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Abstract

Boosting and bagging are two widely used ensemble methods for classification. Their
common goal is to improve the accuracy of a classifier combining single classifiers which are
slightly better than random guessing. Among the family of boosting algorithms, AdaBoost
(adaptive boosting) is the best known, although it is suitable only for dichotomous tasks.
AdaBoost.M1 and SAMME (stagewise additive modeling using a multi-class exponential
loss function) are two easy and natural extensions to the general case of two or more
classes. In this paper, the adabag R package is introduced. This version implements
AdaBoost.M1, SAMME and bagging algorithms with classification trees as base classifiers.
Once the ensembles have been trained, they can be used to predict the class of new
samples. The accuracy of these classifiers can be estimated in a separated data set or
through cross validation. Moreover, the evolution of the error as the ensemble grows
can be analysed and the ensemble can be pruned. In addition, the margin in the class
prediction and the probability of each class for the observations can be calculated. Finally,
several classic examples in classification literature are shown to illustrate the use of this
package.
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1. Introduction

During the last decades, several new ensemble classification methods based in the tree struc-
ture have been developed. In this paper, the package adabag for R (R Core Team 2013) is
decribed, which implements two of the most popular methods for ensembles of trees: boosting
and bagging. The main difference between these two ensemble methods is that while boosting
constructs its base classifiers in sequence, updating a distribution over the training examples
to create each base classifier, bagging (Breiman 1996) combines the individual classifiers built
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in bootstrap replicates of the training set. Boosting is a family of algorithms and two of
them are implemented here: AdaBoost.M1 (Freund and Schapire 1996) and SAMME (Zhu,
Zou, Rosset, and Hastie 2009). To the best of our knowledge, the SAMME algorithm is not
available in any other R package.

The package adabag 3.2, available from de Comprehesive R Archive Network at http://CRAN.
R-project.org/package=adabag, is the current update of adabag that changes the measure
of relative importance of the predictor variables using the gain of the Gini index given by a
variable in a tree and, in the case of the boosting function, the weight of this tree. For this
goal, the varImp function of the caret package (Kuhn 2008, 2012) is used to get the gain of
the Gini index of the variables in each tree.

Previously, the version 3.0 introduced four important new features: AdaBoost-SAMME is
implemented; a new function errorevol shows the error of the ensembles according to the
number of iterations; the ensembles can be pruned using the option newmfinal in the corre-
sponding predict function; and the posterior probability of each class for every observation
can be obtained. In addition, the version 2.0 incorporated the function margins to calculate
the margins for the classifiers.

Since the first version of this package, in 2006, it has been used in several classification tasks
from very different scientific fields such as: economics and finance (Alfaro, Garćıa, Gámez, and
Elizondo 2008; Chrzanowska, Alfaro, and Witkowska 2009; De Bock and Van den Poel 2011),
automated content analysis (Stewart and Zhukov 2009), interpreting signals out-of-control in
quality control (Alfaro, Alfaro, Gámez, and Garćıa 2009), advances in machine learning (De
Bock, Coussement, and Van den Poel 2010; Krempl and Hofer 2008). Moreover, adabag is
used in the R package digeR (Fan, Murphy, and Watson 2012) and at least in two R manuals
(Maindonald and Braun 2010; Torgo 2010).

Apart from adabag, nowadays there are several R packages dealing with boosting methods.
Among them, the most widely used are ada (Culp, Johnson, and Michailidis 2012), gbm
(Ridgeway 2013) and mboost (Bühlmann and Hothorn 2007; Hothorn et al. 2013). They are
really useful and well-documented packages. However, it seems that they are more focused
on boosting for regression and dichotomous classification. For a more detailed revision of
boosting packages see the intriguing CRAN Task View: “Machine Learning & Statistical
Learning” maintained by Hothorn (2013).

The paper is organized as follows. In Section 2 a brief description of the ensemble algorithms
AdaBoost.M1, SAMME and bagging is given. Section 3 explains the package functions. There
are eight functions, three of them are specific for each ensemble family and two of them are
common for all methods. In addition, all the functions are illustrated through a well-known
classification problem, the iris example. This data set, although very useful for academic
purposes, is too simple. Thus, Section 4 is dedicated to provide a deep insight into the working
of the package through two more complex classification data sets. Finally, some concluding
remarks are drawn in Section 5.

2. Algorithms

In this section a brief description of boosting and bagging algorithms is given. Their common
goal is to improve the accuracy of the ensemble, combining single classifiers which are as
precise and different as possible. In both cases, heterogeneity is introduced by modifying the
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training set where the individual classifiers are built. However, the base classifier of each
boosting iteration depends on all the previous ones through the weight updating process,
whereas in bagging they are independent. In addition, the final boosting ensemble uses
weighted majority vote while bagging uses a simple majority vote.

