
JSS Journal of Statistical Software
January 2013, Volume 52, Issue 4. http://www.jstatsoft.org/

lgcp: An R Package for Inference with Spatial and

Spatio-Temporal Log-Gaussian Cox Processes

Benjamin M. Taylor
Lancaster University

Tilman M. Davies
University of Otago

Barry S. Rowlingson
Lancaster University

Peter J. Diggle
Lancaster University

Abstract

This paper introduces an R package for spatial and spatio-temporal prediction and
forecasting for log-Gaussian Cox processes. The main computational tool for these models
is Markov chain Monte Carlo (MCMC) and the new package, lgcp, therefore also provides
an extensible suite of functions for implementing MCMC algorithms for processes of this
type. The modelling framework and details of inferential procedures are first presented
before a tour of lgcp functionality is given via a walk-through data-analysis. Topics covered
include reading in and converting data, estimation of the key components and parameters
of the model, specifying output and simulation quantities, computation of Monte Carlo
expectations, post-processing and simulation of data sets.

Keywords: Cox process, R, spatio-temporal point process.

1. Introduction

This article introduces a new R (R Core Team 2012) package, lgcp, for inference with spatial
and spatio-temporal log-Gaussian Cox processes (LGCP). The work was motivated by appli-
cations in disease surveillance, where the major focus of scientific interest is on whether, and
if so where and when, cases form unexplained clusters within a spatial region W and time-
interval [0, T] of interest. It will be assumed that both the location and time of each case
is known, at least to a sufficiently fine resolution that a point process modelling framework
is natural. In general, the aims of statistical analysis include model formulation, parameter
estimation and spatio-temporal prediction. The lgcp package includes some functionality for
parameter estimation and diagnostic checking, mostly by linkages with other R packages for

http://www.jstatsoft.org/

2 lgcp: Inference with Spatial and Spatio-Temporal Log-Gaussian Cox Processes in R

spatial statistics. However, and consistent with the scientific focus being on disease surveil-
lance, the current version of the package places particular emphasis on real-time predictive
inference. Specifically, using the modelling framework of a Cox process with stochastic inten-
sity R(s, t) = λ(s)µ(t) exp{Y(s, t)}, where Y(s, t) is a Gaussian process and λ and µ are offset
terms supplied by the user. The package enables the user to draw samples from the joint
predictive distribution of R(s, [t1, t2]) for some time interval [t1, t2] ⊆ [0, T] as well as forecast
beyond the last observation at time T , i.e., to determine R(s, T +k) given data between times
T−l and T , where l is a user-specified lag time for any set of locations s ∈W and forecast lead
time k ≥ 0. In the surveillance setting, these samples would typically be used to evaluate the
predictive probability that the intensity at a particular location and time exceeds a specified
intervention threshold; see, for example, Diggle, Rowlingson, and Su (2005).

The lgcp package makes extensive use of spatstat functions and data structures (Badde-
ley and Turner 2005). Other important dependencies are: the sp package, which also sup-
plies some data structures and functions (Pebesma and Bivand 2005; Bivand, Pebesma, and
Gomez-Rubio 2008); the suite of covariance functions provided by the RandomFields package
(Schlather 2012); the rpanel package to facilitate minimum-contrast parameter estimation
routines (Bowman, Crawford, Alexander, and Bowman 2007; Bowman, Gibson, Scott, and
Crawford 2010); and the ncdf package for rapid access to massive datasets for post-processing
(Pierce 2011).

In Section 2 the log-Gaussian Cox process is introduced. Section 3 gives a review on methods
of inference for log-Gaussian Cox processes. Section 4 is an overview of the package by way
of a walk-through example, covering: reading in data (Section 4.2); estimating components of
the model and associated parameters (Sections 4.3 and 4.4); setting up and running the model
(Sections 4.5 and 4.6); and post-processing of command outputs (Section 4.7). Some possible
extensions of the package are given in Section 5. The appendices give further information
on the rotation of observation windows (Appendix B), simulation of data (Appendix C) and
information about the spatialAtRisk class of objects (Appendix D), which may be useful for
reference purposes. Appendix E gives some tips on handling ESRI shapefiles and Appendix F
shows the user how to create adaptive MCMC schemes.

2. Spatio-temporal log-Gaussian Cox processes

A purely spatial intensity function provides the expected number of points per unit area across
a given spatial region W when situated at x ∈ W . This becomes a spatio-temporal intensity
when the observations are time-dependent, such that we now seek to capture the expected
number of points per unit area when situated at location x ∈ W , and time t ∈ T . The
spatio-temporal LGCP is extremely flexible in that it enables the presence of both fixed and
random effects in capturing this space-time behaviour. Here, we describe some fundamental
technical details of this modelling framework.

Let W ⊂ R2 be an observation window in space and T ⊂ R≥0 be an interval of time of interest.
Cases occur at spatio-temporal positions (x, t) ∈W×T according to an inhomogeneous spatio-
temporal Cox process, i.e., a Poisson process with a stochastic intensity R(x, t). The number
of cases, XS,[t1,t2], arising in any S ⊆ W during the interval [t1, t2] ⊆ T is then Poisson

Journal of Statistical Software 3

distributed conditional on R,

XS,[t1,t2] ∼ Poisson

{∫
S

∫ t2

t1

R(s, t)dsdt

}
. (1)

Following Diggle et al. (2005), the intensity is decomposed multiplicatively as,

R(s, t) = λ(s)µ(t) exp{Y(s, t)}. (2)

In Equation 2, the fixed spatial component, λ : R2 7→ R≥0, is a user-supplied function, pro-
portional to the population at risk at each point in space and scaled so that,∫

W
λ(s)ds = 1, (3)

whilst the fixed temporal component, µ : R≥0 7→ R≥0, is also a user-supplied function such
that,

µ(t) = lim
|δt|→0

{
E[XW,δt]

|δt|

}
. (4)

The function Y is a Gaussian process, continuous in both space and time. In the nomenclature
of epidemiology, the components λ and µ determine the endemic spatial and temporal com-
ponent of the population at risk; whereas Y captures the residual variation, or the epidemic
component.

The Gaussian process, Y, is second order stationary with minimally-parametrized covariance
function,

cov[Y(s1, t1),Y(s2, t2)] = σ2r(||s2 − s1||;φ) exp{−θ(t2 − t1)}, (5)

where || · || is a suitable norm on R2, for instance the Euclidean norm, and σ, φ, θ > 0 are
known parameters. In the lgcp package, the isotropic spatial correlation function, r, may take
one of several forms and possibly require additional parameters (in lgcp, this can be selected
from any of the compatible models in the function CovarianceFct from the RandomFields
package). The parameter σ scales the log-intensity, whilst the parameters φ and θ govern the
rates at which the correlation function decreases in space and in time, respectively. The mean
of the process Y is set equal to −σ2/2 so as to give E[exp{Y}] = 1, hence the endemic/epidemic
analogy above.

3. Inference

As in Møller, Syversveen, and Waagepetersen (1998), Brix and Diggle (2001) and Diggle et al.
(2005), a discretized version of the above model will be considered, defined on a regular grid
over space and time. Observations, X, are then treated as cell counts on this grid. The
discrete version of Y will be denoted Y ; since Y is a finite collection of random variables,
the properties of Y imply that Y has a multivariate Gaussian density with approximate
covariance matrix Σ, whose elements are calculated by evaluating Equation 5 at the centroids
of the spatio-temporal grid cells. Without loss of generality, unit time-increments are assumed
and events can be thought of as occurring “at” integer times t. Let Xt denote an observation
over the spatial grid at time t, and Xt1:t2 denote the observations at times t1, t1 + 1, . . . , t2.
For predictive inference about Y , samples from the conditional distribution of the latent field,

4 lgcp: Inference with Spatial and Spatio-Temporal Log-Gaussian Cox Processes in R

Yt, given the observations to date, X1:t would be drawn, but this is infeasible because the
dimensionality of the required integration increases without limit as time progresses. An
alternative, as suggested by Brix and Diggle (2001), is to sample from Yt1:t2 given Xt1:t2 ,

π(Yt1:t2 |Xt1:t2) ∝ π(Xt1:t2 |Yt1:t2)π(Yt1:t2), (6)

where t1 = t2− p for some small positive integer p. The justification for this approach is that
observations from the remote past have a negligible effect on inference for the current state,
Yt.

In order to evaluate π(Yt1:t2) in Equation 6, the parameters of the process Y must either
be known or estimated from the data. Estimation of σ, φ and θ may be achieved either
in a Bayesian framework, or by one of a number of more ad hoc methods. The methods
implemented in the current version of the lgcp package fall into the latter category and are
described in Brix and Diggle (2001) and Diggle et al. (2005). Briefly, this involves matching
empirical and theoretical estimates of the second-moment properties of the model. For the
spatial covariance parameters σ and φ, the inhomogeneous K-function, or g function are
used (Baddeley, Møller, and Waagepetersen 2000). The autocorrelation function of the total
event-counts per unit time-interval is used for estimating the temporal correlation parameter
θ. The estimated parameter values can then be used to implement plug-in-prediction for the
latent field Yt.

The package lgcp provides only very basic tools for the estimation of λ(s) and µ(t), as de-
scribed in Section 4.3. The rationale for this is that there are many possible parametric and
non-parametric choices implemented in other R packages that could be used to infer the fixed
spatial or temporal components of the model: for example in Diggle et al. (2005), the authors
use a generalized linear model for µ(t). What lgcp does provide is a flexible framework to
allow interface with other packages: µ(t) can be defined as an arbitrary function, for example
a function returning predicted values from the output of a statistical model e.g., glm() or
gam(); and λ(s) can either be defined as a continuous function of two variables, or as the
output of a model onto a fine grid. In Appendix A, we provide an example in which mu(t)
and λ(s) are estimated through generalized linear models.

The in-package estimation routines for λ(s) and µ(t) are both non-parametric, respectively a
simple bivariate kernel density estimate and a lowess smoother, and not intended to provide
a rigorous solution to the needs of all users. Use of these automatic/interactive procedures is
subjective and application specific. Generally speaking, under the ‘global’ treatment of the
fixed components λ and µ, we would intuitively err on the side of over-smoothing rather than
under-smoothing these trends. Some numerical evidence in Davies and Hazelton (2013) sup-
ports this notion in terms of the subsequent performance of the minimum contrast parameter
estimation techniques (see Section 4.4).

3.1. Discretising and the fast-Fourier transform

The first barrier to inference is computation of the covariance matrix, Σ, which even for
relatively coarse grids is very large. Fortunately, for stationary covariance functions defined
on regular spatial grids of size 2m × 2n, there exist fast methods for computing this based on
the discrete Fourier transform (Wood and Chan 1994; Rue and Held 2005; Taylor and Diggle
2012). The general idea is to embed Σ in a symmetric circulant matrix, C = QΛQ∗, where Λ
is a diagonal matrix of eigenvalues of C, Q is a unitary matrix and ∗ denotes the Hermitian

Journal of Statistical Software 5

transpose. The entries of Q are given by the discrete Fourier transform. Computation of C1/2,
which is useful for both simulation and evaluation of the density of Y , is then straightforward
using the fact that C1/2 = QΛ1/2Q∗.

