Journal of Statistical Software

March 2013, Volume 52, Issue 12. http://www.jstatsoft.org/

MIXREGLS: A Program for Mixed-Effects Location
Scale Analysis

Donald Hedeker Rachel Nordgren

University of Illinois at Chicago University of Illinois at Chicago

Abstract

MIXREGLS is a program which provides estimates for a mixed-effects location scale
model assuming a (conditionally) normally-distributed dependent variable. This model
can be used for analysis of data in which subjects may be measured at many obser-
vations and interest is in modeling the mean and variance structure. In terms of the
variance structure, covariates can by specified to have effects on both the between-subject
and within-subject variances. Another use is for clustered data in which subjects are
nested within clusters (e.g., clinics, hospitals, schools, etc.) and interest is in modeling
the between-cluster and within-cluster variances in terms of covariates. MIXREGLS was
written in Fortran and uses maximum likelihood estimation, utilizing both the EM algo-
rithm and a Newton-Raphson solution. Estimation of the random effects is accomplished
using empirical Bayes methods. Examples illustrating stand-alone usage and features of
MIXREGLS are provided, as well as use via the SAS and R software packages.

Keywords: intensive longitudinal data, ecological momentary assessment, multilevel, mixed
models, heteroscedasticity, variance modeling, Fortran, SAS, R.

1. Introduction

Mixed-effects regression models (aka hierarchical linear models, multilevel models) have be-
come a primary method for analysis of longitudinal (Hedeker and Gibbons 2006; Verbeke and
Molenberghs 2000) and clustered (Goldstein 2011; Raudenbush and Bryk 2002) data. A basic
characteristic of these models is the inclusion of random effects into regression models in or-
der to account for the influence of subjects or clusters on their nested observations. Here, we
will focus on longitudinal data, but it should be understood that the methods and program
can also be applied to clustered data. For longitudinal data, these random effects reflect
each person’s growth or development across time, and the variance of these random effects
indicate the degree of variation that exists in the population of subjects. Typically, the error
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variance, or the within-subjects (WS) variance, and the variance of the random effects, or the
between-subjects (BS) variance, are treated as being homogeneous across subject groups or
levels of covariates. However, these homogeneity of variance assumptions can be relaxed by
modeling differences in variances, both between and within, across subject groups. The study
of intra-individual variability has received increasing attention (Fleeson 2004; Hertzog and
Nesselroade 2003; Martin and Hofer 2004; Nesselroade 2004); these articles describe many of
the conceptual issues and some traditional statistical approaches for examining such variation.

Modern data collection procedures, such as ecological momentary assessments (EMA) and/or
real-time data captures, have been developed to record the momentary events and experiences
of subjects in daily life (Bolger, Davis, and Rafaeli 2003). These procedures yield relatively
large numbers of subjects and observations per subject, and data from such designs are some-
times referred to as intensive longitudinal data (Walls and Schafer 2006). Such designs are in
keeping with the “bursts of measurement” approach described by Nesselroade and McCollam
(2000), who called for such an approach in order to assess intra-individual variability. Studies
of this type are particularly amenable to examining intra-individual variation and to explain
why subjects differ in variability rather than solely in mean level. In this article, one of
our examples will be from a natural history study of adolescent smoking, using EMA, where
interest was on determinants of the variation in the adolescents’ moods.

Hedeker, Mermelstein, and Demirtas (2008) described the mixed-effects location scale model
as an extended random-intercept model in which log-linear (sub)models are included for
both the WS and BS variance, allowing covariates to influence both sources of variation.
Additionally, the model also includes a random subject effect to the WS variance specification.
This permits the WS variance to vary at the subject level, above and beyond the influence
of covariates on this variance. The correlation of the random scale and location effects is
included in the model, yielding a more general and realistic specification for the random effects.
In Hedeker et al. (2008), SAS PROC NLMIXED was used to estimate the model parameters.
However, NLMIXED is rather slow to run and often requires excellent starting values to converge
to a solution, particularly for the mixed-effects location scale model. Additionally, some data
analysts find NLMIXED difficult to use, as it requires a higher degree of statistical programming
knowledge than the average procedure in SAS. These considerations led to the development
of the MIXREGLS (mixed-effects regression with location scale) program.

This article describes MIXREGLS for the analysis of repeated or clustered (conditionally)
normally-distributed response variables using maximum likelihood and empirical Bayes esti-
mation procedures. The full model is estimated in three sequential stages, each using Newton-
Raphson, and the results of each stage are provided in the output. Prior to Stage 1, once the
data are read in, 20 iterations are performed of the EM algorithm to estimate the parameters
of a random intercept model (regression coefficients, BS variance, WS variance, and random
location effects). These estimates are then used as starting values at Stage 1 to estimate the
same parameters plus the BS variance effects. Then at Stage 2, WS variance effects are added,
and finally at Stage 3 the random scale (and association between the random location and
scale effects) is included. Estimates at each stage are used as starting values at the next stage,
which improves the convergence of the final model. This also provides a way of assessing the
statistical significance of the additional parameters in each stage via likelihood-ratio tests.

The organization of the article is as follows: Section 2 describes the mixed-effects location
scale model, Section 3 presents details of MIXREGLS use, Section 4 illustrates application
of MIXREGLS using two examples, and Section 5 discusses and summarizes the program.
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Estimation details are provided in Appendix A. The datasets that comprise the two examples
are distributed with the program. The first is a traditional longitudinal study in which
subjects are measured at six timepoints. The second example is an intensive longitudinal
dataset incorporating EMA, in which subjects were measured, on average, 34 times during a
weekly measurement period. Section 4 provides detailed instructions on MIXREGLS usage
for these two examples, including explanation of the output, additional results files, how
the program can be run via SAS, and running the program’s dynamic-link library (DLL)
from R. Though the examples are both longitudinal in nature, in which observations are
clustered within subjects, these methods and the program can also be applied to multilevel
or hierarchical data in which subjects are nested within clusters (e.g., classrooms, schools,
clinics, hospitals, etc.).

2. Mixed-effects location scale model

Consider the following mixed-effects regression model for the measurement y of subject i
(i=1,2,...,N subjects) on occasion j (j = 1,2,...,n; occasions):

Vi = T30+ vi + €ij | (1)

where x;; is the p x 1 vector of regressors (typically including a “1” for the intercept as the
first element) and 3 is the corresponding p x 1 vector of regression coefficients. The regressors
can either be at the subject level, vary across occasions, or be interactions of subject-level
and occasion-level variables. In the multilevel terminology, subjects are at level 2, while the
repeated observations are at level 1. Thus, the level-2 random subject effect v; indicates the
influence of subject i on his/her repeated level-1 measurements. The population distribution
of these random effects is assumed to be a normal distribution with zero mean and variance
o2, The errors €;; are also assumed to be normally distributed in the population with zero
mean and variance o2, and independent of the random effects. Here, o2 represents the BS
variance and o2 is the WS variance.

To allow covariates (i.e., regressors) to influence the BS and WS variances, we can utilize a
log-linear representation, as has been described in the context of heteroscedastic (fixed-effects)
regression models (Harvey 1976; Aitkin 1987), namely,

oy, = exp(uja), (2)
a?ij = exp(wiTj‘r). (3)

The variances are subscripted by ¢ and j to indicate that their values change depending on
the values of the covariates u;; and w; (and their coefficients). The number of parameters
associated with these variances does not vary with ¢ or j. Both wu;; and w;; would usually
include a (first) column of ones for the reference BS and WS variances (ag and 79), respectively.
Thus, the BS variance equals exp oy when all covariates w;; equal 0, and is increased or
decreased as a function of these covariates and their coefficients a.. Specifically, for a particular
covariate u*, if o* > 0, then the BS variance increases as u* increases (and vice versa if o* < 0).
The exponential function ensures a positive multiplicative factor for any finite value of a;, and
so the resulting variance is positive. It should be noted that an occasion-level variable, say u;;,
can alter the BS variance Ugij by making subjects more/less heterogenous across occasions.
For example, in our modeling of mood in Section 4.3 the occasion-level variable “being alone
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(vs. with others)” increases subject-level heterogeneity in mood. Thus, subjects are more
alike in their mood responses when they are with others than when they are alone. The WS
variance is modeled in the same way, allowing both subject- and occasion-level variables to
influence how consistent /erratic a subject’s responses are. The coefficients in o and 7 indicate
the degree of influence on the BS and WS variances, respectively, and the ordinary random
intercept model is obtained if & = 7 = 0 for all covariates in u;; and w;; (i.e., excluding the
reference variances ag and 7).