2.1. Boosting

Boosting is a method that makes maximum use of a classifier by improving its accuracy. The
classifier method is used as a subroutine to build an extremely accurate classifier in the training
set. Boosting applies the classification system repeatedly on the training data, but in each
step the learning attention is focused on different examples of this set using adaptive weights,
wb(i). Once the process has finished, the single classifiers obtained are combined into a final,
highly accurate classifier in the training set. The final classifier therefore usually achieves a
high degree of accuracy in the test set, as various authors have shown both theoretically and
empirically (Banfield, Hall, Bowyer, and Kegelmeyer 2007; Bauer and Kohavi 1999; Dietterich
2000; Freund and Schapire 1997).

Even though there are several versions of the boosting algorithms (Schapire and Freund 2012;
Friedman, Hastie, and Tibshirani 2000), the best known is AdaBoost (Freund and Schapire
1996). However, it can be only applied to binary classification problems. Among the versions
of boosting algorithms for multiclass classification problems (Mukherjee and Schapire 2011),
two of the most simple and natural extensions of AdaBoost have been chosen, which are called
AdaBoost.M1 and SAMME.

Firstly, the AdaBoost.M1 algorithm can be described as follows. Given a training set Tn =
{(x1, y1), . . . , (xi, yi), . . . , (xn, yn)} where yi takes values in 1, 2, . . . , k. The weight wb(i) is
assigned to each observation xi and is initially set to 1/n. This value will be updated after
each step. A basic classifier, Cb(xi), is built on this new training set (Tb) and is applied to
every training example. The error of this classifier is represented by eb and is calculated as

eb =
n∑

i=1

wb(i)I(Cb(xi) 6= yi) (1)

where I(·) is the indicator function which outputs 1 if the inner expression is true and 0
otherwise.

From the error of the classifier in the b-th iteration, the constant αb is calculated and used
for weight updating. Specifically, according to Freund and Schapire, αb = ln ((1− eb)/eb).
However, Breiman (Breiman 1998) uses αb = 1/2 ln ((1− eb)/eb). Anyway, the new weight
for the (b+ 1)-th iteration will be

wb+1(i) = wb(i) exp (αbI(Cb(xi) 6= yi)) (2)

Later, the calculated weights are normalized to sum one. Consequently, the weights of the
wrongly classified observations are increased, and the weights of the rightly classified are
decreased, forcing the classifier built in the next iteration to focus on the hardest examples.
Moreover, differences in weight updating are greater when the error of the single classifier
is low because if the classifier achieves a high accuracy then the few mistakes take on more
importance. Therefore, the alpha constant can be interpreted as a learning rate calculated
as a function of the error made in each step. Moreover, this constant is also used in the final
decision rule giving more importance to the individual classifiers that made a lower error.
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1. Start with wb(i) = 1/n, i = 1, 2, . . . , n

2. Repeat for b = 1, 2, . . . , B
a) Fit the classifier Cb(xi) = {1, 2, . . . , k} using weights wb(i) on Tb

b) Compute: eb =
∑n

i=1wb(i)I(Cb(xi) 6= yi) and αb = 1/2 ln ((1− eb)/eb)
c) Update the weights wb+1(i) = wb(i) exp (αbI(Cb(xi) 6= yi)) and normalize them

3. Output the final classifier Cf (xi) = arg maxj∈Y
∑B

b=1 αbI(Cb(xi) = j)

Table 1: AdaBoost.M1 algorithm.

1. Start with wb(i) = 1/n, i = 1, 2, . . . , n

2. Repeat for b = 1, 2, . . . , B
a) Fit the classifier Cb(xi) = {1, 2, . . . , k} using weights wb(i) on Tb

b) Compute: eb =
∑n

i=1wb(i)I(Cb(xi) 6= yi) and αb = ln ((1− eb)/eb) + ln(k − 1)
c) Update the weights wb+1(i) = wb(i) exp (αbI(Cb(xi) 6= yi)) and normalize them

3. Output the final classifier Cf (xi) = arg maxj∈Y
∑B

b=1 αbI(Cb(xi) = j)

Table 2: SAMME algorithm.

This process is repeated every step for b = 1, . . . , B. Finally, the ensemble classifier calculates,
for each class, the weighted sum of its votes. Therefore, the class with the highest vote is
assigned. Specifically,

Cf (xi) = arg max
j∈Y

B∑
b=1

αbI(Cb(xi) = j) (3)

Table 1 shows the complete AdaBoost.M1 pseudocode.

SAMME, the second boosting algorithm implemented here, is summarized in Table 2. It
is worth mentioning that the only difference between this algorithm and AdaBoost.M1 is
the way in which the alpha constant is calculated, because the number of classes is taken
into account in this case. Due to this modification, the SAMME algorithm only needs that
1 − eb > 1/k in order for the alpha constant to be positive and the weight updating follows
the right direction. That is to say, the accuracy of each weak classifier should be better than
the random guess (1/k) instead of 1/2, which would be an appropriate requirement for the
two class case but very demanding for the multi-class one.