3.2. The Metropolis-adjusted Langevin algorithm

Monte Carlo simulation from π(Yt1:t2 |Xt1:t2) is made more efficient by working with a linear
transformation of Y , partially determined by the matrix C as described below. The lgcp
package returns results pertaining to Y on a grid of size M × N ≡ 2m × 2n for positive
integers m and n, which is extended to a grid of size 2M × 2N for computation (Møller et al.
1998). Writing Γt = Λ−1/2Q(Yt − µ), the target of interest is given by

π(Γt1:t2 |Xt1:t2) ∝

[
t2∏
t=t1

π(Xt|Yt)

][
π(Γt1)

t2∏
t=t1+1

π(Γt|Γt−1)

]
(7)

where the first term on the right hand side of Equation 7 corresponds to the first brack-
eted term on the right hand side of Equation 6 and the second bracketed term is the joint
density, π(Γt1:t2), which so-factorizes due to the Markov property. Since Y , and hence Γ,
is an Ornstein-Uhlenbeck process in time, the transition density, π(Γt|Γt−1), has an explicit
expression as a Gaussian density; see Brix and Diggle (2001).

Since the gradient of the transition density can also be written down explicitly, a natural and
efficient MCMC method for sampling from the predictive density of interest (Equation 7), is
a Metropolis-Hastings algorithm with a Langevin-type proposal (Roberts and Tweedie 1996),

q(Γ,Γ′) = N

(
Γ′; Γ +

1

2
∇ log{π(Γ|X)}, h2I

)
where N(y;m, v) denotes a Gaussian density with mean m and variance v evaluated at y, I
is the identity matrix and h > 0 is a scaling parameter (Metropolis, Rosenbluth, Rosenbluth,
Teller, and Teller 1953; Hastings 1970).

Various theoretical results exist concerning the optimal acceptance probability of the MALA
(Metropolis-Adjusted Langevin Algorithm) – see Roberts and Rosenthal (1998) and Roberts
and Rosenthal (2001) for example. In practical applications, the target acceptance probability
is often set to 0.574, which would be approximately optimal for a Gaussian target as the
dimension of the problem tends to infinity. An algorithm of Andrieu and Thoms (2008) for
the automatic choice of h, so that this acceptance probability is achieved without disturbing
the ergodic property of the chain is implemented in lgcp.

4. Introducing the lgcp package

4.1. An overview of this section

In this section, we present a brief tour of package functionality by means of a walk-through
spatio-temporal example. In Section 4.2, reading in and converting data into the required
format for inference is discussed. Section 4.3 addresses the issue of estimating λ(s) and µ(t)
using lgcp’s built in capabilities; the reader should note at the outset that these two quantities

6 lgcp: Inference with Spatial and Spatio-Temporal Log-Gaussian Cox Processes in R

would normally be estimated via some other means, as will be discussed. In Section 4.4, we
discuss parameter estimation: lgcp provides simple minimum-contrast procedures for this
task. Then in Section 4.5 and 4.6, we detail respectively the setting up and running of
the MCMC algorithm, including: specifying the model, adaptive MCMC, computation of
Monte Carlo expectations ‘on-line’ and possible rotation of the observation window. Lastly,
in Section 4.7, we show how to: extract information from a finished MCMC run; plot the
results; forecast into the future; handle data dumped to disk; obtain MCMC diagnostics and
plot exceedance probabilities.

4.2. Reading-in and converting data

The generic data-format of interest is (xi, yi, ti) : i = 1, . . . , n, where the (xi, yi) are the
locations and ti the times of occurrence of events in W × (A,B), where W is a polygonal
observation window and (A,B) the time-interval within which events are observed. In the
following example x, y and t are R objects giving the location and time of events and win is
a spatstat object of class owin specifying the polygonal observation window (Baddeley and
Turner 2005). An example of constructing an appropriate owin object from ESRI shapefiles
is given in Appendix E.

R> data <- cbind(x, y, t)

R> tlim <- c(0, 100)

R> win

window: polygonal boundary

enclosing rectangle: [381.7342, 509.7342] x [64.14505, 192.14505] units

The first task for the user is to convert this into a space-time planar point pattern object i.e.,
one of class stppp, provided by lgcp. An object of class stppp is easily created:

R> xyt <- stppp(list(data = data, tlim = tlim, window = win))

The second task is to choose a time-scale, and to convert the real-valued times into integer-
valued times. These steps are important, as they can affect our ability to estimate the
temporal correlation parameter θ, and hence to borrow strength from observations over time:
too coarse a discretization means that data from successive aggregated time points are ef-
fectively independent, and the estimation of θ is not possible using the simple methods we
suggest in this article. Rescaling time is a simple operation involving multiplying the real-
valued xyt$t by another real number. The most intuitive way to subsequently convert these
rescaled real-valued times into integer-valued times is for the user to manually do this using
whatever operations are deemed necessary. Indeed, the safest way of constructing an stppp

object is to already have time, as well as tlim as integer-valued vectors before first defining
the stppp object, which would render the next step redundant.

For those who prefer an automated approach, the package lgcp uses as.integer to convert
real-valued times into integer values, these real-valued times will be rounded-down to the
integer below. The function integerise.stppp takes care of this rounding process, and also
amends xyt$tlim, if necessary.

Journal of Statistical Software 7

R> xyt <- integerise(xyt)

R> xyt

Space-time point pattern

planar point pattern: 10069 points

window: polygonal boundary

enclosing rectangle: [381.7342, 509.7342] x [64.14505, 192.14505] units

Time Window : [0 , 99]

Since in this example, the data were simulated on a continuous time-line from time 0 up to
100, integerise.stppp has rounded the upper limit (xyt$tlim[2]) down: both xyt$t and
xyt$tlim are now integer vector objects. This ensures that subsequent estimates of µ(t)
will be correctly scaled.

4.3. Estimating the spatial and temporal component

There are many ways to estimate the fixed spatial and temporal components of the log-
Gaussian Cox process. The fixed spatial component, λ(s), represents the spatial intensity of
events, averaged over time and scaled to integrate to 1 over the observation window W . In
epidemiological settings, this typically corresponds to the spatial distribution of the popu-
lation at risk, although this information may not be directly available. The fixed temporal
component, µ(t), is the mean number of events in W per unit time. Where the relevant
demographic information is unavailable to specify λ(s) and µ(t) directly, lgcp provides basic
functionality to estimate them from the data.

A user may wish to specify parametric models for λ and µ, perhaps estimating them by using
spatially and temporally referenced covariates. By outputting the results of such parametric
models onto a grid in space, which is the easiest way to handle the fixed spatial component (by
creating a spatialAtRisk object directly, see ?spatialAtRisk.fromXYZ), or as a function
on the real line, in the case of the fixed temporal component, the user is able to utilize a wide
variety of other statistical models in other R packages to estimate λ and µ.

The function λ in particular will sometimes have the interpretation of something proportional
to population density, and hence may not have been estimated by a formal statistical proce-
dure. Other times, spatially-resolved covariate data will be available along with a population
offset, and it will be of interest to adjust the risk surface to account for this information. In
Appendix A, we give an example where both the fixed spatial and fixed temporal components
are estimated using covariate information.

The important points to note in the estimation of λ(s) and µ(t) are: (1) it is preferable
to estimate λ(s) using population and possibly covariate information (as described above
and in Appendix A), rather than via a density estimate constructed from the cases; (2) the
estimate of λ(s) should not be zero in any area, or more specifically grid cell, where there
are events in the dataset – this can happen when using external sources of information for
population density; (3) it is preferable to estimate µ(t) using a parametric model, rather
than via a non-parametric estimate. In the example to follow, we chose to estimate λ and µ
non-parametrically for illustrative purposes only.

The package lgcp uses bi-linear interpolation (via the spatstat function interp.im) to transfer
a user supplied λ(s) onto the FFT grid ready for analysis. Therefore, for best results, the user

8 lgcp: Inference with Spatial and Spatio-Temporal Log-Gaussian Cox Processes in R

Figure 1: Choosing a kernel density estimate of λ(s).

should output their estimate of λ onto the grid that will be used in the MALA algorithm. As
we will be using a 2km grid in the example, this can be computed with,

R> OW <- selectObsWindow(xyt, cellwidth = 2)

the objects OW$xvals and OW$yvals now contain the grid on which the fitting of λ should be
projected for best results.

The function lambdaEst is an interactive implementation of a kernel method for estimating
λ(s) from the data as in the following example.

R> den <- lambdaEst(xyt, axes = TRUE)

R> plot(den)

This calls an rpanel tool (Bowman et al. 2007) for estimating λ (see Figure 1); once the user
is happy with the result, clicking on ‘OK’ closes the panel and the kernel density estimate is
stored in the R object den of class im (a spatstat pixel image object). The estimate of λ can
then be plotted in the usual way. The parameters bandwidth and adjust in this graphical
user interface (GUI) relate to the arguments from the spatstat function density.ppp; the
former corresponds to the argument sigma and the latter to the argument of the same name.

The function lambdaEst is built directly on the density.ppp function and as such, implements
a bivariate Gaussian smoothing kernel. The bandwidth is initially that which is automatically
chosen by the default method of density.ppp. Since image plots of these kernel density
estimates may not have appropriate color scales, the ability to adjust this is given with the
slider ‘colour adjustment’. With color adjustment set to 1, the default image.plot for
the equivalent pixel image object is shown and for values less than 1, the color scheme is
more spread out, allowing the user to get a better feel for the density that is being fitted.
The color adjustment parameter raises each cell-wise entry to that power. Note that the
color adjustment does not affect the returned density and the user should be aware that the

Journal of Statistical Software 9

returned density will visually appear exactly as displayed when color adjustment is set equal
to 1. lambdaEst does not output to the FFT grid used in the MALA algorithm.

The lgcp package provides methods for coercing pixel-images like den to objects of class
spatialAtRisk, which can then be used in parameter estimation and in the MALA algorithm
to be discussed later; further useful information on the spatialAtRisk class is provided in
Appendix D.

R> sar <- spatialAtRisk(den)

SpatialAtRisk object

X range : [382.2342066569,509.2342066569]

Y range : [64.645045372051,191.645045372051]

dim : 128 x 128

For the temporal component, µ(t), the user must provide an object that can be coerced into
one of class temporalAtRisk.

