, Statistics, and Management Science
The University of Alabama
Tuscaloosa, AL 35487, United States of America
E-mail: vmelnykov@ua.edu
URL: http://cba.ua.edu/personnel/vmelnykov

Wei-Chen Chen
Computer Science and Mathematics Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831, United States of America
E-mail: wccsnow@gmail.com
URL: http://thirteen-01.stat.iastate.edu/snoweye

Ranjan Maitra
Department of Statistics and Statistical Laboratory
Iowa State University
Ames, IA 50011, United States of America
E-mail: maitra@iastate.edu
URL: http://maitra.public.iastate.edu

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 51, Issue 12 Submitted: 2010-12-04
November 2012 Accepted: 2012-08-13

mailto:vmelnykov@ua.edu
http://cba.ua.edu/personnel/vmelnykov
mailto:wccsnow@gmail.com
http://thirteen-01.stat.iastate.edu/snoweye
mailto:maitra@iastate.edu
http://maitra.public.iastate.edu
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Methodological and algorithmic details
	Pairwise overlap
	Mixture model and data generation
	Algorithms
	Generate mixture model controlling the average or maximum overlap
	Generate mixture model controlling the average and maximum overlap

	Classification indices

	Package description and illustrative examples
	Simulating mixtures with the function MixSim()
	Simulating a mixture with non-homogeneous mixture components, equal mixing proportions and pre-specified values of maximum and average pairwise overlap
	Simulating a mixture with non-homogeneous spherical mixture components, unequal mixing proportions and pre-specified value of maximum pairwise overlap
	Simulating a mixture with homogeneous spherical components, equal mixing proportions and pre-specified value of average pairwise overlap

	Calculating exact overlap with the function overlap()
	Finding exact overlap for the Iris dataset

	Simulating datasets with the function simdataset()
	Simulating datasets from Gaussian mixtures
	Simulating datasets with inverse Box-Cox transformation
	Simulating datasets with outliers
	Simulating datasets with noise variables

	Constructing a parallel distribution plot with the function pdplot()
	Parallel distribution plot for the Iris dataset
	Parallel distribution plot for simulated mixtures

	Calculating indices with functions RandIndex(), ClassProp(), VarInf()
	Other auxiliary capabilities

	Illustrative use of the package
	Summary