2.2. Bagging

Bagging is a method that combines bootstrapping and aggregating (Table 3). If the bootstrap
estimate of the data distribution parameters is more accurate and robust than the traditional
one, then a similar method can be used to achieve, after combining them, a classifier with
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1. Repeat for b = 1, 2, . . . , B
a) Take a bootstrap replicate Tb of the training set Tn

b) Construct a single classifier Cb(xi) = {1, 2, . . . , k} in Tb

2. Combine the basic classifiers Cb(xi), b = 1, 2, . . . , B by the majority vote (the most often
predicted class) to the final decission rule Cf (xi) = arg maxj∈Y

∑B
b=1 I(Cb(xi) = j)

Table 3: Bagging algorithm.

better properties.

On the basis of the training set (Tn), B bootstrap samples (Tb) are obtained, where b =
1, 2, . . . , B. These bootstrap samples are obtained by drawing with replacement the same
number of elements than the original set (n in this case). In some of these boostrap samples,
the presence of noisy observations may be eliminated or at least reduced, (as there is a lower
proportion of noisy than non-noisy examples) so the classifiers built in these sets will have a
better behavior than the classifier built in the original set. Therefore, bagging can be really
useful to build a better classifier when there are noisy observations in the training set.

The ensemble usually achieves better results than the single classifiers used to build the final
classifier. This can be understood since combining the basic classifiers also combines the
advantages of each one in the final ensemble.

2.3. The margin

In the boosting literature, the concept of margin (Schapire, Freund, Bartlett, and Lee 1998) is
important. The margin for an object is intuitively related to the certainty of its classification
and is calculated as the difference between the support of the correct class and the maximum
support of an incorrect class. For k classes, the margin of an example xi is calculated using
the votes for every class j in the final ensemble, which are known as the degree of support of
the different classes or posterior probabilities µj(xi), j = 1, 2, . . . , k as

m(xi) = µc(xi)−max
j 6=c

µj(xi) (4)

where c is the correct class of xi and
∑k

j=1 µj(xi) = 1. All the wrongly classified examples will
therefore have negative margins and those correctly classified ones will have positive margins.
Correctly classified observations with a high degree of confidence will have margins close to
one. On the other hand, examples with an uncertain classification will have small margins,
that is to say, margins close to zero. Since a small margin is an instability symptom in the
assigned class, the same example could be assigned to different classes by similar classifiers.
For visualization purposes, Kuncheva (2004) uses margin distribution graphs showing the
cumulative distribution of the margins for a given data set. The x-axis is the margin (m) and
the y-axis is the number of points where the margin is less than or equal to m. Ideally, all
points should be classified correctly so that all the margins are positive. If all the points have
been classified correctly and with the maximum possible certainty, the cumulative graph will
be a single vertical line at m = 1.
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3. Functions

In this section, the functions of the adabag package in R are explained. As mentioned before,
it implements AdaBoost.M1, SAMME and bagging with classification and regression trees,
(CART, Breiman, Friedman, Olshenn, and Stone 1984) as base classifiers using the rpart
package (Therneau, Atkinson, and Ripley 2013). Here boosted or bagged trees are used,
although these algorithms can be used with other basic classifiers. Therefore, ahead in the
paper boosting or bagging refer to boosted trees or bagged trees.

This package consists of a total of eight functions, three for each method and the margins and
evolerror. The three functions for each method are: one to build the boosting (or bagging)
classifier and classify the samples in the training set; one which can predict the class of new
samples using the previously trained ensemble; and lastly, another which can estimate by
cross validation the accuracy of these classifiers in a data set. Finally, the margin in the class
prediction for each observation and the error evolution can be calculated.

3.1. The boosting, predict.boosting and boosting.cv functions

As aforementioned, there are three functions with regard to the boosting method in the
adabag package. Firstly, the boosting function enables to build an ensemble classifier using
AdaBoost.M1 or SAMME and assign a class to the training samples. Any function in R
requires a set of initial arguments to be fixed; in this case, there are six of them. The
formula, as in the lm function, spells out the dependent and independent variables. The
data frame in which to interpret the variables named in formula. It collects the data to be
used for training the ensemble. If the logical parameter boos is TRUE (by default), a bootstrap
sample of the training set is drawn using the weight for each observation on that iteration. If
boos is FALSE, every observation is used with its weight. The integer mfinal sets the number
of iterations for which boosting is run or the number of trees to use (by default mfinal =

100 iterations).