Objects of class temporalAtRisk are non-negative functions of time over an observation time-
window of interest, which must be the same as the time-window of the stppp data object, xyt.
In some applications (Diggle et al. 2005), µ(t) might represent the fitted values of a parametric
model for the case counts over time. As it is not possible to provide generic functionality for
parametric µ(t), a simple non-parametric estimate of µ can be generated using the function
muEst:

R> mut1 <- muEst(xyt)

R> mut1

temporalAtRisk object

function(t){

if (!any(as.integer(t)==tvec)){

return(NA)

}

return(obj[which(as.integer(t)==tvec)] * scale)

}

<environment: 0xbb68b08>

attr(,"tlim")

[1] 0 99

attr(,"class")

[1] "temporalAtRisk" "function"

Time Window : [0 , 99]

In order to retain positivity, muEst fits a locally-weighted polynomial regression estimate (the
R function lowess) to the square root of the interval counts and returns the square of this
smoothed estimate (see Figure 2). The amount of smoothing is controlled by the lowess

argument f which specifies the proportion of points in the plot which influence the smoothed
estimate at each value (see ?lowess), for example muEst(xyt, f = 0.1). If the user wishes
to specify a constant time-trend, µ(t) = µ, the command

10 lgcp: Inference with Spatial and Spatio-Temporal Log-Gaussian Cox Processes in R

0 20 40 60 80 100

90
95

10
0

10
5

11
0

time

at
_r

is
k

Figure 2: Estimating µ(t): the output from plot(mut1).

R> mut <- constantInTime(xyt)

returns the appropriate temporalAtRisk object, correctly scaled as in Equation 4. The
fixed temporal component can be also be supplied either as a vector or as a function that
is automatically coerced to a temporalAtRisk object and scaled to achieve the condition in
Equation 4.

4.4. Estimating parameters

After estimating λ(s) and µ(t), the next step in the analysis is to estimate the covariance
parameters of the process Y. The lgcp package provides basic moment-based methods for
this in the form of rpanel GUIs that allow the user to choose σ, φ and θ by eye (Bowman
et al. 2007). Parameter estimation by eye is both fast and reasonably robust and moreover
emphasizes the fact that the underlying methods are ad hoc. As mentioned above, it is
possible to implement principled Bayesian parameter estimation for this model by integrating
over the discretized latent-field, Y ; this is a planned extension to the package (see Section 5).

The spatial correlation parameters σ and φ can be estimated either from the inhomogeneous
pair correlation function, g, or the inhomogeneous K function (Baddeley et al. 2000). Fol-
lowing Brix and Diggle (2001) and Diggle et al. (2005), the corresponding functions in lgcp
estimate versions of these two functions by averaging temporally localized versions. The
respective commands for doing so are:

R> gin <- ginhomAverage(xyt, spatial.intensity = sar,

+ temporal.intensity = mut)

Journal of Statistical Software 11

Figure 3: Estimating σ and φ: left via the pair correlation function and right via the
inhomogeneous K function.

R> kin <- KinhomAverage(xyt, spatial.intensity = sar,

+ temporal.intensity = mut)

The choice of smoothing parameter (bw) in the inhomogeneous pair correlation function is
important. By default, this is estimated automatically by the spatstat function pcfinhom (on
which ginhomAverage is built), but it is also possible to set the amount of smoothing manually
by supplying a value for the argument bw, which is then passed directly to pcfinhom. The
parameters of the spatial correlation function are then estimated using either of the following:

R> sigmaphi1 <- spatialparsEst(gin, sigma.range = c(0, 10),

+ phi.range = c(0, 10), spatial.covmodel = "exponential")

R> sigmaphi2 <- spatialparsEst(kin, sigma.range = c(0, 10),

+ phi.range = c(0, 10), spatial.covmodel = "exponential")

These invoke another call to rpanel, which produces the plots in Figure 3. The user’s task is
to match the orange theoretical function with the black empirical counterpart. To get a good
choice of parameters, it is likely that the routine will have to be called several times in order to
refine the choice of sigma.range and phi.range. The list of correlation functions available to
the user is given under the help file for the function CovarianceFct from the RandomFields
package. For certain classes of covariance function, for example the Matérn or Whittle families,
additional parameters are specified by the user via the covpars argument and supplied to
spatialParsEst in the same order as they appear in the help file for CovarianceFct. These
additional parameters are treated as known constants, and not estimated via a formal nor
informal procedure. One reason for this is because some of these parameters are notoriously
difficult to estimate, for example, the parameter ν in the Matérn family. A recommended
strategy in these cases is to choose between a discrete set of candidate values for the parameter
of interest. For example, in the Matérn family the integer part of ν gives the number of
times the underlying Gaussian process is mean-square differentiable. The resulting estimated
parameters are returned in list objects (e.g., sigmaphi1 or sigmaphi2) with sigmaphi1$sigma

and sigmaphi1$phi returning the required values of σ and φ. In the code below, these values
have been input as respectively 1.6 and 1.9 as estimated above. The user has additional
control over the minimum contrast estimation, for example the range of evaluation, though

12 lgcp: Inference with Spatial and Spatio-Temporal Log-Gaussian Cox Processes in R

Figure 4: Estimating θ.

sensible defaults are provided automatically by the embedded spatstat functions. The initial
parameter values appearing in the GUIs are obtained through a simple weighted least-squares
optimization procedure, but note that this is not robust, and the user has the option to turn
this functionality off via guess = FALSE in the argument list to spatialParsEst.

The temporal correlation parameter, θ, can be estimated using the function thetaEst; this
requires σ, φ and µ(t) to have been estimated beforehand. For example, the call

R> theta <- thetaEst(xyt, spatial.intensity = sar, temporal.intensity = mut,

+ sigma = 1.6, phi = 1.9)

gives the GUI shown in Figure 4. Note that again, in the code below the estimated value of
1.4 has been input manually.

4.5. The commands lgcpPredict and lgcpPredictSpatial

The main functions in the lgcp package are lgcpPredict and lgcpPredictSpatial. In
this article, we focus on lgcp’s spatio-temporal functionality and hence lgcpPredict, the
rationale being that the ‘purely spatial’ provided by lgcpPredictSpatial is straightforward
to understand once familiar with the former. A comparative evaluation of lgcp’s spatial
capabilities, together with a definition of the statistical model in this case is given in Taylor
and Diggle (2012).

This uses an MCMC method to produce samples and summary statistics from the predictive
distribution of the discretized process Y , treating previously obtained estimates of λ(s), µ(t),
and the covariance parameters as known quantities. The MCMC algorithm is invoked by the
command lgcpPredict, whose arguments are as follows:

R> args(lgcpPredict)

Journal of Statistical Software 13

function (xyt, T, laglength, model.parameters = lgcppars(),

spatial.covmodel = "exponential",

covpars = c(), cellwidth = NULL, gridsize = NULL, spatial.intensity,

temporal.intensity, mcmc.control, output.control = setoutput(),

missing.data.areas = NULL, autorotate = FALSE, gradtrunc = NULL,

ext = 2)

A pre-emptive note on computation times

With the options set as below: working on a 128× 128 FFT grid with six time-points worth
of data, and with 120,000 iterations of the MCMC algorithm, the total computation time is
around 2.75 hours on a 3.2GHz Intel Core i5 desktop PC with 4Gb RAM. Computation times
increase approximately linearly with the addition of additional time-points.

In Taylor and Diggle (2012), using the same PC, the authors compare computation times for
the function lgcpPredictSpatial with a computationally equivalent implementation from
the INLA package (Rue, Martino, and Lindgren 2012), and they found that 100,000 iterations
on a 128 × 128 grid (which gave good predictive performance) ran in around 20 minutes,
similar to a call to inla with the option strategy = "laplace" outputting results on the
same predictive grid as MCMC. The results presented in Taylor and Diggle (2012) question
the commonly held notion that for this class of problems, MCMC is slow, hard to tune and
mixes poorly.

Data and model specification

The argument xyt is the stppp object that contains the data, T is the time-point of interest for
prediction (cf., the time t2 in Section 3) and laglength tells the algorithm the number of pre-
vious time-points whose data should be included, that is the time-interval [T−laglength, T].

Model parameters are set using the model.parameters argument; for example,

R> lgcppars(sigma = 1.6, phi = 1.9, theta = 1.4)

has the obvious interpretation. The mean of the latent field Y is set to −σ2/2 by de-
fault. The spatial covariance model and any additional parameters are specified using the
spatial.covmodel and covpars arguments; these may come from any of the compatible co-
variance functions detailed in ?CovarianceFct from the RandomFields package. The physical
dimensions of the grid cells can be set using either the cellwidth or gridsize arguments, the
second of which gives the number of cells in the x and y directions (these numbers are automat-
ically extended to be a power of two for the fast-Fourier transform). The spatial.intensity
and temporal.intensity arguments specify the previously obtained estimates of λ(s) and
µ(t), respectively.

It remains to set the MCMC parameters and output controls; these will now be discussed.

Controlling MALA and performing adaptive MCMC

The mcmc.control argument of lgcpPredict specifies the MCMC implementation and is set
using the mcmcpars function:

R> args(mcmcpars)

14 lgcp: Inference with Spatial and Spatio-Temporal Log-Gaussian Cox Processes in R

function (mala.length, burnin, retain, inits = NULL, adaptivescheme)

Here, mala.length is the number of iterations to perform, burnin is the number of iterations
to throw away at the start and retain is the frequency at which to store or perform com-
putations; for example, retain = 10 performs an action every 10th iteration. The optional
argument inits can be used to set initial values of Γ for the algorithm, and is intended for
advanced use. The initial values are stored in a list object of length laglength + 1, each
element being a matrix of dimension 2M × 2N . For MCMC diagnostics, discussed in the
sequel, the user must dump information from the chain to disk using the dump2dir, discussed
below.

The MALA proposal tuning parameter h in Section 3.2 must also be chosen. The most
straightforward way to do this is to set adaptivescheme = constanth(0.001), which gives
h = 0.001. Without a lengthy tuning process, the value of h that optimizes the mixing
of the algorithm is not known. One solution to the problem of having to choose a scaling
parameter from pilot runs is to use adaptive MCMC (Roberts and Rosenthal 2009; Andrieu
and Thoms 2008). Adaptive MCMC algorithms use information from the realization of an
MCMC chain to make adjustments to the proposal kernel. The Markov property is therefore
no longer satisfied and some care must be taken to ensure that the correct ergodic distribution
is preserved. An elegant method, introduced by Andrieu and Thoms (2008) uses a Robbins-
Munro stochastic approximation update to adapt the tuning parameter of the proposal kernel
(Robbins and Munro 1951); see below for suggested parameter values for this scheme. The
idea is to update the tuning parameter at each iteration of the sampler according to the
iterative scheme,

h(i+1) = h(i) + η(i+1)(α(i) − αopt), (8)

where h(i) and α(i) are the tuning parameter and acceptance probability at iteration i and αopt

is the target acceptance probability. For Gaussian targets, and in the limit as the dimension
of the problem tends to infinity, an appropriate target acceptance probability for MALA
algorithms is αopt = 0.574 (Roberts and Rosenthal 2001). The sequence {η(i)} is chosen so

that
∑∞

i=1 η
(i) is infinite but for some ε > 0,

∑∞
i=1

(
η(i)
)1+ε

is finite. These two conditions
ensure that any value of h can be reached, but in a way that maintains the ergodic behaviour
of the chain. One class of sequences with this property is,

η(i) =
C

iζ
, (9)

where ζ ∈ (0, 1] and C > 0 (Andrieu and Thoms 2008).