The WS variance can vary across subjects, above and beyond the effect of covariates, namely,

aij = exp(wiTjT + wi) , (4)
where the random subject (scale) effects w; are distributed in the population of subjects with
mean 0 and variance ¢2. The idea for this is akin to the inclusion of the random (location)
effects in Equation 1, namely, covariates do not account for all of the reasons that subjects
differ from each other. The v; parameters in Equation 1 indicate how subjects differ in terms
of their means and the w; parameters in Equation 4 indicate how subjects differ in variation,
beyond the effect of covariates. Taking logs in Equation 4 yields log(o’ij) = 'w;;‘r + w;
which indicates that if the distribution of w; is specified as normal, then the random effects
serve as log normal subject-specific perturbations of the WS variance. In other words, the
WS variances follow a log normal distribution at the subject level. The skewed, nonnegative
nature of the log normal distribution makes it a reasonable choice for representing variances,
and it has been used in many diverse research areas for this purpose (Fowler and Whitlock
1999; Leonard 1975; Reno and Rizza 2003; White, Shenk, and Burnhamb 1998; Vasseur 1999).

In this model, v; is a random effect which influences a subject’s mean, or location, and w; is a
random effect which influences a subject’s variance, or (square of the) scale. Thus, the model
with both types of random effects is dubbed a mixed-effects location scale model. These two
random effects are correlated with covariance parameter o,,,, which indicates the degree to
which the random location and scale effects are associated with each other.

Visually, Figure 1 presents the pertinent details of the model. The average across all subjects
is depicted by the solid horizontal line, and the lines of two subjects are presented as dotted
lines. In a given dataset, there will be as many dotted lines as there are subjects, but for
simplicity here we only plot two subjects. Also, for simplicity, consider all covariates as
subject-varying only. The effect of covariates & on the mean response is represented by S3;
these effects either raise or lower the solid line as a function of the covariates. Each dotted
line represents a person’s random location effect v;, which indicate how a subject deviates
from the mean response. In Figure 1, one subject is above and another subject is below the
mean line. The heterogeneity in these dotted lines is indicative of BS variance: if the dotted
lines are close together then there is not much subject heterogeneity, conversely if the dotted
lines are spread out then more heterogeneity is indicated. The effect of covariates w on this
heterogeneity is represented in the model as a. The degree of variation of a person’s data
points around their line is the WS variance. If the points are quite close to a subject’s line,
then that subject has low WS variance (e.g., the lower subject in Figure 1). Conversely, if a
subject’s data points vary greatly around that person’s line then there is more WS variation
(e.g., the upper subject in Figure 1). Covariates w influence the WS variation through the
coeflicients 7. Finally, the model posits that covariates do not explain all of a subject’s WS
variance by including the random scale effect w;.
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Figure 1: A visual representation of the mixed-effects location scale model.

2.1. Standardization of random effects

It is convenient to represent the random effects in standardized form (i.e., as standard nor-
mals). For this, we can use the Cholesky factorization (Bock 1975).

vi | _ | s 0 Ori | _ | Tvis 0 01 (5)
wi s2ij  S3ij | | O Ovw/Ovy;  1)05 — 050/, | | 02

Here, we include the subscripts ¢ and j on the Cholesky elements because the BS variance

o2 is allowed to vary by subjects and/or occasions. The model can now be written as

Uij
Yij = o508 + 51401 + € (6)

where s1;; = 0y, = ,/exp(uz;a) , and the errors €;; have variance given by

052”_ = exp(w;;'r + 321‘]"911‘ + 53ij02i) . (7)

2.2. Alternative formulation for association of location and scale

Suppose that instead of allowing the location and scale random effects to be correlated, we
assume that they are independent (i.e., 0, = 0, and therefore s9;; = 0), but that the location
random effect 601; explicitly influences the WS variance. In this case, the WS variance could
be expressed as

ol = exp(wT + b1 + 0u,02) - (8)

67(]
where the regression coefficient 7; represents the (linear) influence of the location random effect

01; on the (log of the) WS variance. These two models of the WS variance are essentially
the same, although in Equation 7 the parameter sg;; is indicative of the covariance between
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the random location and scale effects, whereas in Equation 8 the parameter 7; represents the
effect of the random location effect on the WS variance. Also, the Cholesky element s3;; in
Equation 7 is replaced by the (simpler) square root of the random scale o, in Equation 8.
We have merely shifted from a correlation-like association between the mean and variance
to a regression setting in which the mean influences the variance. Although equivalent in
the present case, the latter representation can be more easily generalized to represent various
forms of the relationship between the random location effect and the WS variance. For
example, one can easily extend the model to allow for a quadratic relationship, namely,

or, = exp(w ;T + 701 + 707, + 0ub2) - (9)
A quadratic relationship would seem to be useful for rating scale data with ceiling and/or
floor effects, where subjects that have mean levels at either the maximum or minimum value
of the rating scale also have near-zero variance. For example, if the rating scale goes from 1
to 10, then any subject with a mean level near either 1 or 10 would almost certainly have a
very small variance, giving rise to the potential for a quadratic relationship between the mean
and variance. In this regard, MIXREGLS allows for three possibilities: (1) no association
(m = 74 = 0); (2) linear association only (7; # 0,7, = 0); and (3) linear and quadratic
association (1; # 0,74 # 0). For a given program run, the user can select one of these three
possibilities using the NCOV option, described in Section 3.

2.3. Intraclass correlation

The standardized random effects 61; and #o; are both normally distributed with mean 0 and
variance 1, and are independent of each other. The expectation of y;;, E(yi;), is simply chT]
For the situation in which the random location #y; has a quadratic effect on the WS variance
(i.e., 7¢ # 0), the variance of y;; varies as a function of the random location effect. However,
for the simpler situation in which 7, = 0, the variance of y;; is given by

Vyij) = exp(uiTja) + exp ('wiTjT + % {7-12 + UE’D . (10)
The covariance for any two observations nested within the same subject ¢ equals
Clyij yijr) = 0p, = exp (uéja) for j # j" . (11)
Expressed as a correlation, this yields the intraclass correlation (ICC), denoted as r;;,

exp (u;ja)

exp (u%a) + exp (’w;l;‘T +3 [+ Uf,]) .

(12)

Tij =

Note that the ICC, which represents the proportion of total unexplained variation that is at
the subject level, can be obtained for specific values of the covariates w;; and w;;. Thus,
based on the current model, the ICC is allowed to vary as a function of both time-varying
and time-invariant covariates.



Journal of Statistical Software

3. Program description and usage

MIXREGLS uses maximum likelihood to estimate the model parameters 3, o, T, 7, 74, and
0. Specifically, it uses the Newton-Raphson algorithm to iteratively achieve the likelihood
solution, with integration over the random effects done using numerical quadrature. The
quadrature points and weights can be adapted to each person’s data. Upon convergence,
estimates of the random effects (61; and ;) are obtained using empirical Bayes methods.
Details on estimation are provided in Appendix A.

MIXREGLS was written in standard Fortran 95 for Windows-based computers. It can be
run in batch mode using the executable file mixreglsb.exe, or accessed via the DLL file
mixregls.dll; an example of this latter type of usage within R will be given in Section 4.2.
Here, we will first describe batch processing use. Program instructions must be stored in
the file mixregls.def, the contents of which will be described below. MIXREGLS makes
use of the following files: mixregls.def (definition file), filename.dat (input data file),
filename.out (main output file), and filename.def (definition file to be saved).

3.1. Structure of filename.dat

This file contains all data read by the program. It is read in free format and must be a standard
text (ASCII) file with no hidden characters or word processing format codes. Variable fields
must be separated by one or more blanks. The data are assumed to consist of multiple level-1
observations within a level-2 unit, for example, in the longitudinal setting there are repeated
observations (level 1) within subjects (level 2). There must be a level-2 id variable for each
record, and the data must be sorted by this variable. The repeated measurements of a subject
often take up as many records in this file as there are measurements for that subject. An
exception to this is when the variables for a subject on a given occasion comprise more than
one physical record, say two records. In this case, the repeated measurements of a subject
take up twice as many records in the file as there are measurements for that subject. Also, if
missing value codes are utilized, each subject may have data on the same number of records,
but some records will contain missing value codes for some (or all) of the variables.

The fields of variables that are read in, separated by one or more blanks, usually consist of the
id variable, the dependent variable, and covariates. (the order of variables does not matter).
The covariates include the regressors for the mean submodel (z), BS variance submodel (u),
and WS variance submodel (w); the covariates in these submodels (i.e., , u, and w) can
be the same or different. All variables are read as real numbers with the exception of the id
variable which is read as integer. All missing data must have a numeric missing value code, in
particular, blank fields or periods are not acceptable as missing value codes. There is no need
to include a column of ones in the dataset for the intercept(s), as the program can include
intercepts for all submodels (though this can be changed using the PNINT, RNINT, and SNINT
options, see below).

3.2. Structure of mixregls.def

This file contains specifications that determine the statistical model to be fit to the data
in filename.dat. Except where noted, this file is read in free format. The filename and
extension (mixregls.def) must be used, and should be in the same directory as the program
mixreglsb.exe. This file needs to be created with an editor and saved in text format; one
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then double-clicks on the mixreglsb.exe file (or types mixreglsb at the command prompt)
to run the program. Below are the specifications, and their optional values, that are necessary.

Line 1 — title of 72 characters.

Line 2 — subtitle of 72 characters.

Line 3 — filename.dat (input data file).

Line 4 — filename.out (main output file).