If the logical argument coeflearn = "Breiman" (by default), then alpha = 1/2 ln((1−eb)/eb)
is used. However, if coeflearn = "Freund", then alpha = ln((1 − eb)/eb) is used. In both
cases the AdaBoost.M1 algorithm is applied and alpha is the weight updating coefficient.
On the other hand, if coeflearn = "Zhu", the SAMME algorithm is used with alpha =
ln((1− eb)/eb) + ln(k − 1). As above mentioned, the error of the single trees must be in the
range (0, 0.5) for AdaBoost.M1, while for SAMME in the range (0, 1−1/k). In the case where
these assumptions are not fulfilled, Opitz and Maclin (Opitz and Maclin 1999) reset all the
weigths to be equal, choose appropriate values to weight these trees and restart the process.
The same solution is applied here. When eb = 0, the alpha constant is calculated using
eb = 0.001 and when eb ≥ 0.5 (eb ≥ 1−1/k for SAMME), it is replaced by 0.499 (0.999−1/k,
respectively).

Lastly, the option control that regulates details of the rpart function is also transferred to
boosting specially to limit the size of the trees in the ensemble. See rpart.control for more
details.

Upon applying boosting and training the ensemble, this function outputs an object of class
boosting, which is a list with seven components. The first one is the formula used to train
the ensemble. Secondly, the trees which have been grown along the iterations are shown.
A vector which depicts the weights of the trees. The votes matrix describing, for each
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observation, the number of trees that assigned it to each class, weighting each tree by its
alpha coefficient. The prob matrix showing, for each observation, an approximation to the
posterior probability achieved in each class. This estimation of the probabilities is calculated
using the proportion of votes or support in the final ensemble. The class vector is the
class predicted by the ensemble classifier. Finally, the importance vector returns the relative
importance or contribution of each variable in the classification task.

It is worth to highlight that the boosting function allows quantifying the relative importance
of the predictor variables. Understanding a small individual tree can be easy. However,
it is more difficult to interpret the hundreds or thousands of trees used in the boosting
ensemble. Therefore, to be able to quantify the contribution of the predictor variables to
the discrimination is a really important advantage. The measure of importance takes into
account the gain of the Gini index given by a variable in a tree and the weight of this tree in
the case of boosting. For this goal, the varImp function of the caret package is used to get
the gain of the Gini index of the variables in each tree.

The well-known iris data set is used as an example to illustrate the use of adabag. The
package is loaded using library("adabag") and automatically the program calls the required
packages rpart, caret and mlbench (Leisch and Dimitriadou 2012).

The dataset is randomly divided into two equal size sets. The training set is classified with a
boosting ensemble of 10 trees of maximum depth 1 (stumps) using the code below. The list
returned consists of the formula used, the 10 small trees and the weights of the trees. The
lower the error of a tree, the higher its weight. In other words, the lower the error of a tree,
the more relevant in the final ensemble. In this case, there is a tie among four trees with the
highest weights (numbers 3, 4, 5 and 6). On the other hand, tree number 9 has the lowest
weight (0.175). The matrices votes and prob show the weighted votes and probabilities that
each observation (rows) receives for each class (columns). For instance, the first observation
receives 2.02 votes for the first, 0.924 for the second and 0 for the third class. Therefore, the
probabilities for each class are 68.62%, 31.38% and 0%, respectively, and the assigned class is
"setosa" as can be seen in the class vector.

R> library("adabag")

R> data("iris")

R> train <- c(sample(1:50, 25), sample(51:100, 25), sample(101:150, 25))

R> iris.adaboost <- boosting(Species ~ ., data = iris[train, ], mfinal = 10,

+ control = rpart.control(maxdepth = 1))

R> iris.adaboost

$formula

Species ~ .

$trees

$trees[[1]]

n = 75

node), split, n, loss, yval, (yprob)

* denotes terminal node
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1) root 75 46 virginica (0.29333333 0.32000000 0.38666667)

2) Petal.Length < 4.8 44 22 setosa (0.50000000 0.50000000 0.00000000) *

3) Petal.Length >= 4.8 31 2 virginica (0.00000000 0.06451613 0.93548387) *

$trees[[2]]

n= 75

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 75 40 versicolor (0.22666667 0.46666667 0.30666667)

2) Petal.Width < 1.7 53 18 versicolor (0.32075472 0.66037736 0.01886792) *

3) Petal.Width >= 1.7 22 0 virginica (0.00000000 0.00000000 1.00000000) *

...

$trees[[10]]

n= 75

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 75 42 virginica (0.21333333 0.34666667 0.44000000)

2) Petal.Width < 1.7 46 20 versicolor (0.34782609 0.56521739 0.08695652) *

3) Petal.Width >= 1.7 29 0 virginica (0.00000000 0.00000000 1.00000000) *

$weights

[1] 0.3168619 0.2589715 0.3465736 0.3465736 0.3465736 0.3465736 0.2306728

[8] 0.3168619 0.1751012 0.2589715

$votes

[,1] [,2] [,3]

[1,] 2.0200181 0.923717 0.0000000

[2,] 2.0200181 0.923717 0.0000000

...