The tuning constants for this algorithm are set with the function andrieuthomsh.

R> args(andrieuthomsh)

function (inith, alpha, C, targetacceptance = 0.574)

In the above, inith is the initial value of h and the remaining arguments correspond to their
counterparts in the text above. In our experience of using this algorithm, we have found
that it works well. We have used the values inith = 1, alpha = 0.5 and C = 1 successfully
across a variety of scenarios without any difficulty, but cannot comment as to whether these
values will work well in general.

Journal of Statistical Software 15

The advanced user can also write their own adaptive scheme, detailed examples of which are
provided in Appendix F. Briefly, writing an adaptive MCMC scheme involves writing two
functions to tell R how to initialize and update the values of h. This may sound simple,
but it is crucial that these functions preserve the correct ergodic distribution of the MCMC
chain, an appreciation of these subtleties is essential before any attempt is made to code such
schemes.

Specifying output

By default, lgcpPredict computes the Monte Carlo mean and variance of Y and the mean
and variance of exp{Y } (the relative risk) for each of the grid cells and time intervals of
interest. Additional storage and on-line computations are specified by the output.control

argument and the setoutput function:

R> args(setoutput)

function (gridfunction = NULL, gridmeans = NULL)

The option gridfunction is used to declare general operations to be performed during sim-
ulation (for example, dumping the simulated Y s to disk), whilst user-defined Monte Carlo
averages are computed using gridmeans. A complete run of the MALA chain can be saved
using the dump2dir function:

R> args(dump2dir)

function (dirname, lastonly = TRUE, forceSave = FALSE)

The user supplies a character string, dirname, giving the name of a directory in which the
results are to be saved. The other arguments to dump2dir are, respectively, an option to
save only the last grid (i.e., the time T grid) and to bypass a safety message that would
otherwise be displayed when dump2dir is invoked. The safety message warns the user of disk
space requirements for saving. For example, on a 128× 128 output grid using 5 days of data,
1000 simulations from the MALA will take up approximately 625 megabytes.

The option lastonly in the functions dump2dir and MonteCarloAverage (see below) is set
to TRUE by default, this means that only information from the last time point is saved or
manipulated. The main reason for doing this is that by definition of the model, statistical
interest is focused on inference for the last time point, T. It is assumed that the information
from lagged time points contributes to predictions at time T, but that information from further
in the past has only negligible effect. Setting lastonly = TRUE also has the advantage that
the algorithm runs faster, but should it be of interest to examine predictions at lagged time
points, the option should be set to FALSE.

Another option is to compute Monte Carlo expectations,

Eπ(Yt1:t2 |Xt1:t2)
[g(Yt1:t2)] =

∫
W
g(Yt1:t2)π(Yt1:t2 |Xt1:t2)dYt1:t2 , (10)

≈ 1

n

n∑
i=1

g(Y
(i)
t1:t2

) (11)

16 lgcp: Inference with Spatial and Spatio-Temporal Log-Gaussian Cox Processes in R

where g is a function of interest, Y
(i)
t1:t2

is the ith retained sample from the target and n is
the total number of retained iterations. For example, to compute the mean of Yt1:t2 , set
g(Yt1:t2) = Yt1:t2 . The output from such a Monte Carlo average would then be a set of t2− t1
grids, each cell of which is equal to the mean over all retained iterations of the algorithm. In
the context of setting up the gridmeans option to compute the Monte Carlo mean, the user
would define a function g as

R> gfun <- function(Y) {

+ return(Y)

+ }

and input this to the MALA run using the function MonteCarloAverage,

R> args(MonteCarloAverage)

function (funlist, lastonly = TRUE)

Here, funlist is either a list or a character vector giving the names of the function(s) g. The
specific syntax for the example above would be a call of the form MonteCarloAverage("gfun").
The functions of interest (e.g., gfun above) are assumed to act on each of the individual grids,
Yti , and return a grid of the same dimension.

A second example arises in epidemiological studies where it is of clinical interest to know
whether, at any location s, the ratio of current to expected risk exceeded a pre-specified
intervention threshold; see, for example, Diggle et al. (2005), where real-time predictions of
relative risk are presented as maps of exceedance probabilities, P{exp(Yt) > k|X1:t} for a pre-
specified threshold k. Any such exceedance probability can be expressed as an expectation,

P[exp(Yt1:t2) > k] = Eπ(Yt1:t2 |Xt1:t2)
{I[exp(Yt1:t2) > k]} =

1

n

n∑
i=1

I[exp(Y
(i)
t1:t2

) > k],

where I is the indicator function, and a Monte Carlo approximation can therefore be computed
on-line using MonteCarloAverage.

The corresponding function g is

g(Yt1:t2) = I[exp(Yt1:t2) > k].

Exceedance probabilities are made available directly within lgcp by the function exceedProbs.

To make use of this facility, the user specifies the thresholds of interest, for example 1.5, 2
and 3, then creates a function to compute the required exceedances:

R> exceed <- exceedProbs(c(1.5, 2, 3))

The object exceed is now a function that returns the exceedance probabilities as an array
object of dimension M×N×3. This function can be passed through to the gridmeans option,
together with the previously defined gfun, via gridmeans = MonteCarloAverage(c("gfun",

"exceed"). The lgcpPredict function then returns point-wise predictive means and three

Journal of Statistical Software 17

sets of exceedance probabilities. Note that, the example function gfun is included for illus-
trative purposes only and is in fact redundant, as lgcpPredict automatically returns the
predictive mean (as well as the variance) of Y .

Rotation

Testing whether estimation can proceed more efficiently in a rotated space is described in
detail in Appendix B. Note that if the data and observation window are rotated, then λ must
also be rotated to retain compatibility. If λ was estimated in the original frame of reference and
autorotate = TRUE, then lgcpPredict will automatically rotate λ if it is computationally
worthwhile to do so. For λ specified as a grid, either directly or via an object of class im,
then a small amount of information loss occurs in the rotation because the square cells in the
original orientation become misaligned with the axes in the rotated space and vice-versa. If
λ is specified by a continuous function, then no such loss occurs.

Gradient truncation

One undesirable property of the Metropolis-adjusted Langevin algorithm is that the chain is
prone to taking very long excursions from the mode of the target; this behaviour can have a
detrimental effect on the mixing of the chain and consequently on any results. The tendency
to make long excursions is caused by instability in the computation of the gradient vector,
but the issue is relatively straightforward to rectify without affecting convergence properties
(Møller et al. 1998). The key is to truncate the gradient vector if it becomes too large. If
gradtrunc = NULL, then an appropriate truncation is automatically selected by the code.
With gradtrunc = Inf, no gradient truncation occurs.

As far as the authors are aware, there are no published guidelines for selecting this truncation
parameter. The current version of the lgcp package uses the maximum achieved gradient
over a set of 100 independent realizations of Γt1:t2 .

4.6. Running

When all of the above options have been specified, the MALA algorithm can be called as
follows:

R> tmpdr <- tempdir()

R> lg <- lgcpPredict(xyt = xyt, T = 50, laglength = 5,

+ model.parameters = lgcppars(sigma = 1.6, phi = 1.9, theta = 1.4),

+ cellwidth = 2, spatial.intensity = sar, temporal.intensity = mut,

+ mcmc.control = mcmcpars(mala.length = 120000, burnin = 20000,

+ retain = 100, adaptivescheme = andrieuthomsh(inith = 1, alpha = 0.5,

+ C = 1, targetacceptance = 0.574)),

+ output.control = setoutput(gridfunction = dump2dir(dirname = tmpdr),

+ gridmeans = MonteCarloAverage("exceed")))

The above call assumes that the spatial covariance model is exponential, that no rotation is to
be performed and that the user wishes to have lgcpPredict compute an appropriate gradi-
ent truncation automatically. The arguments spatial.intensity and temporal.intensity

relate to the spatial and temporal intensities, estimated in Section 4.3; note that the chosen

18 lgcp: Inference with Spatial and Spatio-Temporal Log-Gaussian Cox Processes in R

temporal model is constant in time. Recall that the option lastonly is by default set to TRUE

in both MonteCarloAverage and dump2dir.

The simulated example uses data from times 45 to 50 inclusive, 120,000 iterations, of which
the first 20,000 are treated as burn-in, and retains every 100th sample. The observation
window is approximately 100km square, so the specified cell width of 2km (given in the same
units as used in the object xyt) gives an output grid of size 64×64, i.e., computation is carried
out on a 128× 128 grid. The complete run is saved to disk and exceedance probabilities are
computed for the last time-point only.

During simulation, a progress bar is displayed giving the percentage of iterations completed.

It is possible at the start of a run that the user may be confronted by a warning message
like Time 48: 5 data points lost due to discretization. This means that there are
points close to the edge of the polygonal observation window that lie outside the computational
grid. Critical information is only lost in any subsequent conditional predictions if we were
specifically interested in behaviour close to these areas, in which case there are two options.
The easiest solution assuming that prediction in these areas is important, but bears additional
computational expense and may not fix the warnings, is to use a finer grid resolution. The
package lgcp provides facilities for the user to design both the observation window as well as
the spatialAtRisk object, and therefore loss of information at the edges can be adjusted for
manually by using an appropriate choice of these two objects.

4.7. Post-processing

The stored output lg is an object of class lgcpPredict. Typing lg into the console prints
out information about the run:

R> lg

lgcpPredict object.

General Information

FFT Gridsize: [128 , 128]

Data:

Time | 45 46 47 48 49 50

Counts | 98 345 106 100 73 67

Parameters: sigma=1.6, phi=1.9, theta=1.4

Dump Directory: /tmp/RtmpeaOS3o

Grid Averages:

Function Output Class

exceed array

Time taken: 2.77 hours

MCMC Information

Journal of Statistical Software 19

Number Iterations: 120000

Burn-in: 20000

Thinning: 100

Mean Acceptance: 0.574

Adaptive Scheme: andrieuthomsh

Last h: 0.00904236148499419

Information returned includes the FFT grid size used in computation; the count data for each
day; the parameters used; the directory, if specified, to which the simulation was dumped; a
list of MonteCarloAverage functions together with the R class of their returned values; the
time taken to do the simulation; and information on the MCMC run.

Extracting information

The cell-wise mean and variance of Y computed via Monte Carlo can always be extracted using
meanfield(lg) and varfield(lg), respectively. The calls rr(lg), serr(lg), intens(lg)
and seintens(lg) return respectively the Monte Carlo mean relative risk (the mean of
exp{Y }), the standard error of the relative risk, the estimated cell-wise mean Poisson in-
tensity and the standard error of the Poisson intensity. The x and y coordinates for the
grid output are obtained via xvals(lg) and yvals(lg). The returned object from calls like
meanfield, varfield or intens are objects of class lgcpgrid, so the command,

R> intensity <- intens(lg)

creates an lgcpgrid object containing the mean Poisson intensities. Then, for example
intensity$grid[[1]] returns the Poisson intensities relating to the first time aggregated
point, with an appropriate (x, y) grid available using xvals(lg) and yvals(lg). Simi-
larly, intensity$grid[[2]] returns the intensities from the second aggregated time point.
lgcpPredict not only produces predictions for grid locations inside the observation window,
but also it produces predictions for cells outside the observation window too. This is because
we define λ(s) = 0 for s /∈W : we expect no counts, and observe no counts in these cells. The
values returned by intensity$grid[[1]] are therefore stored in a rectangular matrix. To
see which of these cells lies inside the observation window, use the following command,

R> fftgr <- discreteWindow(lg)

which returns a logical matrix of the same dimension as intensity$grid[[1]]. These com-
mands give the user the freedom to manipulate the outputs from an MCMC run and produce
their own plots, for example. Should the user prefer list or array versions of the lgcpgrid

objects, conversion is possible via the functions as.list and as.array.