Line 5 — filename.def (definition file; the contents of mixregls.def are saved to this file).
Line 6 — NVAR P R S PNINT RNINT SNINT CONV NQ AQUAD MAXIT MISS STD NCOV.

NVAR = number of variables to read from filename.dat.
P = number of covariates for the mean submodel.

R = number of covariates for the BS variance submodel.
S = number of covariates for the WS variance submodel.

PNINT = 0 (the mean submodel should include an intercept) or 1 (the mean submodel
should not include an intercept).

RNINT = 0 (the BS variance submodel should include an intercept) or 1 (the BS variance
submodel should not include an intercept).

SNINT = 0 (the WS variance submodel should include an intercept) or 1 (the WS
variance submodel should not include an intercept).

CONV = convergence criterion (usually 0.0001 or 0.00001); when all of the parameter first
derivatives are smaller than this level, the algorithm has converged to a solution.

NQ = number of quadrature points.
AQUAD = 0 (non-adaptive quadrature) or 1 (adaptive quadrature) .

MAXIT = maximum number of iterations; if the program does not converge by this
number, the program stops and prints out the current estimates.

MISS = 0 (no missing values) or 1 (missing values).

STD = 0 (covariates will not be standardized) or 1 (all covariates will be standardized
with mean 0 and variance 1).

NCOV = 0 (no association between the random location and WS variance), or 1 (only
linear association between the random location and WS variance), or 2 (linear and
quadratic association between the random location and WS variance).

Line 7 —two parameters: fields of the id variable and the dependent variable in filename.dat.
Line 8 — P parameters: field(s) of mean covariates in filename.dat.

Line 9 - R parameters: field(s) of BS variance covariates in filename.dat.

Line 10 — S parameters: field(s) of WS variance covariates in filename.dat.

Line 11 — 8 character label for the dependent variable.
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next line(s) — P labels for mean covariates in 8 character width fields (maximum of 10 labels
per line).

next line(s) — R labels for BS variance covariates in 8 character width fields (maximum of
10 labels per line).

next line(s) — S labels for WS variance covariates in 8 character width fields (maximum of
10 labels per line).

If MISS=1 then the next lines are required and list the numeric missing value codes.
next line — missing value code for the dependent variable.

next line — P missing value codes, separated by blanks, for the mean covariates.

next line — R missing value codes, separated by blanks, for the BS variance covariates.

next line — S missing value codes, separated by blanks, for the WS variance covariates.

Upon program completion, the file specified on Line 4 (filename.out) will contain the results
of the analysis. The contents of this file will be described for the two examples in Section 4.
Additionally, for a given run, four additional files are created by MIXREGLS: mixregls.its,
mixregls.rel, mixregls.re2, and mixregls.est. The file mixregls.its contains iteration-
specific details including the likelihood value and the largest correction and derivative of the
parameter estimates. The information that is included in this file is also displayed on the
screen while the program is running. The file mixregls.rel contains standardized (level-1)
residuals, while mixregls.re2 contains the empirical Bayes estimates of the random effects
(these are sometimes referred to as the level-2 residuals). As mentioned, MIXREGLS fits
the mixed-effects location scale model in three stages. At the first stage, only the mean and
BS variance covariate effects are estimated. At the second stage, the WS variance covariate
effects are added. Finally, at stage three, the random scale effects are included. mixregls.rel
and mixregls.re2 contain results for all three stages. For the first two stages, four pieces
of information are given in mixregls.re2: level-2 id, the number of level-1 observations for
the level-2 unit, empirical Bayes estimate of the random location effect, and the posterior
variance associated with the location effect. For stage three, which includes random location
and scale effects, both empirical Bayes estimates of the location and scale effects are listed
in mixregls.re2, followed by the posterior variance-covariance matrix associated with the
random effects (in order: location variance, location scale covariance, scale variance). The file
mixregls.est contains a listing of the deviance (—21n L), number of iterations, MAXIT (i.e.,
maximum number of iterations), estimates (in the order P, R, S), and standard errors for
all three model stages, respectively.

3.3. Some MIXREGLS errors

There are a few errors which can prevent MIXREGLS from running correctly, or even running
at all. All information in the filename.dat file needs to be numeric, so any alphanumeric
variables in this file will cause the program to fail. Also, missing values left as blank fields,
and not given a specified numeric missing value code, may cause the program to fail or to
estimate a model which is incorrect from the user’s perspective. To see if this is causing
a problem, the user can check the correctness of each variable’s descriptive statistics (mean,
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minimum, maximum, and standard deviation) listed in the output file filename.out. If these
descriptive statistics are incorrect, the data are not being read into the program correctly and
a common reason is that missing values are being left as blank fields in the data file.

If the program “blows up,” or does not converge to the solution by the maximum number
of iterations (MAXIT), one thing to try is to standardize the covariates by setting STD = 1.
This will ensure that all of the covariates, for all submodels, are on the same numerical
scale with mean 0 and variance 1. Specifically, the standardized covariate z, is obtained as
2y = (x — &)/Sz, where T and s, are the mean and standard deviation of z based on all of
the observations.

For models that do not converge properly, another thing to try is to increase the number of
quadrature points (NQ) and/or switch to adaptive quadrature (i.e., set AQUAD = 1). It may be,
for example, that specifying 10 points will not lead to convergence, while specifying 15 points
does. Estimation of the final model stage, where the random scale effect is included, can be
sensitive to the number of quadrature points. If after increasing the number of quadrature
points to a very large number (say NQ = 31 or 41), problems still exist, it may be that the
random-effect scale variance cannot be reliably estimated. In this case, a model without
random scale may be warranted (i.e., stage 1 or 2).

4. Examples of mixed-effects location scale regression

MIXREGLS can estimate a variety of models for clustered and longitudinal data. It is es-
pecially useful for intensive longitudinal data, where subjects might have 30 or 40 (or more)
observations, and interest is on examining the heterogeneity associated with the many re-
sponses. Here, we will present two examples that highlight MIXREGLS use for a typical
longitudinal dataset and also for an EMA dataset. These two examples illustrate some of the
ways in which MIXREGLS can be used, and the results that are obtained from the program.

4.1. Longitudinal analysis with random location and scale effects

A psychiatric study described in Reisby, Gram, Bech, Nagy, Petersen, Ortmann, Ibsen,
Dencker, Jacobsen, Krautwald, Sondergaard, and Christiansen (1977) focused on the lon-
gitudinal responses of 66 depressed inpatients. In this study, subjects were diagnosed with
either endogenous (N = 37) or non-endogenous (/N = 29) depression, and were rated with the
Hamilton depression rating scale (hamdep) weekly for a total of six weeks. Although the total
number of subjects in this study was 66, the number of subjects with all measures at each
of the weeks fluctuated: 61 at week 0 (baseline), 63 at week 1, 65 at week 2, 65 at week 3,
63 at week 4, and 58 at week 5. For this illustration, we focus on the following aspects of
the study: is there evidence of differential improvement across time between endogenous and
non-endogenous patients, and do the groups exhibit differential BS and WS heterogeneity.
Additional analyses of this dataset can be found in Hedeker and Gibbons (1996).

The model fit to the hamdep scores includes a random subject intercept (i.e., random location
effect), as well as a time effect, group effect (endogenous or non-endogenous) and a group by
time interaction to examine whether these two groups of patients differed in terms of their
initial severity and improvement across time. Additionally, we will investigate whether the
two groups have different WS and BS variances, and allow the WS variance to change across
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time. A matrix representation of the model for subject ¢ is given by

[ hamdep,; | 1 0 endog; endog; x0 ] [ 01 ] [ €io
hamdep;; 1 1 endog, endog;x1 Bo 01; €i1
hamdep,, _ 1 2 endog; endog; x 2 051 n 01; [ o } n €2
hamdep,; 1 3 endog; endog, X3 B2 01 v €3
hamdep,, 1 4 endog; endog; x4 B3 01; €4

| hamdep;; | | 1 5 endog; endog; x5 | L 015 | | €5 |

Here, the grouping variable (endog) is a dummy-coded variable indicating whether a subject
is endogenous (endog=1) or non-endogenous (endog=0). For the trend in hamdep means
across time, the model includes a linear effect of week (coded sequentially from 0 to 5) and a
group by (linear) week interaction. In terms of the variance modeling, we allow

o5, = exp(ag + ajendog;) (13)

for the BS variance, and

062”_ = exp(7y + Tiweek; + Tpendog; + 101 + 0,,02) , (14)
for the WS variance. Thus, the parameters oy and 75 represent differences between the groups
in terms of the BS and WS variances, respectively. Additionally, 7 characterizes the change
in the error (WS) variance across time, 7; is the effect of a subject’s random location effect

on their WS variance, and o, is the standard deviation of the random subject scale effect.