[25,] 2.0200181 0.923717 0.0000000

[26,] 0.6337238 1.963438 0.3465736

[27,] 0.0000000 1.732765 1.2109701

...

[50,] 0.6337238 1.788337 0.5216748

[51,] 0.0000000 1.039721 1.9040144

[52,] 0.0000000 1.039721 1.9040144

...

[74,] 0.0000000 1.039721 1.9040144

[75,] 0.0000000 1.039721 1.9040144

$prob
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[,1] [,2] [,3]

[1,] 0.6862092 0.3137908 0.0000000

[2,] 0.6862092 0.3137908 0.0000000

...

[25,] 0.6862092 0.3137908 0.0000000

[26,] 0.2152788 0.6669886 0.1177326

[27,] 0.0000000 0.588628 0.411372

...

[50,] 0.2152788 0.6075060 0.1772152

[51,] 0.0000000 0.3531978 0.6468022

[52,] 0.0000000 0.3531978 0.6468022

...

[74,] 0.0000000 0.3531978 0.6468022

[75,] 0.0000000 0.3531978 0.6468022

$class

[1] "setosa" "setosa" "setosa" "setosa" "setosa"

[6] "setosa" "setosa" "setosa" "setosa" "setosa"

[11] "setosa" "setosa" "setosa" "setosa" "setosa"

[16] "setosa" "setosa" "setosa" "setosa" "setosa"

[21] "setosa" "setosa" "setosa" "setosa" "setosa"

[26] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"

[31] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"

[36] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"

[41] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"

[46] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"

[51] "virginica" "virginica" "virginica" "virginica" "virginica"

[56] "virginica" "virginica" "virginica" "versicolor" "virginica"

[61] "virginica" "virginica" "virginica" "virginica" "virginica"

[66] "virginica" "virginica" "virginica" "versicolor" "versicolor"

[71] "virginica" "virginica" "versicolor" "virginica" "virginica"

$importance

Sepal.Length Sepal.Width Petal.Length Petal.Width

0 0 83.20452 16.79548

attr(,"class")

[1] "boosting"

From the importance vector it can be drawn that Petal.Length is the most important
variable, as it achieved 83.20% of the information gain. It can be graphically seen in Figure 1.

R> barplot(iris.adaboost$imp[order(iris.adaboost$imp, decreasing = TRUE)],

+ ylim = c(0, 100), main = "Variables Relative Importance",

+ col = "lightblue")

From the iris.adaboost object it is easy to build the confusion matrix for the training set
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Petal.Length Petal.Width Sepal.Length Sepal.Width

Variables relative importance

0
20

40
60

80
10

0

Figure 1: Variables relative importance for boosting in the iris example.

and calculate the error. In this case, four flowers from class virginica were classified as
versicolor, so the achieved error was 5.33%.

R> table(iris.adaboost$class, iris$Species[train],

+ dnn = c("Predicted Class", "Observed Class"))

Observed Class

Predicted Class setosa versicolor virginica

setosa 25 0 0

versicolor 0 25 4

virginica 0 0 21

R> 1 - sum(iris.adaboost$class == iris$Species[train]) /

+ length(iris$Species[train])

[1] 0.05333333

The second function predict.boosting matches the parameters of the generic function
predict and adds one more (object,newdata,newmfinal = length(objects$trees),...).
It classifies a data frame using a fitted model object of class boosting. This is assumed to
be the result of some function that produces an object with the same named components as
those returned by the boosting function. The newdata argument is a data frame containing
the values for which predictions are required. The predictors referred to in the right side
of formula(object) must be present here with the same name. This way, predictions be-
yond the training data can be made. The newmfinal option fixes the number of trees of the
boosting object to be used in the prediction. This allows the user to prune the ensemble. By
default, all the trees in the object are used. Lastly, the three dots deal with further arguments
passed to or from other methods.
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On the other hand, this function returns an object of class predict.boosting, which is a list
with the following six components. Four of them: formula, votes, prob and class have the
same meaning as in the boosting output. In addition, the confusion matrix compares the
real class with the predicted one and, lastly, the average error is computed.

Following with the example, the iris.adaboost classifier can be used to predict the class for
new iris examples by means of the predict.boosting function, as it is shown below and
the ensemble can also be pruned. The first four components of the output are common to
the previous function output but the confusion matrix and the test data set error are here
additionally provided. In this case, three virginica iris from the test data set were classified
as versicolor class, so the error in this case reached 4%.

R> iris.predboosting <- predict.boosting(iris.adaboost,

+ newdata = iris[-train, ])

R> iris.predboosting

$formula

Species ~ .