In geographic information system (GIS) applications, where the discrete grid on which Monte
Carlo computation is performed pertains to a geographical area, lgcp provides methods
for coercing lgcpgrid objects into raster objects (Hijmans and van Etten 2012) and also
SpatialPixelsDataFrame objects via for example:

R> rastlg <- raster(intens(lg))

R> spdflg <- as.SpatialPixelsDataFrame(rr(lg))

20 lgcp: Inference with Spatial and Spatio-Temporal Log-Gaussian Cox Processes in R

400 420 440 460 480 500

80
10

0
12

0
14

0
16

0
18

0

Relative Risk, time 50
x coordinate

y
co

or
di

na
te

2

4

6

8

+

+

++

+

+

+
++

+

+

++

+

+

+

+

++ +

+

+ +

+
+

+

+

+

+

+
+

+

+
+

+

++

++

+ +

+

+
+ +

+
+++

+ ++
++++ +

+
++

+
+

+

+

+
+ +++

400 420 440 460 480 500

80
10

0
12

0
14

0
16

0
18

0
S.E. Relative Risk, time 50

x coordinate
y

co
or

di
na

te

2

4

6

8

+

+

++

+

+

+
++

+

+

++

+

+

+

+

++ +

+

+ +

+
+

+

+

+

+

+
+

+

+
+

+

++

++

+ +

+

+
+ +

+
+++

+ ++
++++ +

+
++

+
+

+

+

+
+ +++

Figure 5: Plots of the Monte Carlo mean relative risk (left) and associated standard errors
(right).

The resulting objects, respectively a raster image and a SpatialPixelsDataFrame, can then
be exported and viewed in GIS software.

If invoked, the commands gridfun(lg) and gridav(lg) return respectively the gridfunction
and gridmeans options of the setoutput argument of the lgcpPredict function, whilst
window(lg) returns the observation window.

Note that the structure produced by gav <- gridav(lg) is a list of length 2. The first
element of gav, retrieved with gav$names, is a list of the function names given in the call to
MonteCarloAverage. The second element, gav$output, is a list of the function outputs; the
ith element in the list being the output from the function corresponding to the ith element
of gav$names. To return the output for a specific function, use the syntax gridav(lg, fun

= "exceed"), which in this case returns the exceedance probabilities, for example.

Plotting

Plots of the Monte Carlo mean relative risk and standard errors can be obtained with the
commands:

R> plot(lg, xlab = "x coordinate", ylab = "y coordinate")

R> plot(lg, type = "serr", xlab = "x coordinate", ylab = "y coordinate")

These commands produce a series of plots corresponding to each time step under considera-
tion; the plots shown in Figure 5 are from the last time step, time 50.

To plot the mean Poisson intensity instead of the relative risk, the optional argument type

can be set in the above:

R> plot(lg, type = "intensity", xlab = "x coordinate", ylab = "y coordinate")

Journal of Statistical Software 21

The cases for each time step are also plotted by default. It was also suggested by an anonymous
referee, that a user could make use of the spacetime (Pebesma 2012) and xts (Ryan and Ulrich
2012) packages for plotting and manipulating data and model outputs from lgcp.

Forecasting

It is of statistical and epidemiological interest to be able to forecast beyond the time frame
of an analysis, that is to be able to forecast the Poisson intensity,

Aλ(s)µ(t2 + k) exp{Y (s, t2 + k)}

where A is the cell area. The package lgcp provides functionality to be able to construct
estimates of this together with its approximate variance via the function lgcpForecast.

Our choice of modelling framework implies that {Y (· , t)} is an Ornstein-Uhlenbeck process
(Brix and Diggle 2001). Hence,

Y (· , t2 + k) ∼ N[ξ(k)Y (· , t2) + (1− ξ(k))µ, (1− ξ(k))2Σ], (12)

where ξ(k) = exp(−θk). Our task is to infer the forecast distribution of Y (· , t2 + k) given
the observed data Xt1:t2 . The conditional independence properties of the model imply,

π[Y (· , t2 + k)|Xt1:t2] =

∫
π[Y (· , t2 + k)|Y (· , t2)]π[Y (· , t2)|Xt1:t2]dY (· , t2).

The mean and variance can now be derived as,

E[Y (· , t2 + k)|Xt1:t2] = ξ(k)E[Y (· , t2)|Xt1:t2] + (1− ξ(k))µ,

Var[Y (· , t2 + k)|Xt1:t2] = ξ(k)2Var{Y (· , t2)|Xt1:t2}+ (1− ξ(k))2Σ.

Unfortunately, Var{Y (· , t2)|Xt1:t2} is unavailable in practice, so we instead replace this by a
diagonal approximation, which is returned by default by lgcpPredict in lg$y.var.

Forecast distributions are returned using the following command:

R> fcast <- lgcpForecast(lg, c(51, 53, 55, 60), spatial.intensity = sar,

+ temporal.intensity = function(x){ return(100) })

The object fcast contains the predicted means and variance of Y , the relative risk and
Poisson intensities for times 51, 53, 55 and 60. Note that a temporal.intensity object must
be provided as the temporalAtRisk object used in the MCMC step may not be valid for time
points beyond time T. In the above example, we assume that for the forecast time-frame there
will be 100 cases per time point on average.

We note that should information have been dumped to disk, then it would possible to pro-
duce a Monte Carlo estimate of the forecast distribution of Y , the relative risk and Poisson
intensities, or indeed any quantity of interest that could be expressed as an expectation. Such
a solution would be asymptotically exact (as the number of samples tends to infinity) but
computationally intensive to compute. Suppose we wish to estimate E{f [Y (· , t2 + k)]|Xt1:t2}
for some function, f , the Monte Carlo estimate would be obtained as follows. Let Y

(j)
t2

denote
the jth sample dumped to disk in the NetCDF file (see below). Assuming the chain has

22 lgcp: Inference with Spatial and Spatio-Temporal Log-Gaussian Cox Processes in R

achieved stationarity, this can be treated as a draw from π[Y (· , t2)|Xt1:t2]. For each Y
(j)
t2

,

produce a draw from π[Y (· , t2 +k)|Xt1:t2] by sampling Y
(j)
t2+k

according to Equation 12 – note

that rgauss can be used to simulate from a N(0,Σ) density. The sample mean of f(Y
(j)
t2+k

) is
an unbiased estimate of the quantity of interest, E{f [Y (· , t2 + k)]|Xt1:t2}.

NetCDF

The lgcp package provides functions for accessing and performing computations on MCMC
runs dumped to disk. Because this can generate very large files, lgcp uses the cross-platform
NetCDF file format for storage and rapid data access, as provided by the package ncdf (Pierce
2011). Access to subsets of these stored data is via a file indexing system, which removes the
need to load the complete data into memory.

Subsets of data dumped to disk can be accessed with the extract function:

R> subsamp <- extract(lg, x = c(4, 10), y = c(32, 35), t = 1, s = -1)

which returns an array of dimension 7×4×1×1000 (recall there were 1000 retained iterations).
The arguments x and y refer to the range of x and y indices of the grid of interest whilst t

specifies the time points of interest. Note, however, that in this example times 45 through 50
were used for prediction, and t = 1 here in fact refers to the sixth of these time-points, i.e.,
time 50, since the option lastonly was set to TRUE by default. Finally, s = -1 stipulates
that all simulations are to be returned. More generally, each argument of extract can be
specified either as a range or set equal to −1, in which case all of the data in that dimension
are returned. The extract function can also extract MCMC traces from individual cells
using, for example, extract(lg, x = 37, y = 12, t = 1).

Should the user wish to extract data from a polygonal sub-region of the observation window,
this can be achieved with the command

R> subsamp2 <- extract(lg, inWindow = win2, t = 1)

where win2 is a polygonal observation window defined below. Here, win2 had been selected
using the following commands:

R> plot(window(lg))

R> win2 <- clickpoly(add = TRUE)

The first of the above commands plots the observation window, whilst the second is a spat-
stat function for drawing polygonal owin objects manually. The user could also specify the
extract argument inWindow directly using a spatstat owin object.

If the user decides that some other summary than those specified by the gridmeans option is
of interest, this can easily be computed from the stored data (cf., Section 4.5.4) The syntax
is then slightly different, as in the following example that computes the same exceedances in
Section 4.5.4:

R> ex <- expectation(obj = lg, fun = exceed)

Alternatively, cell-wise quantiles of functions of the stored data can also be retrieved and
plotted:

Journal of Statistical Software 23

400 420 440 460 480 500

80
10

0
12

0
14

0
16

0
18

0

quantile: 0.5
X coords

y
co

or
ds

1

2

3

4

5

6

7

430 440 450 460 470

90
10

0
11

0
12

0
quantile: 0.5

X coords
y

co
or

ds

1

2

3

4

5

6

7

Figure 6: Plot showing the median of relative risk (obtained using fun = exp as in the text)
computed from the simulation. Left: quantiles computed for whole window. Right: zooming
in on the lower area of the map, representing the cities of Southampton and Portsmouth.
Greater detail is available by initially performing the simulation on a finer grid.

R> qt <- quantile(lg, c(0.5, 0.75, 0.9), fun = exp)

R> plot(qt, xlab = "X coords", ylab = "y coords")

As for the extract function above, quantiles can also be computed for smaller spatial obser-
vation windows. The indices of any cells of interest in these plots can be retrieved by typing
identify(lg). Cells are then selected via left mouse clicks in the graphics device, selection
being terminated by a right click.

Lastly, Linux users can benefit from the software Ncview (Pierce 2012) which provides fast
visualization of NetCDF files. Figure 7 shows a screen-shot, with the control panel (left), an
image of one of the sampled grids (top right) and several MCMC chains (bottom right), which
are obtained by clicking on the sampled grids; up to five chains can be displayed at a time.
There are equivalent tools for Windows users e.g., Intel Array Visualizer (IntelCorporation
2012).

MCMC diagnostics

MCMC diagnostics for the chain are based on the full output from data dumped to disk
(see Section 4.7.4). The hvals command returns the value of h used at each iteration in the
algorithm, the left hand plot in Figure 8 shows the values of h for the non-burn-in period of
the chain; the adaptive algorithm was initialized with h = 1, which very quickly converged to
around h = 0.009.