Although the above matrix representation is for a subject with data at all six timepoints, this
is not a requirement. If a subject’s data are missing or incomplete, then they would simply
contribute less than six observations in the dataset, or their missing data would be coded with
numeric missing value codes, which would be identified in the mixregls.def file prior to the
statistical analysis. For this first example, the following is the order and names of the variables
in the the dataset riesby_example.dat: (subject’s) id, hamdep, week, endog, and endweek
(the product of endog and week). There are missing value codes (—9) for some subjects at
specific timepoints; the data from these timepoints are not used in the analysis, however data
from these subjects at other timepoints, where there are no missing data, are used in the
analysis. Thus, for inclusion into the analysis, a subject’s data (both the dependent variable
and all model covariates being used in a particular analysis) at a specific timepoint must be
complete. The number of repeated observations per subject then depends on the number
of timepoints for which there are non-missing data for that subject. As MIXREGLS uses
full likelihood estimation, described in Appendix A, it provides valid inference for incomplete
data under missing at random (MAR) assumptions (Little and Rubin 2002).

Covariates are specified for three submodels: the mean, the BS variance, and the WS variance
submodels. If the options PNINT, RNINT, and SNINT are all set to zero, then the program will
include intercepts for all submodels. This is the usual case and what will be specified here.
Based on the model described above the following covariates will be specified; mean: week,
endog, endweek; BS variance: endog; WS variance: week, endog. The dataset to be read
contains five variable fields, with id (field 1), hamdep (field 2), week (field 3), endog (field 4),
and endweek (field 5). The field number is used to identify these variables in the mixregls.def
file for this model, which is listed below.

11
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Riesby Data - adaptive 11 pt

WS and BS variance models with random scale
riesby_example.dat

riesby.out

riesby.def

5312 000 0.00001 111 200101
12

345

4

3 4

hamdep

week endog  endweek

endog

week endog

-9

-9 -9 -9

-9

-9 -9

Note that even though missing values are coded only for the dependent variable in the input
data file, numeric missing value codes must be specified in the mixregls.def file for all model
variables (if MISS=1). In this case, the value —9 was specified for all variables since for the
dependent variable this value is the correct missing value code, while for all other variables
(week, endog, endweek) this value was never observed. Other options that are specified
in this mixregls.def file: a convergence criterion of 0.00001, 11-point adaptive quadrature,
a maximum number of iterations set at 200, no standardization of model covariates, and a
linear effect of a subject’s location effect on the (log of their) WS variance.

The results for the model are written to the file riesby.out and are listed below. Here, for
space, we have removed the parameter estimates associated with stages 1 and 2. The first
part of the output is a list of some of the information given in the mixregls.def file. Then,
descriptive information about the dataset is provided: the number of level-1 observations,
number of level-2 observations, and the number of level-1 observation for each level-2 cluster.
Means, minimums, maximums, and standard deviations for all variables used in the analysis
are listed. These descriptive statistics should be checked to confirm that the program has read
the data correctly, otherwise the results of the subsequent analyses are presumably incorrect.
Following the descriptives, starting values for all parameters are listed. Using code from the
MIXREG program (Hedeker and Gibbons 1996), the program performs 20 iterations of the
EM algorithm for a random-intercepts model. This provides excellent starting values for the
regression coefficients, BS and WS variances, and random location effects.

Following the starting values, results for each of the three model stages are printed out. For
each, the output includes the number of iterations required for convergence, the final ridge
value, the log-likelihood value at convergence, and penalized versions of the log-likelihood
value (i.e., Akaike’s information criterion and Schwarz’s Bayesian criterion). These likelihood
values are also listed multiplied by —2 to aid in performing likelihood-ratio tests and /or model
selection. The ridge is an adjustment made to the diagonal of the Hessian matrix (matrix
of second derivatives) if the program encounters a non-increasing likelihood or some other
indication of numerical difficulty. This adjustment often improves the chances of convergence.
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Specifically, the diagonal of the Hessian matrix is multiplied by one plus the ridge value at
each iteration. Thus, if the ridge value equals zero, there is no adjustment, however if the ridge
value is greater than zero, then the diagonal elements of the Hessian matrix are increased.
Increasing the diagonal elements of the Hessian matrix decreases the corrections or step sizes
for each parameter in the iterative Newton-Raphson algorithm, thereby tending to stabilize
the estimation procedure. At present, the ridge starts at zero (stage 1), 0.1 (first few iterations
of stage 2), and 0.2 (first few iterations of stage 3), and is increased by 0.1 each time that
difficulties are encountered. The ridge is then set back to zero if, after several iterations, the
computations seem to be going smoothly. Also, at convergence, the ridge is set back to zero
in order to obtain the correct standard errors for the model parameters, however the listing of
the final ridge value indicates its value prior to being reset to zero. As such, the listed ridge
value is indicative of the degree of computational difficulty that the program encountered.

All three stages include the covariate effects on the mean, but vary in terms of the variance
effects and the random scale: (stage 1) a model with BS variance effects but no WS variance
effects; (stage 2) a model with both BW and WS variance effects but no random scale effect;
(stage 3) the full model including random scale effects and association of the random location
and scale effects. Likelihood ratio tests can be used to compare these three model stages:
X3 = 2281.199 — 2268.999 = 12.2 comparing stages 1 and 2, and x3 = 2268.999 — 2244.593 =
24.406 comparing stages 2 and 3. Thus, there are significant WS variance effects and subject
differences of scale. Interpreting the final model stage, we see that there is a significant
negative time effect in the mean model, indicating that depression scores are decreasing across
time. The two groups (non-endogenous and endogenous) do not seem to differ in terms of
either the BS or WS variance, while the WS variance does increase with study week. Thus,
within a subject, the depression scores are more variable around his/her linear trajectory as
the study progresses. There is significant subject variation in scale, indicating that subjects
vary in terms of the dispersion of their depression scores around their linear trajectory, over
and above the significant effect of study week. Finally, the linear random location effect on
the log of the WS variance is non-significant.

MIXREGLS: Mixed-effects Location Scale Model with BS and WS variance models

Riesby Data - adaptive 11 pt
WS and BS variance models with random scale

data and output files:
riesby_example.dat
riesby.out

CONVERGENCE CRITERION = 0.00001000

NQ = 11

QUADRATURE 1 (O=non-adaptive, l=adaptive)
MAXIT 200

13
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Descriptives

Number of level-1 observations

Number of level-2 clusters

3

75

66

Number of level-1 observations for each level-2 cluster

5

(eI e> o) BNe))

6

(eI e>INe) BN e))

5

D OO O

5

a3 O 01O,

std dev

g = O

6 6 6 6 5
6 6 6 6 6
4 6 6 5 6
6 6 5 6 6
6 6 5 6 6
6
Dependent variable
mean min
hamdep 17.6373 0.0000
Mean model covariates
mean min
week 2.4800 0.0000
endog 0.5467 0.0000
endweek 1.3520 0.0000
BS variance model covariates
mean min
endog 0.5467 0.0000
WS variance model covariates
mean min
week 2.4800 0.0000
endog 0.5467 0.0000

BETA: mean model regression coefficients
-0.0442

22.4418 -2.3518 1.99256

ALPHA: BS variance log-linear model regression coefficients

2.7270 0.6424

[$2Ie)I¢2 B e) ey

(o)) I o) B o) o))

D 01 o1 O O

()¢ o) B¢ B e))
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TAU: WS variance log-linear model regression coefficients

2.9463 0.1933 0.6453

Random location (mean) effect on WS variance

-0.2001
Scale standard deviation
0.9508

Total Iterations = 5
Final Ridge value = 0.0

Log Likelihood = -1140.
Akaike's Information Criterion = -1147.
Schwarz's Bayesian Criterion = -1155.
==> multiplied by -2

Log Likelihood = 2281.
Akaike's Information Criteriomn = 2295.
Schwarz's Bayesian Criterion = 2310.
Model WITH Scale Parameters

Total Iteratiomns = 9

Final Ridge value = 0.0

Log Likelihood = -1134.
Akaike's Information Criterion = -1143.
Schwarz's Bayesian Criterion = -1153.
==> multiplied by -2

Log Likelihood = 2268.
Akaike's Information Criterion = 2286.
Schwarz's Bayesian Criterion = 2306.
Model WITH RANDOM Scale

Total Iterations = 14

Final Ridge value = 0.0

Log Likelihood = -1122.
Akaike's Information Criterion = -1133.
Schwarz's Bayesian Criterion = -1145.