$votes

[,1] [,2] [,3]

[1,] 2.0200181 0.923717 0.0000000

[2,] 2.0200181 0.923717 0.0000000

...

[25,] 2.0200181 0.923717 0.0000000

[26,] 0.6337238 1.963438 0.3465736

[27,] 0.6337238 1.963438 0.3465736

...

[50,] 0.6337238 1.963438 0.3465736

[51,] 0.0000000 1.039721 1.9040144

[52,] 0.0000000 1.039721 1.9040144

...

[74,] 0.0000000 1.039721 1.9040144

[75,] 0.0000000 1.039721 1.9040144

$prob

[,1] [,2] [,3]

[1,] 0.6862092 0.3137908 0.0000000

[2,] 0.6862092 0.3137908 0.0000000

...

[25,] 0.6862092 0.3137908 0.0000000

[26,] 0.2152788 0.6669886 0.1177326

[27,] 0.2152788 0.6669886 0.1177326

...

[50,] 0.2152788 0.6669886 0.1177326

[51,] 0.0000000 0.3531978 0.6468022

[52,] 0.0000000 0.3531978 0.6468022

...
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[74,] 0.0000000 0.3531978 0.6468022

[75,] 0.0000000 0.3531978 0.6468022

$class

[1] "setosa" "setosa" "setosa" "setosa" "setosa"

[6] "setosa" "setosa" "setosa" "setosa" "setosa"

[11] "setosa" "setosa" "setosa" "setosa" "setosa"

[16] "setosa" "setosa" "setosa" "setosa" "setosa"

[21] "setosa" "setosa" "setosa" "setosa" "setosa"

[26] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"

[31] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"

[36] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"

[41] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"

[46] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"

[51] "virginica" "virginica" "virginica" "virginica" "versicolor"

[56] "virginica" "virginica" "virginica" "virginica" "virginica"

[61] "virginica" "virginica" "virginica" "virginica" "versicolor"

[66] "virginica" "virginica" "virginica" "versicolor" "virginica"

[71] "virginica" "virginica" "virginica" "virginica" "virginica"

$confusion

Observed Class

Predicted Class setosa versicolor virginica

setosa 25 0 0

versicolor 0 25 3

virginica 0 0 22

$error

[1] 0.04

Finally, the third function boosting.cv runs v-fold cross validation with boosting. As usually
in cross validation, the data are divided into v non-overlapping subsets of roughly equal size.
Then, boosting is applied on (v − 1) of the subsets. Lastly, predictions are made for the left
out subset, and the process is repeated for each one of the v subsets.

The arguments of this function are the same seven of boosting and one more, an integer v,
specifying the type of v-fold cross validation. The default value is 10. On the contrary, if v is
set as the number of observations, leave-one-out cross validation is carried out. Besides this,
every value between two and the number of observations is valid and means that one out of
every v observations is left out. An object of class boosting.cv is supplied, which is a list
with three components, class, confusion and error, which have been previously described
in the predict.boosting function.

Therefore, cross validation can be used to estimate the error of the ensemble without dividing
the available data set into training and test subsets. This is specially advantageous for small
data sets.

Returning to the iris example, 10-folds cross validation is applied maintaining the number
and size of the trees. The output components are: a vector with the assigned class, the
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confusion matrix and the error mean. In this case, there are four virginica flowers classified
as versicolor and three versicolor classified as virginica, so the estimated error reaches 4.67%.

R> iris.boostcv <- boosting.cv(Species ~ ., v = 10, data = iris, mfinal = 10,

+ control = rpart.control(maxdepth = 1))

R> iris.boostcv

$class

[1] "setosa" "setosa" "setosa" "setosa" "setosa"

[6] "setosa" "setosa" "setosa" "setosa" "setosa"

...

[71] "virginica" "versicolor" "versicolor" "versicolor" "versicolor"

[76] "versicolor" "versicolor" "virginica" "versicolor" "versicolor"

[81] "versicolor" "versicolor" "versicolor" "virginica" "versicolor"

...

[136] "virginica" "virginica" "virginica" "versicolor" "virginica"

[141] "virginica" "virginica" "virginica" "virginica" "virginica"

[146] "virginica" "virginica" "virginica" "virginica" "virginica"

$confusion

Observed Class

Predicted Class setosa versicolor virginica

setosa 50 0 0

versicolor 0 47 4

virginica 0 3 46

$error

[1] 0.04666667

3.2. The bagging, predict.bagging and bagging.cv functions

In the same way that boosting, bagging has three functions in adabag. The bagging function
builds this kind of ensemble classifier and assigns the class to the training samples. The four
initial parameters (formula, data, mfinal and control) have the same meaning as in the
boosting function. It must be pointed out that unlike boosting, individual classifiers are
independent among them in bagging.