R> plot(hvals(lg)[20000:120000], type = "l", xlab = "Iteration", ylab = "h")

R> tr <- extract(lg, x = 6, y = 32, t = 1, s = -1)

R> plot(tr, type = "l", xlab = "Iteration", ylab = "Y")

24 lgcp: Inference with Spatial and Spatio-Temporal Log-Gaussian Cox Processes in R

Figure 7: Viewing a MALA run with software netview.

Figure 8: MCMC diagnostic plots. Left: plot of values of h taken by the adaptive algorithm.
Right: trace plot of the saved chain from the [6, 32] cell.

A trace plot using data from the [6, 32] cell is shown in the right-hand panel of Figure 8 (recall
that t = 1 in the above corresponds to the last time point in this case). Note that this is
a trace plot for Y , as opposed to Γ. To plot the auto-correlation function, the standard R
function can be used, for example, acf(tr) gives the acf of the first extracted chain.

The package lgcp also provides a function for extracting auto-correlation information from all
cells via:

Journal of Statistical Software 25

Figure 9: MCMC diagnostics, left to right: plots of cell-wise lag 1, 5 and 10 auto-correlation.

R> acor <- autocorr(lg, lags = c(1, 5, 10), inWindow = NULL)

R> plot(acor, zlim = c(-1, 1), xlab = "x-coords", ylab = "y-coords")

In the call to autocorr in the above, the option inWindow = NULL specifies that the auto-
correlation from all cells should be computed, as by default the output is cropped to the
observation window. The plot command in the second line produces the sequence of plots
shown in Figure 9. These plots show that although the lag-1 auto-correlation is quite high,
it is quite low across the whole observation window by lag 10.

There are a number of R packages for handling MCMC output, for example coda (Plummer,
Best, Cowles, and Vines 2006). The package lgcp does not provide an interface for working
with these other packages because the size of the output dumped to disk is potentially so
large. It is possible to interface with these packages manually by extracting smaller subsets
of data, and converting them to the appropriate format, but this is not dealt with here.

Plotting exceedance probabilities

Recall that the object exceed, defined above, was a function with an attribute giving a vector
of thresholds to compute cell-wise exceedance probabilities at each threshold. A plot can be
produced either directly from the lgcpPredict object,

R> plotExceed(lg, fun = "exceed")

or, equivalently, from the output of an expectation on an object dumped to disk:

R> plotExceed(ex[[1]], fun = "exceed", lgcppredict = lg)

Recall also that the option lastonly = TRUE was selected for MonteCarloAverage, hence
ex[[1]] in the second example above corresponds to the same set of plots as for the first
example. The advantage of computing expectations from files dumped to disk is flexibil-
ity. For example, if the user now wanted to plot the exceedances for day 49, this is simply
achieved by replacing ex[[6]] with ex[[5]]. Also, exceedances for a new set of thresholds
can be computed by creating, for example, a new function by the command exceed2 <-

exceedProbs(c(2.3, 4)). An example of the resulting output is given in Figure 10.

26 lgcp: Inference with Spatial and Spatio-Temporal Log-Gaussian Cox Processes in R

400 420 440 460 480 500

80
10

0
12

0
14

0
16

0
18

0

Time: 50

Prob(Relative Risk)> 3
xvals

yv
al

s

0.0

0.2

0.4

0.6

0.8

Figure 10: Plot showing the cell-wise probability (color coded) that the relative risk is greater
than 3.

5. Future extensions

This article has described how lgcp may be used to fully specify, fit, and simulate from, i.e.,
predict conditional on observed data, a spatio-temporal log-Gaussian Cox process on R2.
The package lgcp provides a substantial volume of novel code, such as access to fast-Fourier
transform methods needed in simulation and the first open-source R implementation of the
Metropolis-adjusted Langevin algorithm for this target. The package lgcp also has function-
ality not discussed in this article including methods for handling missing spatial data over
time, the approximation of Gaussian fields by Gaussian Markov random fields and prediction
for ‘spatial-only’ log Gaussian Cox processes (Taylor and Diggle 2012).

The initial motivation for this work was disease surveillance as performed by Diggle et al.
(2005), and it is this application which has driven the core functionality for initial release (at
the time of writing, lgcp is at version 1.01). A list of possible extensions to lgcp includes:
the ability to include spatial and temporally referenced covariates into the MCMC scheme;
to perform principled Bayesian parameter inference (both currently under development); and
to handle applications where covariate information is available at differing spatial resolutions.
Finally, in the spatio-temporal setting, it is of further interest to include the ability to handle
non-separable correlation structures; see for example Gneiting (2002) and Rodrigues and
Diggle (2010).

Journal of Statistical Software 27

Acknowledgments

The population data used in this article was based on real data from project AEGISS (Diggle
et al. 2005). AEGISS was supported by a grant from the Food Standards Agency, U.K.,
and from the National Health Service Executive Research and Knowledge Management Di-
rectorate.

References

Andrieu C, Thoms J (2008). “A Tutorial on Adaptive MCMC.” Statistics and Computing,
18(4), 343–373.

Baddeley A, Turner R (2005). “spatstat: An R Package for Analyzing Spatial Point Patterns.”
Journal of Statistical Software, 12(6), 1–42. URL http://www.jstatsoft.org/v12/i06/.

Baddeley AJ, Møller J, Waagepetersen R (2000). “Non- and Semi-Parametric Estimation of
Interaction in Inhomogeneous Point Patterns.” Statistica Neerlandica, 54, 329–350.

Bivand RS, Pebesma EJ, Gomez-Rubio V (2008). Applied Spatial Data Analysis with R.
Springer-Verlag, New York. URL http://www.asdar-book.org/.

Bowman AW, Crawford E, Alexander G, Bowman RW (2007). “rpanel: Simple Interactive
Controls for R Functions Using the tcltk Package.” Journal of Statistical Software, 17(9),
1–18. URL http://www.jstatsoft.org/v17/i09/.

Bowman AW, Gibson I, Scott EM, Crawford E (2010). “Interactive Teaching Tools for Spatial
Sampling.” Journal of Statistical Software, 36(13), 1–17. URL http://www.jstatsoft.

org/v36/i13/.

Brix A, Diggle PJ (2001). “Spatiotemporal Prediction for Log-Gaussian Cox Processes.”
Journal of the Royal Statistical Society B, 63(4), 823–841.

Davies T, Hazelton M (2013). “Assessing Minimum Contrast Parameter Estimation for Spatial
and Spatiotemporal Log-Gaussian Cox Processes.” Submitted.

Davies TM, Hazelton ML, Marshall JC (2011). “sparr: Analyzing Spatial Relative Risk Using
Fixed and Adaptive Kernel Density Estimation in R.” Journal of Statistical Software, 39(1),
1–14. URL http://www.jstatsoft.org/v39/i01/.

Diggle P, Rowlingson B, Su TL (2005). “Point Process Methodology for On-Line Spatio-
Temporal Disease Surveillance.” Environmetrics, 16(5), 423–434.

Gneiting T (2002). “Nonseparable, Stationary Covariance Functions for Space-Time Data.”
Journal of the American Statistical Association, 97, 590–600.

Hastings WK (1970). “Monte Carlo Sampling Methods Using Markov Chains and Their
Applications.” Biometrika, 57(1), 97–109.

Hijmans RJ, van Etten J (2012). “raster: Geographic Analysis and Modeling with Raster
Data.” R package version 2.0-41, URL http://CRAN.R-project.org/package=raster.

http://www.jstatsoft.org/v12/i06/
http://www.asdar-book.org/
http://www.jstatsoft.org/v17/i09/
http://www.jstatsoft.org/v36/i13/
http://www.jstatsoft.org/v36/i13/
http://www.jstatsoft.org/v39/i01/
http://CRAN.R-project.org/package=raster

28 lgcp: Inference with Spatial and Spatio-Temporal Log-Gaussian Cox Processes in R

IntelCorporation (2012). “Intel Array Visualizer, Version 2012-08-28.” URL http://www.

intel.com/cd/software/products/asmo-na/eng/compilers/226277.htm.

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953). “Equation of
State Calculations by Fast Computing Machines.” The Journal of Chemical Physics, 21(6),
1087–1092.

Møller J, Syversveen AR, Waagepetersen RP (1998). “Log Gaussian Cox Processes.” Scandi-
navian Journal of Statistics, 25(3), 451–482.

Pebesma E (2012). “spacetime: Spatio-Temporal Data in R.” Journal of Statistical Software,
51(7), 1–30. URL http://www.jstatsoft.org/v51/i07/.

Pebesma EJ, Bivand RS (2005). “Classes and Methods for Spatial Data in R.” R News, 5(2),
9–13. URL http://CRAN.R-project.org/doc/Rnews/.

Pierce D (2011). “ncdf: Interface to Unidata NetCDF Data Files.” R package version 1.6.6,
URL http://CRAN.R-project.org/package=ncdf.

Pierce D (2012). “Ncview: A NetCDF Visual Browser.” Version 2.1.2, URL http://meteora.

ucsd.edu/~pierce/ncview_home_page.html.

Plummer M, Best N, Cowles K, Vines K (2006). “coda: Convergence Diagnosis and Out-
put Analysis for MCMC.” R News, 6(1), 7–11. URL http://CRAN.R-project.org/doc/

Rnews/.

R Core Team (2012). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org/.

Robbins H, Munro S (1951). “A Stochastic Approximation Method.” The Annals of Mathe-
matical Statistics, 22(3), 400–407.

Roberts G, Rosenthal J (2001). “Optimal Scaling for Various Metropolis-Hastings Algo-
rithms.” Statistical Science, 16(4), 351–367.

Roberts GO, Rosenthal JS (1998). “Optimal Scaling of Discrete Approximations to Langevin
Diffusions.” Journal of the Royal Statistical Society B, 60, 255–268(14).

Roberts GO, Rosenthal JS (2009). “Examples of Adaptive MCMC.” Journal of Computational
and Graphical Statistics, 18(2), 349–367.

Roberts GO, Tweedie RL (1996). “Exponential Convergence of Langevin Distributions and
Their Discrete Approximations.” Bernoulli, 2(4), 341–363.

Rodrigues A, Diggle P (2010). “A Class of Convolution-Based Models for Spatio-Temporal
Processes with Non-Separable Covariance Structure.” Scandinavian Journal of Statistics,
37, 553–567.

Rue H, Held L (2005). Gaussian Markov Random Fields. Chapman & Hall.

http://www.intel.com/cd/software/products/asmo-na/eng/compilers/226277.htm
http://www.intel.com/cd/software/products/asmo-na/eng/compilers/226277.htm
http://www.jstatsoft.org/v51/i07/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/package=ncdf
http://meteora.ucsd.edu/~pierce/ncview_home_page.html
http://meteora.ucsd.edu/~pierce/ncview_home_page.html
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://www.R-project.org/
http://www.R-project.org/

Journal of Statistical Software 29

Rue H, Martino S, Lindgren F (2012). INLA: Functions Which Allow to Perform a Full
Bayesian Analysis of Structured (Geo-)Additive Models Using Integrated Nested Laplace
Approximaxion. R package version 0.0, revision 3a402c92ad22, URL http://www.R-INLA.

org/.