600
600
263

199
199
527

500
500
353

999
999
706

297
297
340
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==> multiplied by -2

Log Likelihood = 2244 .593
Akaike's Information Criterion = 2266.593
Schwarz's Bayesian Criterion = 2290.679
Variable Estimate AsymStdError
BETA (regression coefficients)

Intercpt 22.37832 0.72338
week -2.29543 0.18773
endog 1.87942 1.07656
endweek -0.02861 0.26772
ALPHA (BS variance parameters: log-linear model)
Intercpt 2.19825 0.35443
endog 0.50682 0.45811
TAU (WS variance parameters: log-linear model)
Intercpt 2.08768 0.23637
week 0.19234 0.06283
endog 0.28815 0.24544
Random location (mean) effect on WS variance
Loc Eff 0.21327 0.14559
Random scale standard deviation

Std Dev 0.65870 0.13395

Parameter estimates file — mixregls.est

O O O O
o
)
o
0
[¢)]

o O
N O
o O
0 O
a O
© O

o
o
(@}
[\
N
o

Following program termination, MIXREGLS writes out, to the file mixregls.est, informa-
tion about the model fit and parameter estimates for each of the three stages, in order. The
contents of this file can be read in by another program to, say, produce graphs of the param-
eter estimates or perform additional calculations. For the analysis of the Riesby data, the

contents of mixregls.est are listed below

2281.199018 5 200

22.44581685 -2.35330401 1.98710420
2.47223063 0.42075266

2.94603603

0.87362697 0.19797121 1.24592367
0.43398742 0.08042874

2268.999412 9 200

22.55651997 -2.39855570 1.85334851
2.25028583 0.48166202

2.34613663 0.17670505 0.27196762
0.74425066 0.18435148 1.10623319
0.44626590 0.18330810 0.06077689
2244 .593002 14 200

22.37832088 -2.29543135 1.87941921

.04182137

.27058310

.015627996

.26949546

.16205598

.02861395

0.33480058

0.34600423
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2.19825312 0.50681880

2.08768097 0.19234038 0.28814841

0.21326535 0.65869508

0.72337791 0.18772989 1.07656336 0.26772259 0.35443307
0.45811393 0.23637494 0.06282843 0.24544345 0.14559031
0.13395151

The first line corresponding to each stage lists the deviance (—21In L), number of iterations
required for convergence, and the maximum number of iterations specified (MAXIT in the
mixregls.def file). Then, the parameter estimates are listed in the following order: regression
coefficients 3 (all stages), BS variance effects é (all stages), WS variance effects # (stages 2 and
3), and for stage 3 only: random location 7; and 7, (depending on the NCOV specifcation) and
random scale &, parameters. Each set of estimates are written on new lines with a maximum
of five estimates per line. The standard errors associated with all parameter estimates are
then listed in (the same) order, however not on new lines for the different sets, but sequentially
with five standard errors per line.

Empirical Bayes estimates — mixregls.re2

MIXREGLS uses empirical Bayes (EB) estimation for the random effects, and upon program
termination, the estimates are automatically saved in the file mixregls.re2. This file contains
estimates for all three model stages, and they are listed in order. In the file, there are lines with
labels that precede the numeric results of each stage. For example, for the first two stages,
four pieces of information are given on each line: the subject’s id, the number of repeated
observations associated with the subject, the empirical Bayes estimate of the random subject
(location) effect, and the posterior variance associated with the random subject effect. The
line of labels in the file that precedes these results is “id, nobs, EB mean, EB var.” For stage
three, which includes random location and scale effects, there are two lines per subject. The
first contains the subject id, the number of repeated observations associated with the subject,
and empirical Bayes estimates of the random subject location and scale effects. The second
line lists the posterior variance-covariance matrix associated with the random subject effects
(in order: location variance, location scale covariance, scale variance). The line of labels that
precedes these results is “id, nobs, EB mean vector, EB variance-covariance.”

For the Riesby data, the EB estimates of scale (denoted égz) were sorted, and Table 1 lists
the two subjects with the highest and lowest scale estimates. Also listed are the observed
hamdep values for these subjects across time, abbreviated as hd0, ... hd5. As can be seen, the
two subjects with the highest scale estimates do not follow a linear pattern across time. In
particular, the hamdep values at week 1 are quite aberrant relative to the other values across
time. One wonders if these are correct values, or perhaps if they are coding errors. Given that
this particular study was conducted well in the past, it is impossible to say. However, for more
current studies, it seems that these scale estimates can be used to detect unusual patterns of
responses and perhaps coding errors. Turning to the subjects with the lowest scale estimates,
these are both subjects with near-perfect linear downward trajectories. Thus, subjects with
the lowest scale estimates are those with responses that mimic the pattern of the estimated
population mean model estimates, which in the present case is a downward linear trend across
time. These scale estimates can then be used to identify “ideal” cases, or those subjects that
behave most like the average in the population.

17
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id 9% hd0 hdl hd2 hd3 hd4 hdb

606 158 19 33 12 12 3 1
505 1.532 21 11 18 0 0 4

335 —-1.317v 21 21 18 15 12 10
308 —-1.365 22 21 18 17 12 11

Table 1: The data of the two highest and lowest scale estimates (fy;) from analysis of the
Riesby data.

4.2. Running MIXREGLS from R

MIXREGLS can also be run from R via a dynamic-link library (DLL). Lemmon and Schafer
(2005) describe creation of a DLL from Fortran code, and how the DLL can be accessed by
R and other software programs. For MIXREGLS, the DLL file mixregls.d1l, an R function
file mixregls_function.R, and the R syntax file mixregls_run.r are distributed with the
program. Additionally, the R package Formula (Zeileis and Croissant 2010) must be installed.
Together, these files and package can be used to yield the same analysis of the Riesby data
as in the previous section.

The R syntax file mixregls_run.r includes the following. First, the DLL file is loaded and
checked to ensure that it is loaded.

R> dyn.load("mixregls.dll")
R> is.loaded("mixreglsr")

Then, the R function file is accessed.
R> source("mixregls_function.R")

The data are read in, variables with missing value codes of -9 are specified as not available,
and a summary of the data are listed.

R> indata <- read.table("riesby_example.dat", header = FALSE,
+ col.names = c("id", "hamdep", "week", "endog", "endweek'),
+ na.strings = "-9")

R> summary(indata)

The DLL is run using the using the R function mixregls.combined (which is defined in the
file mixregls_function.r).

R> mixregls.results <- mixregls.combined(
+ hamdep ~ endog + week + endweek | endog | endog + week,
+ id = "id", data = indata)

The dependent variable is specified as hamdep and the covariates are listed sequentially for
the mean, BS variance, and WS variance submodels separated by the character |. If any of
the three submodels had no covariates, but only an intercept, then a value of 1 should be
provided, for example:
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R> mixregls.results <- mixregls.combined(
+ hamdep ~ endog + week + endweek | 1 | endog + week,
+ id = "id", data = indata)

would only include an intercept in the BS variance submodel. Results are listed for all three
stages using the print.mixregls_output function (included in mixregls_function.r).

R> print(mixregls.results)

Results of each stage can also be accessed: the deviance (dev), mean submodel estimates
(beta), BS variance submodel estimates (alpha), WS variance submodel estimates (tau),
and all standard errors (se). A numerical suffix of 1, 2, or 3 indicates the stage. For example,
to list the mean submodel estimates for stage 1, the following statement would be issued.

R> mixregls.results$betal

For stage 3, estimates of the parameters associated with the inclusion of the random scale
effect (7, 74, and o,,) are returned (spar); to list these the following statement would be used.

R> mixregls.results$spar3

For all three stages, standardized residuals (zerr) are also returned from the DLL. For stage
3, these are plotted in a histogram and presented in Figure 2.

R> hist(mixregls.results$zerr3)

The histogram of the standardized model residuals presented in Figure 2 gives the general
impression that the normality assumption is reasonable for these data.

For all three stages, estimates of the random effects (thet) and posterior variances (pvar) are
returned. For the first two model stages, which only include a random location effect, thet is
a one-dimensional vector (of size IV, or the number of level-2 observations). However, for the
final model stage with random location and scale effects, thet is a two-dimensional matrix of
size N x 2. One might be interested in a scatterplot of these two random effects.

R> plot(mixregls.results$thet3[, 1], mixregls.results$thet3[, 2], pch = 20)

The bivariate scatterplot of the estimated random location (;; on x-axis) and scale effects
(91-2 on y-axis) in Figure 3 shows the heterogeneity in both of these subject effects. Note that
the scale of both of these are standard normals, and each dot represents the model estimates
for a given subject. The non-significance of the location random effect on the WS variance
(77 = 0.213,p = 0.143) that was obtained in the analysis is borne out in the plot, as there is

a minimal positive relationship between these two subject-level estimates.

A few subjects are of note in Figure 3, and the data for these subjects are listed in Table 2.
First, note the two subjects in the bottom left corner of the plot; these are subjects (ids 117
and 347) with small location and scale effects. These subjects seem to be good responders
(i.e., follow a decreasing linear trend across time) with moderate to mild depression values.
Conversely, subject 345, who is towards the bottom right corner of the plot, has a large
location effect with a relatively small scale effect. This subject does follow a decreasing trend,

19
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Figure 2: Histogram of standardized model residuals.
id 61 f2; hd0 hdl hd2 hd3 hd4 hd5

117 —-1.492 -1.284 19 16 13 12 7 6
347 —-1.580 -1.157 18 15 14 10 8 -9

345 2.104 —-0.747 29 27 27 22 22 23
505 —1.320 1.632 21 11 18 0 0 4

607 1.517 0919 30 39 30 27 20 4
322 1.272 0946 28 21 25 32 34 -9
328 1.676 0992 22 24 28 26 28 29
360 1.333 1.003 21 28 27v 29 28 33

Table 2: Interesting subjects in terms of location and scale estimates (i.e., 9~12‘ and 521) from
analysis of the Riesby data (—9 represents missing data).

but is somewhat less responsive and with rather high depression values across time. Subject
505 in the upper left corner, has generally moderate to low depression scores, but a rather
erratic pattern across time. Finally, the four subjects (ids 607, 322, 328, and 360) in the
upper right corner have generally high depression values which are fairly erratic across time.
These subjects do not follow a decreasing linear trend across time, and the last three subjects
even display increasing depression values across time.
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Figure 3: Bivariate scatter plot of estimated random location and scale effects.