This function produces an object of class bagging, which is a list with almost the same
components as boosting. The only difference is the matrix with the bootstrap samples used
along the iterations instead of the weights of the trees.

Following with the iris example, a bagging classifier is built with 10 trees of maximum
depth 1 (stumps) using the following code for the training set. This function returns a list
with the formula used, the 10 stumps and the matrices votes and prob. These matrices
show the votes (probabilities) that each observation (rows) receives for each class (columns).
For example, observation 26 receives 1, 5 and 4 votes for the first, second and third class,
respectively. Thus, its probabilities are 0.1, 0.5 and 0.4, respectively, and, consequently, the
assigned class is versicolor as it is shown in vector class. The matrix samples shows the
selected observations in the 10 bootstrap replicates (columns) used for the ensemble.
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R> iris.bagging <- bagging(Species ~ ., data = iris[train, ], mfinal = 10,

+ control = rpart.control(maxdepth = 1))

R> iris.bagging

$formula

Species ~ .

$trees

$trees[[1]]

n= 75

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 75 47 setosa (0.3733333 0.3333333 0.2933333)

2) Petal.Length< 2.45 28 0 setosa (1.0000000 0.0000000 0.0000000) *

3) Petal.Length>=2.45 47 22 versicolor (0.0000000 0.5319149 0.4680851) *

$trees[[2]]

n= 75

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 75 46 setosa (0.3866667 0.2933333 0.3200000)

2) Petal.Length< 2.35 29 0 setosa (1.0000000 0.0000000 0.0000000) *

3) Petal.Length>=2.35 46 22 virginica (0.0000000 0.4782609 0.5217391) *

...

$trees[[10]]

n= 75

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 75 45 versicolor (0.3066667 0.4000000 0.2933333)

2) Petal.Length< 2.45 23 0 setosa (1.0000000 0.0000000 0.0000000) *

3) Petal.Length>=2.45 52 22 versicolor (0.0000000 0.5769231 0.4230769) *

$votes

[,1] [,2] [,3]

[1,] 9 1 0

[2,] 9 1 0

...

[25,] 9 1 0

[26,] 1 5 4

[27,] 1 5 4
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...

[50,] 1 5 4

[51,] 0 4 6

[52,] 0 4 6

...

[74,] 0 4 6

[75,] 0 4 6

$prob

[,1] [,2] [,3]

[1,] 0.9 0.1 0

[2,] 0.9 0.1 0

...

[25,] 0.9 0.1 0

[26,] 0.1 0.5 0.4

[27,] 0.1 0.5 0.4

...

[50,] 0.1 0.5 0.4

[51,] 0 0.4 0.6

[52,] 0 0.4 0.6

...

[74,] 0 0.4 0.6

[75,] 0 0.4 0.6

$class

[1] "setosa" "setosa" "setosa" "setosa" "setosa"

[6] "setosa" "setosa" "setosa" "setosa" "setosa"

[11] "setosa" "setosa" "setosa" "setosa" "setosa"

[16] "setosa" "setosa" "setosa" "setosa" "setosa"

[21] "setosa" "setosa" "setosa" "setosa" "setosa"

[26] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"

[31] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"

[36] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"

[41] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"

[46] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"

[51] "virginica" "virginica" "virginica" "virginica" "virginica"

[56] "versicolor" "virginica" "versicolor" "virginica" "virginica"

[61] "virginica" "virginica" "virginica" "virginica" "virginica"

[66] "virginica" "virginica" "virginica" "virginica" "virginica"

[71] "virginica" "virginica" "virginica" "virginica" "virginica"

$samples

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 8 21 53 16 75 71 15 47 73 7

[2,] 58 60 65 36 51 18 29 74 65 4

[3,] 74 21 22 24 72 14 34 27 22 26

[4,] 39 26 6 16 66 29 70 32 1 28
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Figure 2: Variables relative importance for bagging in the iris example.

[5,] 26 17 42 36 53 4 46 75 21 22

...

[71,] 3 28 13 55 53 23 64 17 27 36

[72,] 23 24 53 54 42 53 2 44 48 32

[73,] 16 17 69 12 50 15 34 30 7 42

[74,] 43 46 29 70 50 37 61 50 73 35

[75,] 45 44 13 75 19 67 49 68 1 67

$importance

Sepal.Length Sepal.Width Petal.Length Petal.Width

0 0 79.69223 20.30777

attr(,"class")

[1] "bagging"

In line with boosting, the variables with the highest contributions are Petal.Length (79.69%)
and Petal.Width (20.31%). On the contrary, the contribution of the other two variables is
zero. It is graphically shown in Figure 2.