Ryan JA, Ulrich JM (2012). “xts: eXtensible Time Series.” R package version 0.9-1, URL
http://CRAN.R-project.org/package=xts.

Schlather M (2012). “RandomFields: Simulation and Analysis of Random Fields.” R package
version 2.0.59, URL http://CRAN.R-project.org/package=RandomFields.

Taylor BM, Diggle PJ (2012). “INLA or MCMC? A Tutorial and Comparative Evaluation for
Spatial Prediction in Log-Gaussian Cox Processes.” Submitted, URL http://www.arxiv.

org/pdf/1202.1738.

Wood ATA, Chan G (1994). “Simulation of Stationary Gaussian Processes in [0, 1]d.” Journal
of Computational and Graphical Statistics, 3(4), 409–432.

http://www.R-INLA.org/
http://www.R-INLA.org/
http://CRAN.R-project.org/package=xts
http://CRAN.R-project.org/package=RandomFields
http://www.arxiv.org/pdf/1202.1738
http://www.arxiv.org/pdf/1202.1738

30 lgcp: Inference with Spatial and Spatio-Temporal Log-Gaussian Cox Processes in R

A. Using covariates to estimate the fixed components

By ‘a spatially-resolved covariate’, we refer to a covariate that can sensibly be defined for a
spatial region. Typically, such a covariate would pertain to the environment (e.g., average
rainfall), rather than to individuals (e.g., individual eye color), unless geographical aggregation
of the individual attributes makes sense. In this section, we show how to estimate the fixed
spatial and temporal components in the situation where we wish to use spatially-resolved
covariate information to adjust for effects of interest.

The procedure is as follows: (1) choose the size of the computational grid (i.e., the size of the
cells) and compute the FFT grid using

R> OW <- selectObsWindow(xyt, cellwidth = 2)

as in Section 4.3; (2) compute the total number of events in each of the cells using the function
getCellCounts,

R> cellcounts <- getCellCounts(x = xyt$x, y = xyt$y, xgrid = OW$xvals,

+ xgrid = OW$yvals)

(3) resolve all available covariate information onto this grid i.e., extract the value of each
covariate for each of the grid cells; and (4) separately fit spatial and temporal models to
these data as described below. Note that the sp function overlay is very useful for resolving
covariate data onto grids.

In the following code, we first simulate some population and covariate data on a 128×128 grid
defined by centroids xvals and yvals; for illustration, we pretend that this is the FFT grid
on which inference will take place. Then we generate the covariate data: both continuous,
ctsvar, as well as a binary, binvar, variables. We next define a function, mut, that will cause
seasonal peaks and troughs in the number of events. Lastly, Poisson counts are simulated on
a grid over a time period of [0, 100], in this case ignoring extra-Poisson spatial and temporal
correlation. For the purpose of estimating the fixed spatial and temporal components, all that
is required are cell counts aggregated over time, simd, and the total number of events over
space at each time point, count. The function rgauss simulates correlated Gaussian fields
on lattices. Figure 11 illustrates the covariate and simulated data.

R> set.seed(666)

R> ncells <- 128

R> population <- exp(rgauss(ncells = ncells,

+ model.parameters = lgcppars(sigma = 2, phi = 0.1))$grid[[1]])

R> ctsvar <- rgauss(ncells = ncells,

+ model.parameters = lgcppars(sigma = 1, phi = 0.1))$grid[[1]]

R> binvar <- matrix(as.numeric(rgauss(ncells = ncells,

+ model.parameters = lgcppars(sigma = 2, phi = 0.05))$grid[[1]] > 1),

+ ncells, ncells)

R> xvals <- seq(0, 1, length.out = ncells)

R> yvals <- seq(0, 1, length.out = ncells)

R> mut <- function(t) {

+ return(exp(-7 + sin(2 * pi * t/25) + cos(2 * pi * t/25)))

+ }

R> param <- c(1, 2)

Journal of Statistical Software 31

Figure 11: Top left: image plot of the simulated population, population, raised to the power
1/4 (to improve presentation). Top right: image plot of the continuous variable ctsvar.
Bottom left: image plot of the binary variable, binvar. Bottom right: plot of simulated cell
counts, simd, raised to the power 1/4.

R> time <- seq(0:100)

R> simd <- matrix(0, ncells, ncells)

R> count <- c()

R> for(t in 1:length(time)) {

+ rate <- mut(time[t]) * population *

+ exp(ctsvar * param[1] + binvar * param[2])

+ dat <- matrix(rpois(ncells^2, rate), ncells, ncells)

+ simd <- simd + dat

+ count <- c(count, sum(dat))

+ }

32 lgcp: Inference with Spatial and Spatio-Temporal Log-Gaussian Cox Processes in R

We can now fit covariate-adjusted spatial and temporal models to these data to obtain esti-
mates of λ and µ.

Firstly, we ‘postulate’ a Poisson log-linear model for the cell counts given the covariate data,
which can be fitted using the glm function from the stats package; log(population) is
included as an offset.

R> spatmod <- glm(as.vector(simd) ~ as.vector(ctsvar) + as.vector(binvar),

+ family = poisson, offset = as.vector(log(population)))

R> summary(spatmod)$coefficients

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.964796 0.02551681 -77.00005 0

as.vector(ctsvar) 1.020210 0.02283510 44.67727 0

as.vector(binvar) 1.999494 0.03895494 51.32838 0

As should be expected, the covariate effects stored in the object param defined above are
retrieved by this procedure. For the temporal component, we again postulate a Poisson
generalized linear model framework including harmonic regression terms, which is also fitted
using glm.

R> tempmod <- glm(count ~ sin(2 * pi * time/25) + cos(2 * pi * time/25),

+ family = poisson)

R> summary(tempmod)$coefficients

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.9203005 0.02750970 106.15532 0.000000e+00

sin(2 * pi * time/25) 0.9618636 0.03281484 29.31185 7.326175e-189

cos(2 * pi * time/25) 0.9576516 0.03248664 29.47832 5.459656e-191

The resulting objects, spatmod and tempmod, can be converted to spatialAtRisk and
temporalAtRisk objects for use in a run of lgcpPredict by using the following:

R> sar <- spatialAtRisk(list(X = xvals, Y = yvals,

+ Zm = matrix(fitted(spatmod), ncells, ncells)))

R> tar <- temporalAtRisk(fitted(tempmod), tlim = c(0, 100), warn = FALSE)

In the above, the fitted values from spatmod are rescaled so that λ integrates to 1 over the
observation window. The object tar acts as a look-up table: for each integer time point, t,
in the range [0, 100], tar(t) is the fitted value from the temporal generalized linear model
for that time. Figure 12 shows the fitted fixed spatial and temporal components.

B. Rotation

The MALA algorithm works on a regular square grid placed over the observation window. The
user is responsible for providing a physical grid size on which to perform estimation/prediction.
The gridded observation window is then extended automatically to obtain a 2m × 2n grid on

Journal of Statistical Software 33

Figure 12: Left: fitted spatialAtRisk object, sar, raised to the power 1/4; compare with
the simulated data in Figure 11. Right: fitted temporalAtRisk object, tar, with the actual
counts appearing as dots.

which the simulation is performed. By default, the orientation of this extended grid is the same
as the object win. If the observation window is elongated and set at a diagonal, then some
loss of efficiency that would occur as a consequence of redundant computation at irrelevant
locations can be recovered by rotating the coordinate axes and performing the computations
in the rotated space.

To illustrate this, suppose xyt2 is an stppp object with such an elongated and diagonally
oriented window (see Figure 13). The function roteffgain displays whether any efficiency
can be gained by rotation; clearly this not only depends on the observation window, but
also on the size of the square cells on which the analysis will be performed. In the example
below, the user wishes to perform the analysis using a cell width of 25km (corresponding to
cellwidth=25000 in the code below):

R> roteffgain(xyt2, cellwidth = 25000)

By rotating the observation window, the efficiency gain would be: 200%,

see ?getRotation.stppp

NOTE: efficiency gain is measured as the percentage increase in FFT

grid cells from not rotating compared with rotating

[1] TRUE

The routine returns FALSE if there is no ‘efficiency gain’. Note that the efficiency gain is not a
reflection on computational speed, but rather a measure of how many fewer cells the MALA
is required to use; this is illustrated in Figure 13. As a technical aside, a better measure would
be a ratio of mixing times for the MCMC chains based on unrotated and rotated windows;
however, as the mixing time depends on how well the MALA has been tuned, it is not clear
how this can be estimated accurately.

34 lgcp: Inference with Spatial and Spatio-Temporal Log-Gaussian Cox Processes in R

1000000 1500000 2000000 2500000

50
00

00
0

55
00

00
0

60
00

00
0

+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +

−2500000 −2000000 −1500000 −100000045
00

00
0

50
00

00
0

55
00

00
0

60
00

00
0

+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +

Figure 13: Illustrating the potential gain in efficiency by rotating the observation window.
Left plot: the selected grid without rotation. Right plot: the optimally rotated grid.

Having ascertained whether rotation is advantageous, the optimally rotated data, observation
window and rotation matrix can be retrieved using the function getRotation. For prediction
using lgcpPredict, there is also an autorotate option: this allows the user to perform
MALA on a rotated grid with minimal input so long as rotation leads to a gain in efficiency.
If the model is fitted using a rotated frame, then the predictions will also be returned in this
frame: this means that in the original orientation the output will be on a grid misaligned to
the original axes. The lgcp package provides methods for the generic function affine so that
stppp and spatialAtRisk objects can be rotated manually.

C. Simulating data

The lgcp package also provides an approximate simulation tool for drawing samples from the
model in Equation 1. Simulation minimally requires an observation window, a range of times
over which to simulate data, spatial and temporal intensity functions λ and µ, a cell width
for the discretization and a set of spatial/temporal model parameters together with a choice
of spatial covariance model.

The code below simulates data from a spatio-temporal log-Gaussian Cox process on the
observation window from the example in the text above. The function tempfun is coerced
into a temporalAtRisk object and defines the temporal trend. Any appropriately defined
temporalAtRisk object can be used here. Similarly, spatial.intensity can either be an
object of class spatialAtRisk or one that can be coerced to one.

R> W <- xyt$window

R> tempfun <- function(t) { return(100) }

R> sim <- lgcpSim(owin = W, tlim = c(0, 100), spatial.intensity = den,

+ temporal.intensity = tempfun, cellwidth = 0.5,

+ model.parameters = lgcppars(sigma = 2, phi = 5, theta = 2))

Journal of Statistical Software 35

Note that the finer the grid resolution, the more accurately will the process be simulated, and
that smaller values of φ require a finer discretization to get an accurate representation of the
latent field. A warning is issued if the algorithm thinks the chosen cell width is too large. The
discretization in time is chosen automatically by the algorithm. The respective command for
simulating spatial data is lgcpSimSpatial.