In the R function, default values have been set to PNINT = O, RNINT = 0, SNINT = 0, CONV
= 0.0005, NQ = 11, AQUAD = 1, MAXIT = 200, NCENT = 0, and NCOV = 1. These can be
overwritten in the call to the function. For example, to use 15 quadrature points and to
standardize all of the covariates, then the following would be used.

R> mixregls.results2 <- mixregls.combined (
+ hamdep ~ endog + week + endweek | endog | endog + week,
+ id = "id", data = indata, N = 15, NCENT = 1)

4.3. Intensive longitudinal data with random location and scale

Modern data collection procedures, such as ecological momentary assessments (EMA) (Stone
and Shiffman 1994; Smyth and Stone 2003), experience sampling (de Vries 1992; Scollon, Kim-
Prieto, and Diener 2003), and diary methods (Bolger et al. 2003), have been developed to
record the momentary events and experiences of subjects in daily life. These procedures yield
relatively large numbers of subjects and observations per subject, and data from these designs
are sometimes referred to as intensive longitudinal data (Walls and Schafer 2006). Such
designs are in keeping with the “bursts of measurement” approach described by Nesselroade
and McCollam (2000), who called for such an approach in order to assess intra-individual
variability. As noted by Nesselroade and McCollam (2000), such bursts of measurement
increase the research burden in several ways; however, they are necessary for studying intra-
individual variation and to explain why subjects differ in variability rather than solely in
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mean level (Bolger et al. 2003). As we have described in a series of articles (Hedeker et al.
2008; Hedeker, Demirtas, and Mermelstein 2009; Hedeker, Mermelstein, and Demirtas 2012),
mixed-effects location scale analysis of such EMA data is particularly useful.

Data for the analyses reported here come from a longitudinal, natural history study of ado-
lescent smoking (Mermelstein, Hedeker, Flay, and Shiffman 2002). Students included in the
study were either in 8th or 10th grade at baseline, and self-reported on a screening ques-
tionnaire 6-8 weeks prior to baseline that they either had never smoked, but indicated a
probability of future smoking, or had smoked in the past 90 days, but had not smoked more
than 100 cigarettes in their lifetime. Adolescents carried hand held computers with them
at all times during a seven consecutive day data collection period and were trained to both
respond to random prompts from the computers and to event record (initiate a data collection
interview) smoking episodes. For the analyses reported, we treated the responses obtained
from the random prompts. In all, there were 17,514 random prompts obtained from 515
students with an approximate average of 34 prompts per student (range = 3 to 58).

The dependent variable considered is a measure of the subject’s positive mood (posmood) at
each random prompt. This measure consists of the average of several individual mood items
that were identified via factor analysis. Each item was rated from 1 to 10 with higher values
indicating higher levels of positive mood. Over all prompts, and ignoring the clustering of
the data, the marginal mean of posmood was 6.733 (sd=2.117). Of interest is the degree of
heterogeneity in this mood measure in terms of both WS and BS variation. As covariates,
we will examine genderf, which is a subject (level-2) covariate coded 0 for males and 1 for
females, and alone, which is a time-varying (level-1) covariate coded 0 if the subject was
alone or 1 if with others. Both covariates will be included in all submodels.

The dataset, named posmood_example.dat, contains four variable fields: id (field 1), posmood
(field 2), alone (field 3), and genderf (field 4). The field number is used to identify these
variables in the mixregls.def file for the model, which is listed below.

Analysis of Positive Mood - 11 quad pts
BS and WS variance model with random scale
posmood_example.dat

posmood. out

posmood.def

4 222 000 0.00001 111 2000 0 1
12

3 4

3 4

3 4

posmood

alone  genderf

alone  genderf

alone  genderf

Unlike the Riesby dataset, there are no missing values coded in this dataset, so MISS is set
to zero. Other options that are specified in this mixregls.def file: a convergence criterion
of 0.00001, 11-point adaptive quadrature, a maximum number of iterations set at 200, and a
linear effect of the random location on (log of) the WS variance.
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The results for the model are written to the file posmood.out; a partial listing (descriptives
and results from the final model stage) is below. Likelihood ratio tests yield: x2 = 70416.708 —
70335.768 = 80.94 comparing stages 1 and 2, and x3 = 70335.768 — 68283.920 = 2051.848
comparing stages 2 and 3. Thus, Model 3 clearly fits better than Model 2, indicating a sig-
nificant linear effect of the random location effect on the WS variance and subject differences
of scale. Notice, that there were two instances of a “BAD NR ITERATION,” which occurred
because the likelihood did not increase for the second and eleventh Newton-Raphson (NR)
iterations. At those points, the ridge was increased to aid in the computational solution. It
is not unusual for there to be a few “bad” iterations, however more than a few would suggest
computational problems with the solution. Interpreting the final model stage, we see a sig-
nificant negative effect of being alone on mean levels of positive mood, namely, subjects have
worse mood when alone. Additionally, being alone increases the BS variance, and so subjects
are more heterogeneous in mood when they are alone. The gender effect on the mean level and
the BS variance are not seen to be significant. However, females exhibit greater WS positive
mood variance, as does being alone. The mood responses of a subject are more heterogeneous
and less stable for females, relative to males. Also, for a given subject, their mood responses
are more varied when they are alone, relative to when they are with others.

MIXREGLS: Mixed-effects Location Scale Model with BS and WS variance models

Analysis of Positive Mood - 11 quad pts
BS and WS variance model with random scale

data and output files:
posmood_example.dat

posmood.out

CONVERGENCE CRITERION = 0.00001000

NQ = 11
QUADRATURE = 1 (O=non-adaptive, l=adaptive)
MAXIT = 200
Descriptives

Number of level-1 observations 17514

Number of level-2 clusters 515

Number of level-1 observations for each level-2 cluster
26 43 36 16 25 39 32 16 49 32 37 29 49

23
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Dependent variable

mean min max std dev
posmood 6.7327 1.0000 10.0000 2.1165
Mean model covariates
mean min max std dev

alone 0.4627 0.0000 1.0000 0.4986
genderf 0.5842 0.0000 1.0000 0.4929
Model WITH RANDOM Scale

==> BAD NR ITERATION 2 with NEW ridge = 0.3000

==> BAD NR ITERATION 11 with NEW ridge = 0.1000

Total Iterations = 24

Final Ridge value = 0.0

Log Likelihood = -34141.960

Akaike's Information Criterion =  -34152.960

Schwarz's Bayesian Criterion =  -34176.303

==> multiplied by -2

Log Likelihood = 68283.920

Akaike's Information Criterion = 68305.920

Schwarz's Bayesian Criterion = 68352.606

Variable Estimate AsymStdError z-value
BETA (regression coefficients)

Intercpt 6.99035 0.08105 86.24343
alone -0.36996 0.02503 -14.77858
genderf -0.15001 0.10905 -1.37554
ALPHA (BS variance parameters: log-linear model)

Intercpt 0.29842 0.09780 3.05129
alone 0.10535 0.03644 2.89089
genderf 0.00446 0.13056 0.03419
TAU (WS variance parameters: log-linear model)

Intercpt 0.76323 0.04748 16.07511
alone 0.08077 0.02474 3.26436
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genderf 0.21594 0.06131 3.52226 0.00043
Random location (mean) effect on WS variance

Loc Eff -0.21761 0.03102 -7.01443 0.00000
Random scale standard deviation

Std Dev 0.59744 0.02263 26.39561 0.00000

Ezxpressing the variance estimates in terms of intraclass correlation
Based on the current analysis, the (log-linear) model for the BS variance is given by

agij = exp(og + ajalone;; + asgendert,) . (15)
Thus, we can estimate the BS variance for the four cells of the crossing of the two indicator
variables (male/female by alone/not alone) as:

male, not alone: 62 = exp(0.2984) = 1.348,
male, alone: 62 = exp(0.2984 + 0.10535) = 1.497 ,
female, not alone: 62 = exp(0.2984 4+ 0.00446) = 1.354 ,
female, alone: &2 exp(0.2984 + 0.10535 + 0.00446) = 1.504 .

These estimates show the increased heterogeneity across subjects for both gender groups
when they are alone, relative to when they are with others. In terms of the WS variance, the
(log-linear) model is:

ae2ij = exp(7p + T1alone; + Togendert; + 0.5(77 +02)) . (16)
The form for the latter two terms are based on the expectation of the log-normally distributed
61; and 6; (Skrondal and Rabe-Hesketh 2004, page 124). For this analysis, 0.5(7% + 62) =
0.5((—0.2176)2 + (0.5974)%) = 0.2021. Using this estimate, the WS variance for each of the

four cells (male/female by alone/not alone) is estimated as:

male, not alone: 62 = exp(0.7632 4 0.2021) = 2.626,
male, alone: 62 = exp(0.7632 + 0.0808 4 0.2021) = 2.847 ,
female, not alone: 62 = exp(0.7632 4 0.2159 + 0.2021) = 3.259 ,
female, alone: 62 = exp(0.7632 + 0.0808 + 0.2159 + 0.2021) = 3.533 .

Thus, there is more WS variance for females, relative to males, and also when alone, relative
to not alone. The intraclass correlation, » = 02 /(02 + 02), can be estimated as:

male, not alone: # = 1.348/(1.348 + 2.626) = 0.339,
male, alone: 7 1.497/(1.497 + 2.847) = 0.345,
female, not alone: 7 1.354/(1.354 + 3.259) = 0.294 ,
female, alone: # = 1.504/(1.504 + 3.533) = 0.299 .

As can be seen, the data are more correlated (i.e., less heterogeneous) within males, than
females, and not too different when alone versus not alone. The latter result occurs because
being alone increases both the WS and BS variances. However, in terms of gender, the
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intraclass correlation estimates vary because while the BS variance is very similar between
males and females, the WS variance (which forms part of the denominator in the intraclass
correlation equation) is increased for females, relative to males.

4.4. Running MIXREGLS from SAS

For the current dataset, one might be interested in examining, say, the interaction between
genderf and alone on posmood. MIXREGLS does not have data management capabilities,
but it is easy to use SAS, for example, to create this interaction and run MIXREGLS. For this,
the SAS code, listed below, reads in posmood_example.dat, creates the interaction of genderf
and alone, writes out a new dataset posmood2_example.dat, writes out a new definition file
pm2.def, and issues the command prompts to run MIXREGLS using the new definition file.
This is done by the X statement in SAS, which allows Windows commands to be executed.
Notice that the multiple commands are in quotes and separated by the & symbol. In running
this program in SAS, a command prompt screen will open up as MIXREGLS is running.

/* read in the dataset and create an interaction */
DATA posmood;

INFILE 'c:\mixregls\posmood_example.dat';
INPUT id posmood alone genderf;

algenf = alone*genderf;

RUN;

/* write out the new dataset for mixregls */
DATA posmood2;

SET posmood;

FILE 'c:\mixregls\posmood2_example.dat';

PUT id 1-4 posmood f8.4 (alone genderf algenf) (£2.0);
RUN;

/* write out the def file for mixregls */
DATA outdef;

FILE 'c:\mixregls\pm2.def';

PUT 'Analysis of Positive Mood - 11 quad pts'
'BS and WS variance model with random scale'
'posmood2_example.dat'

'posmood2.out’

'pm2.def’

'6 333 000 0.00001 111 20000 1'
1{ o1

'3 45

'3 4 5'

'3 45!

'posmood’

'alone  genderf algenf'

'alone  genderf algenf'

'alone  genderf algenf';

RUN;

/* run mixregls from SAS */

NN N NN NN NNNNNYNNYN
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X 'cd c:\mixregls & del mixregls.def & copy pm2.def mixregls.def & mixreglsb';

RUN;

Below is a listing of the results from the final model stage for this analysis that includes
the interaction of alone by genderf. The likelihood ratio test comparing this model to the
previous one yields x3 = 68283.920 — 68274.566 = 9.354 which is statistically significant at
the 0.025 level. Thus, there is evidence of significant interaction. Looking at the interaction
effects in the three submodels, we see that the interaction is significant only in the mean
submodel. The nature of this interaction, in terms of the mean, is that there is no significant
gender effect when subjects are not alone, but a highly significant gender difference, with
females being lower than males, when subjects are alone. Or, another way of expressing it is
that while both males and females are lower on positive mood when they are alone, relative

to when they are not alone, this difference is significantly greater for females than males.

Total Iterations =

Final Ridge value

1]
o
o

Log Likelihood
Akaike's Information Crit
Schwarz's Bayesian Criter

==> multiplied by -2

Log Likelihood

Akaike's Information Crit
Schwarz's Bayesian Criter

Variable Estimate
BETA (regression coeffici
Intercpt 6.97557
alone -0.29320
genderf -0.12286
algenf -0.14355
ALPHA (BS variance parame
Intercpt 0.30571
alone 0.09542
genderf 0.00598
algenf -0.00916
TAU (WS variance paramete
Intercpt 0.74989
alone 0.09953
genderf 0.23747
algenf -0.03083

= -34137.
-34151.
-34180.

283
283
992

erion

ion

= 68274.
68302.
68361.

566
566
984

erion

ion

AsymStdError

ents)
0.08156
0.03708
0.10950
0.05024

ters: log-linear model)
0.09923
0.05003
0.13535
0.07332

rs: log-linear model)
0.04949
0.03850
0.06562
0.05022

O O O O

O O O O

o O O O
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Random location (mean) effect on WS variance

Loc Eff -0.21748 0.03100 -7.01621 0.00000
Random scale standard deviation
Std Dev 0.59695 0.02261 26.40464 0.00000

4.5. Quadratic effect of the random location effect on WS variance

As previously described, a quadratic relationship between a subject’s mean and the log of
their WS variance can be specifed through use of the NCOV option on line 6 (last option on
this line) of the mixregls.def file. Specifically, this option allows either:
2 T

NCOV=0: o7 = exp(wyT+oub) , (17)

NCOV =1: aij = exp(u&57‘+~n91i+faw020 , (18

NCOV = 2: afij = eXp(’w;-ro + 71015 + 0% + 0,02) (19
Thus far, all of our examples have considered NCOV=1 to allow for a linear association. By
changing this value from 1 to 2, we can investigate whether the linear association is suffi-
cient, relative to a quadratic relationship. Using the current example, this one change to the
mixregls.def file produces the results listed below.

Total Iterations = 15
Final Ridge value = 0.0

Log Likelihood = -34118.126
Akaike's Information Criterion = -34133.126
Schwarz's Bayesian Criterion =  -34164.957

==> multiplied by -2
Log Likelihood = 68236.251

Akaike's Information Criteriomn = 68266.251

Schwarz's Bayesian Criterion = 68329.914

Variable Estimate AsymStdError z-value p-value
BETA (regression coefficients)

Intercpt 6.93622 0.07848 88.38005 0.00000
alone -0.29462 0.03743 -7.87083 0.00000
genderf -0.05420 0.10341 -0.52414 0.60018
algenf -0.13714 0.05037 -2.72269 0.00648
ALPHA (BS variance parameters: log-linear model)

Intercpt 0.27751 0.09587 2.89463 0.00380

alone 0.09232 0.04855 1.90146 0.05724
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genderf 0.03550 0.12769 0.27799 0.78102
algenf -0.01003 0.07133 -0.14060 0.88819
TAU (WS variance parameters: log-linear model)

Intercpt 0.89114 0.05342 16.68293 0.00000
alone 0.10084 0.03852 2.61778 0.00885
genderf 0.20997 0.06510 3.22541 0.00126
algenf -0.03238 0.05023 -0.64468 0.51913
Random linear and quadratic location (mean) effects on WS variance

Lin Loc -0.22701 0.03186 -7.12415 0.00000
Quad Loc -0.12716 0.02149 -5.91809 0.00000
Random scale standard deviation

Std Dev 0.57081 0.02195 26.00559 0.00000

A likelihood ratio test yields y? = 68274.566 — 68236.251 = 38.32 for the null hypothesis
Hy : 7y = 0, clearly rejecting the null. Thus, the current model with the linear and quadratic
effects fits the data significantly better than the previous model with only the linear effect.
As can be seen, both linear and quadratic location effects are negative and significant. This
suggests that subjects with higher location effects (more positive affect) exhibit less WS
variation in more than a linear manner (on the log scale). As previously mentioned, this
could be due to a ceiling effect of measurement in that subjects with high mean levels of
positive affect (towards the maximum of 10) must exhibit low variation in their scores. In
terms of the other model estimates, most are very similar to those obtained previously in the
model with only the linear location effect, and none of the conclusions change appreciably.

5. Discussion

This article has described the program MIXREGLS which can be used to estimate the pa-
rameters of a mixed-effects location scale model (Hedeker et al. 2008). This extended mixed
model augments the usual mean model with sub-models of the BS and WS variances. Covari-
ates can be included in each of these sub-models. Relative to the standard mixed model, this
augmented approach can be useful to identify predictors of both WS and BS variation, and to
test hypotheses about these variances. Also, by including a random subject effect on the WS
variance, this model can examine the degree to which subjects are heterogeneous in terms of
their variation on the outcome variable, over and above the covariate effects. The random
scale effects are further allowed to be associated with the usual random location effects, and
this association can either be of a linear or quadratic form (in the log-linear model of the WS
variance). Modern data collection procedures, such as EMA and/or real-time data captures,
are increasingly used in many research areas. These approaches often provide a fair amount
of both WS and BS data, and so allow the opportunity for modeling of both WS and BS
variances as a function of covariates.