D. Handling the SpatialAtRisk class

This section illustrates the available commands for converting between different types of R
objects that can be used to describe λ(s). Conversion methods are provided for objects
from the packages spatstat (Baddeley and Turner 2005), sp (Bivand et al. 2008) and sparr
(Davies, Hazelton, and Marshall 2011). These are illustrated in Figure 14. For the purposes
of parameter estimation, Figure 15 shows the different spatialAtRisk objects that can be
converted into an appropriate format (i.e., a spatstat im object).

There is also a function to convert from fromXYZ-type spatialAtRisk objects to sp objects of
class SpatialGridDataFrame: as.SpatialGridDataFrame(obj, ...). Lastly, fromFunction-
type can be converted to fromXYZ-type spatialAtRisk objects using the as.fromXYZ func-
tion. Note that if a spatialAtRisk object is specified via a function, then it is the user’s
responsibility to ensure that the function integrates to 1 over the observation window; one way
to bypass this problem is to convert the function to an spatialAtRisk object of fromXYZ-type.

SpatialAtRisk

default
list object (X,x) (Y,y) (Zm,Z,z)

fromXYZ

im
fromXYZ

bivden
fromXYZ

function
fromFunction

SpatialGridDataFrame
fromXYZ

SpatialPolygonsDataFrame
fromSPDF

Figure 14: Conversion to spatialAtRisk objects. By default, SpatialAtRisk looks for
a list-type object, but other objects that can be coerced include spatstat im objects,
function objects, sp SpatialGridDataFrame and SpatialPolygonsDataFrame objects and
sparr bivden objects. The text in red gives the type of spatialAtRisk object created.

36 lgcp: Inference with Spatial and Spatio-Temporal Log-Gaussian Cox Processes in R

im
as.im(obj,...)

fromXYZ

fromSPDF
fromFunction

(requires grid size)

Figure 15: Conversion to spatstat objects of class im; these are useful for parameter estimation,
in each case a call to the function as.im(obj, ...) will perform the coercion.

E. Handling shapefiles

Here we show how to read in and convert shapefiles for use in lgcp. Boundary files for Wales
can be obtained from the Great Britain data files from the GADM (http://www.gadm.org/
country) website. The following script will download the level 1 (England, Scotland, Wales,
Northern Ireland) and level 2 (counties and regions) data in .RData format, and put them in
a temporary directory:

R> td <- tempdir()

R> mapdata <- c("GBR_adm1.RData", "GBR_adm2.RData")

R> src <- "http://www.gadm.org/data/rda/%s"

R> for(mapfile in mapdata) {

+ download.file(sprintf(src, mapfile), destfile = file.path(td, mapfile))

+ }

The first polygon needed is the observation window, which is the boundary of Cymru (in
English, “Wales”), so it is extracted and converted with the following:

R> load(file.path(td, "GBR_adm1.RData"))

R> cymru_border <- gadm[gadm$NAME_1 == "Wales",]

R> cymru_border <- spTransform(cymru_border, CRS("+init=epsg:27700"))

R> spatstat.options(checkpolygons = FALSE)

R> W <- as(cymru_border, "owin")

R> W <- simplify.owin(W, dmin = 2000)

R> spatstat.options(checkpolygons = TRUE)

The transformation to Ordnance Survey (OS) Grid units is done so that the resulting locations
have valid Euclidean distances, which is not the case with latitude-longitude coordinates.

http://www.gadm.org/country
http://www.gadm.org/country

Journal of Statistical Software 37

Note that the simplify.owin step is fairly crucial in this example. Without simplifying the
observation window, some routines such as ginhomAverage or kinhomAverage can run for a
long time.

F. Writing adaptive MCMC schemes

Warning message:

With adaptive MCMC, the Markov property is not satisfied and GREAT

care must be taken to ensure that the correct ergodic distribution

is preserved. Please do not attempt to write an adaptive scheme

unless you REALLY know what you are doing!

There are two generic functions to consider when writing adaptive MCMC routines, namely
initialiseAMCMC and updateAMCMC, these respectively define the initialization and the up-
dating procedures for the adaptive scheme of interest. The task of the user is therefore to
tell lgcpPredict what value of h to use at iteration 1, and how to update it. lgcp has two
schemes built in: constanth and andrieuthomsh detailed below.

F.1. A simple example: constanth

This example shows how the scheme constanth was implemented. This is not really an adap-
tive MCMC scheme and just returns the (fixed) value of h set by the user. In lgcpPredict,
this ‘adaptive’ scheme would be specified using adaptivescheme = constanth(0.01) in the
mcmc.control argument. The effect is to return h = 0.01 at each iteration of the MCMC
loop.

The user is required to write three functions: constanth, and for compatibility with the S3 im-
plementation of this framework, initialiseAMCMC.constanth and updateAMCMC.constanth;
these functions are detailed below.

R> constanth <- function(h){

+ obj <- h

+ class(obj) <- c("constanth", "adaptivemcmc")

+ return(obj)

+ }

R> initialiseAMCMC.constanth <- function(obj, ...) {

+ return(obj)

+ }

R> updateAMCMC.constanth <- function(obj, ...) {

+ return(obj)

+ }

When called, the first of these functions creates an object of super-class constanth, this is
just a numeric with a class attribute attached. The other two functions simply return the
value of h specified by the user at appropriate positions in the code MALAlgcp.

38 lgcp: Inference with Spatial and Spatio-Temporal Log-Gaussian Cox Processes in R

F.2. A more complex example: andrieuthomsh

The second example shows how to implement the rather neat method of Andrieu and Thoms
(2008), detailed in Section 4.5. An adaptivescheme implementing this algorithm needs to
know what value of h to start with, the values of α and C and also the target acceptance
probability; this motivates the choice of arguments for the function andrieuthomsh in the
code below:

R> andrieuthomsh <- function(inith, alpha, C, targetacceptance = 0.574) {

+ if(alpha <= 0 | alpha > 1) {

+ stop("parameter alpha must be in (0,1]")

+ }

+ if(C <= 0) {

+ stop("parameter C must be positive")

+ }

+ obj <- list()

+ obj$inith <- inith

+ obj$alpha <- alpha

+ obj$C <- C

+ obj$targetacceptance <- targetacceptance

+ itno <- 0

+ incrit <- function() {

+ itno <<- itno + 1

+ }

+ restit <- function() {

+ itno <<- 0

+ }

+ obj$incritno <- incrit

+ obj$restartit <- restit

+ curh <- inith

+ hupdate <- function() {

+ curh <<- exp(log(curh) + (C/(itno^alpha)) *

+ (get("ac", envir = parent.frame(2)) - targetacceptance))

+ }

+ reth <- function() {

+ return(curh)

+ }

+ obj$updateh <- hupdate

+ obj$returncurh <- reth

+ class(obj) <- c("andrieuthomsh", "adaptivemcmc")

+ return(obj)

+ }

This function returns an object of super-class andrieuthomsh, which is a list object consisting
of the parameters specified by the user and additionally some internal functions, namely
incrit, restit, hupdate and reth which are responsible for the updating. Note that in
updateAMCMC.andrieuthomsh, the internal functions are simply called, and therefore it is
these internal functions that actually define the adaptive scheme. The internal functions

Journal of Statistical Software 39

perform respectively the following tasks: increase the internal iteration counter, restart the
internal iteration counter, do the actual updating of h and lastly return the current value
of h.

Note that from a developmental point of view, the piece of code,

R> get("ac", envir = parent.frame(2))

retrieves the current acceptance probability in the MCMC loop, which in MALAlgcp is stored
as an object called ac.

To initialize the scheme, the method for initialiseAMCMC simply returns the initial value of
h set by the user:

R> initialiseAMCMC.andrieuthomsh <- function(obj, ...) {

+ return(obj$inith)

+ }

In the update step, the internal functions created by the andrieuthomsh function are in-
voked. The procedure is as follows (1) information about the MCMC loop is retrieved using
get("mcmcloop", envir = parent.frame()), then if the algorithm has just come out of the
burn in period, the adaptation of h is restarted (this just gives h some extra freedom to explore
the parameter space as compared to an algorithm that did not restart, doing this does not
affect the convergence of the algorithm). Next the internal iteration counter is incremented,
and lastly the value of h is updated and returned (the procedures for these internal functions
are printed above in the code for andrieuthomsh).

R> updateAMCMC.andrieuthomsh <- function(obj, ...) {

+ mLoop <- get("mcmcloop", envir = parent.frame())

+ if(iteration(mLoop) == (mLoop$burnin) + 1){

+ obj$restartit()

+ }

+ obj$incritno()

+ obj$updateh()

+ return(obj$returncurh())

+ }

Affiliation:

Benjamin M. Taylor, Barry Rowlingson, Peter J. Diggle
Faculty of Health and Medicine
Lancaster University
Lancaster, LA1 4YF, United Kingdom
E-mail: b.taylor1@lancaster.ac.uk,

b.rowlingson@lancaster.ac.uk,
p.diggle@lancaster.ac.uk

mailto:b.taylor1@lancaster.ac.uk
mailto:b.rowlingson@lancaster.ac.uk
mailto:p.diggle@lancaster.ac.uk

40 lgcp: Inference with Spatial and Spatio-Temporal Log-Gaussian Cox Processes in R

URL: http://www.lancs.ac.uk/staff/taylorb1/
http://www.maths.lancs.ac.uk/~rowlings/

http://www.lancs.ac.uk/~diggle/

Tilman M. Davies
Department of Mathematics and Statistics
University of Otago
Science III
PO Box 56
Dunedin 9054, New Zealand
E-mail: tdavies@maths.otago.ac.nz
URL: http://www.maths.otago.ac.nz/home/department/staff/_staffscript.php?
s=tilman_davies

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 52, Issue 4 Submitted: 2011-09-30
January 2013 Accepted: 2012-09-26

http://www.lancs.ac.uk/staff/taylorb1/
http://www.maths.lancs.ac.uk/~rowlings/
http://www.lancs.ac.uk/~diggle/
mailto:tdavies@maths.otago.ac.nz
http://www.maths.otago.ac.nz/home/department/staff/_staffscript.php?s=tilman_davies
http://www.maths.otago.ac.nz/home/department/staff/_staffscript.php?s=tilman_davies
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Spatio-temporal log-Gaussian Cox processes
	Inference
	Discretising and the fast-Fourier transform
	The Metropolis-adjusted Langevin algorithm

	Introducing the lgcp package
	An overview of this section
	Reading-in and converting data
	Estimating the spatial and temporal component
	Estimating parameters
	The commands lgcpPredict and lgcpPredictSpatial
	A pre-emptive note on computation times
	Data and model specification
	Controlling MALA and performing adaptive MCMC
	Specifying output
	Rotation
	Gradient truncation

	Running
	Post-processing
	Extracting information
	Plotting
	Forecasting
	NetCDF
	MCMC diagnostics
	Plotting exceedance probabilities

	Future extensions
	Using covariates to estimate the fixed components
	Rotation
	Simulating data
	Handling the SpatialAtRisk class
	Handling shapefiles
	Writing adaptive MCMC schemes
	A simple example: constanth
	A more complex example: andrieuthomsh