MIXREGLS is appropriate for continuous outcomes that are (conditionally) normally dis-
tributed. For ordinal outcomes, we have also described a mixed-effects location scale model
(Hedeker et al. 2009). In the ordinal approach, we extend the mixed-effects logistic regression
model of Hedeker and Gibbons (1994) by including the log-linear modeling of BS and WS
variance, as well as the random scale effect. SAS NLMIXED can be used to estimate the param-
eters of the ordinal location-scale model, and Hedeker et al. (2009) includes sample syntax,
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however, as in the continuous case, it is rather slow to converge and can be sensitive to the
specification of starting values. Thus, in future work we hope to develop an ordinal version
of MIXREGLS as well.

Another limitation is that MIXREGLS only includes a random intercept as the location effect.
For longitudinal data, a more general model with multiple random location effects is often
used (Hedeker and Gibbons 2006), for example, to allow subjects to vary in terms of the model
intercepts and time-trends. Also, MIXREGLS only allows estimation of a two-level model
(i.e., repeated observations within subjects, or subjects within clusters), however in some
cases a more extended hierarchical model is necessary. For example, for the EMA dataset
one might consider a three-level model in which observations (level 1) are nested within days
(level 2) within subjects (level 3). In a recent paper, Li and Hedeker (2012) proposed such a
three-level model for EMA data, including development of a recursive conditional likelihood
approach using SAS NLMIXED to estimate the model parameters. Future work on MIXREGLS
will hopefully include some of these extensions of the model.
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A. Estimation details

In terms of estimation, the model can be written as:

€ij = Yij — (wgﬁ + Um‘@u) , (20)
and
Ugij = exp(uiTja) , (21)

which allows the model to be expressed as:

€ij = Yij — (33;;5 + \/mgli) ; (22)

where the error variance is given by:

aij = exp(wiTjT + 1015 + TQG%i + o,b) = eXp(’w;-;T + .SZTHI) , (23)
with s = (11 74 0] and 6 = [0y; (9%1- Hgi}—r. Under the conditional independence assumption,
in which the responses within a subject are independent conditional on the random subject
effects, @; = [01; 02;] T, the conditional log-likelihood for a given subject is

Inl(e; | 9) Zf” , (24)

with
fij=In 271'0 o+ 6”/0'6” . (25)

The marginal likelihood is obtained by integrating over the standardized random effects:

h(ei) = [, e | 0)9(0)d6 . (20)

where ¢(0) is a standard bivariate normal density. The marginal log-likelihood from the
sample of NV subjects is then obtained as In L = Zﬁv In h(e;). Maximizing this log-likelihood
yields maximum likelihood (ML) estimates, which are sometimes referred to as maximum
marginal likelihood estimates (Bock 1989) because integrating the joint likelihood of random
effects and responses over the distribution of random effects translates to marginalization of
the data distribution.

MIXREGLS maximizes this log-likelihood using a Newton-Raphson algorithm. For this, both
the first and second derivatives of the log-likelihood, with respect to the model parameters,
must be derived. To simplify the notation, denote h; = h(e;) and I; = l(€; | 8). Also, let n
represent an arbitrary parameter vector (i.e., 3, , T, or s). Then,

N .
OlnL :th‘_l/ Olnl; 9)do . (27)
p 0
and
Glnl i wa

(28)
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For the first derivatives, we obtain:

Ofii _

éféj = —20656@]':13,‘]' s (29)
Ofii _

% = —O’eifeijthvij’uij s (30)
Of;; -

8;7 — {1 — 0’61_2612]} wij; (31)
Ofii _

5L = [1-0.2]6; (32)

(33)

To derive the matrix of second derivatives, denote

N
(3111L Zh 4, | (34)

where
81an
= —1; g(0) dO . 35
[t 1:9(6) (35)

Notice that d; is equal to 0h;/0n, so that

92InL N od; N od
———= =N h?|hi—— — = [hi ' —dd] | 36
oom” 2" [ an 20 |hi i (36)
where
ad,; Olnl;\ /0lnl;\' 8%Inl;
on /¢9<8n><8n>+8n3nTl9() (37)

Thus, we need to derive the second derivatives with respect to Inl;. These are obtained as:

82 In ll i _9 T

pgopT =TT (38)
0%Inl; 3

dadaT Z 0 0100, (Oriow,, — €j)uijul; (39)
9% 1Inl; 18,

or 87-ZT - T2 > Jﬁifelzjwijwjj ; (40)
62 In ll

—22 >)< >|<
5a9sT = Za €,07(07)" . (41)

35
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The above are for the diagonal blocks of the second derivative matrix. For the off-diagonal
blocks, we obtain

a(ilanﬂlfr = —;icr;fﬂliavijuijm;j, (42)
% = Yol (43)
m - _;iagfelieijavijwiju;rj> (44)
(.f;ifi = —i@f%@i‘w%, (45)
b =~y e, O] 9
gjgﬁ - _;i"gf 0w - (47)

The Newton-Raphson iterative procedure can now be implemented. Specifically, estimates
for the entire vector of parameters ¢, on iteration ¢ are improved by

9 1
0 lnL] OlnL ' (48)

a¢, ¢, 9,

At each model stage, MIXREGLS continues to iterate until all of the corrections (¢, —¢,)
are less, in absolute value, than the convergence criterion CONV specified in the mixregls.def
definition file. At convergence, the ML estimates and their accompanying standard errors can
be used to construct asymptotic z-statistics by dividing the parameter estimate by its standard
error (Wald 1943). The computed z-statistic can then be compared with the standard normal
table to test whether the parameter is significantly different from zero. MIXREGLS lists
these z- and p-values, in addition to the parameter estimates and their standard errors. Also,
the likelihood-ratio (or difference in log-likelihood) x? test can be used for comparison of
nested models, for example, the three sequential models that MIXREGLS fits. For this, the
significance of the additional terms in model A over model B is determined by comparing
—2(InLg — InLy4) to a table of the x? distribution with degrees of freedom equal to the
number of additional parameters in model A. To facillitate this, MIXREGLS lists the deviance
(—21In L) of each of the sequential models that it estimates.

CH—l :CL - [

A.1. Numerical quadrature

In order to solve the above likelihood equations, numerical integration on the random effect
6 space must be performed. For this, Gauss-Hermite quadrature can be used to approximate
the above integrals to any practical degree of accuracy (Stroud and Sechrest 1966). In Gauss-
Hermite quadrature, the integration is approximated by a summation on a specified number
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of quadrature points NQ for each dimension of the integration; thus, for the bivariate 6 space,
the summation goes over NQ? points. MIXREGLS allows for both ordinary quadrature, in
which the same points are used for all subjects, or adaptive quadrature (Bock and Shilling
1997; Rabe-Hesketh, Skrondal, and Pickles 2002), in which the points are adapted to the
location and dispersion for each subject at each iteration. The benefit of adaptive quadrature
is that it usually requires a smaller number of quadrature points to achieve convergence.

At each iteration, and for each subject, the solution goes over the NQ? quadrature points, with
summation replacing the integration over the random-effect distribution. The conditional like-
lihoods [; are obtained substituting the random-effect vector @ by the current 2-dimensional
vector of quadrature points B,. The marginal density for each level-2 unit is then approxi-

mated as
NQ2

At each iteration, computation of the first derivatives and second derivative matrix then pro-
ceeds summing over subjects and quadrature points. In the summation over the NQ? quadra-
ture points, the 6 random-effect vector is substituted by the current vector of quadrature
points By, and the evaluation of the density g(@) is substituted by the current quadrature
weight A(B,), which is obtained as the product of the quadrature weights from the two
dimensions of the integral. Following the summation over subjects and quadrature points,
parameters are corrected according to the Newton-Raphson algorithm, and the entire proce-
dure is repeated until convergence.

A.2. Estimation of random effects

As was illustrated in the first example, it can be of interest to examine the estimates of the
random effects @; within the sample. A reasonable choice for this is the expected “a posteriori”
(EAP) or empirical Bayes estimator 8; (Bock and Aitken 1981). For the univariate case, this
estimator 6; is given by:

6 = B(6; | ) = h(1> [ 6t 163 900 a0 . (50)

The variance of this estimator is obtained similarly as:

V(O | ) = h(lei) [0 =801 g0 o (51)

Upon convergence of each stage, MIXREGLS estimates these quantities using one additional
round of quadrature. As mentioned in the first example, these estimates are written out to
the file mixregls.re2. They may then be used, for example, to evaluate the location and
scale estimates for particular subjects.

A.3. Standardized residuals

For each of the three model stages, the standardized residuals are obtained as:

T TG
. Vi — (zB + \Jexp(u; &) Oh;
&ij = ’ ( A ’ ) . (52)

37
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Note that the denominator, which is the WS standard deviation, varies for the three model
stages. For stages 1 and 2, it equals exp(w%%) , while for stage 3 it varies depending on
the NCOV specification:

NCOV=10: 0, \/exp(wiij' + G,02;) (53)
NCOV =1: &, = \/exp(wiij' + #01; + G.,02:) (54)
NCOV=2: 0 \/exp(wiij- + 701 + fq(éu)z + &wé%) (55)

The residuals from all model stages are output to the file mixregls.rel; these can be plotted,
for example, to assess the assumption of normality of the model errors.
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