R> barplot(iris.bagging$imp[order(iris.bagging$imp, decreasing = TRUE)],

+ ylim = c(0, 100), main = "Variables Relative Importance",

+ col = "lightblue")

The object iris.bagging can be used to compute the confusion matrix and the training set
error. As can be seen, only two cases are wrongly classified (two virginica flowers classified
as versicolor), therefore the error is 2.67%.

R> table(iris.bagging$class, iris$Species[train],

+ dnn = c("Predicted Class", "Observed Class"))
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Observed Class

Predicted Class setosa versicolor virginica

setosa 25 0 0

versicolor 0 25 2

virginica 0 0 23

R> 1 - sum(iris.bagging$class == iris$Species[train]) /

+ length(iris$Species[train])

[1] 0.02666667

In addition, predict.bagging has the same arguments and values as predict.boosting.
However, it calls a fitted bagging object and returns an object of class predict.bagging.
Finally, bagging.cv runs v-fold cross validation with bagging. Again, the type of v-fold cross
validation is added to the arguments of the bagging function. Moreover, the output is an
object of class bagging.cv similar to boosting.cv.

The function predict.bagging uses the previously built object iris.bagging to predict the
class for each observation in the test data set and to prune it, if necessary. The output is
the same as in predict.boosting. In this case, the confusion matrix shows two virginica
species classified as versicolor and vice versa, so the error is 5.33%.

R> iris.predbagging <- predict.bagging(iris.bagging, newdata = iris[-train, ])

R> iris.predbagging

$formula

Species ~ .

$votes

[,1] [,2] [,3]

[1,] 9 1 0

[2,] 9 1 0

...

[26,] 1 5 4

[27,] 1 5 4

...

[74,] 0 4 6

[75,] 0 4 6

$prob

[,1] [,2] [,3]

[1,] 0.9 0.1 0

[2,] 0.9 0.1 0

...

[26,] 0.1 0.5 0.4

[27,] 0.1 0.5 0.4

...
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[74,] 0 0.4 0.6

[75,] 0 0.4 0.6

$class

[1] "setosa" "setosa" "setosa" "setosa" "setosa"

[6] "setosa" "setosa" "setosa" "setosa" "setosa"

[11] "setosa" "setosa" "setosa" "setosa" "setosa"

[16] "setosa" "setosa" "setosa" "setosa" "setosa"

[21] "setosa" "setosa" "setosa" "setosa" "setosa"

[26] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"

[31] "versicolor" "versicolor" "versicolor" "versicolor" "virginica"

[36] "versicolor" "virginica" "versicolor" "versicolor" "versicolor"

[41] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"

[46] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"

[51] "virginica" "virginica" "virginica" "virginica" "virginica"

[56] "virginica" "virginica" "virginica" "virginica" "virginica"

[61] "virginica" "versicolor" "virginica" "virginica" "versicolor"

[66] "virginica" "virginica" "virginica" "virginica" "virginica"

[71] "virginica" "virginica" "virginica" "virginica" "virginica"

$confusion

Observed Class

Predicted Class setosa versicolor virginica

setosa 25 0 0

versicolor 0 23 2

virginica 0 2 23

$error

[1] 0.05333333

Next, 10-folds cross validation is applied with bagging, maintaining the number and size of
the trees. In this case, there are twelve virginica species classified as versicolor and seven
versicolor classified as virginica and so, the estimated error reaches 12.66%.

R> iris.baggingcv <- bagging.cv(Species ~ ., v = 10, data = iris,

+ mfinal = 10, control = rpart.control(maxdepth = 1))

R> iris.baggingcv

$class

[1] "setosa" "setosa" "setosa" "setosa" "setosa"

...

[56] "virginica" "versicolor" "versicolor" "versicolor" "versicolor"

[61] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"

[66] "virginica" "versicolor" "versicolor" "versicolor" "versicolor"

...

[136] "virginica" "virginica" "virginica" "versicolor" "virginica"

[141] "virginica" "virginica" "versicolor" "virginica" "virginica"
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[146] "virginica" "virginica" "virginica" "virginica" "virginica"

$confusion

Clase real

Clase estimada setosa versicolor virginica

setosa 50 0 0

versicolor 0 43 12

virginica 0 7 38

$error

[1] 0.1266667

3.3. The margins and errorevol functions

Owing to its aforementioned importance the margins function was added to adabag to cal-
culate the margins of a boosting or bagging classifier for a data frame as previously defined
in Equation 4. Its usage is very easy with only two arguments:

1. object. This object must be the output of one of the functions bagging, boosting,
predict.bagging or predict.boosting. This is assumed to be the result of some
function that produces an object with at least two components named formula and
class, as those returned for instance by the bagging function.

2. newdata. The same data frame used for building the object.

The output, an object of class margins, is a simple list with only one vector with the margins.
In the following it is shown the code to calculate the margins of the bagging classifier built
in the previous section, for the training and test sets, respectively. Examples with negative
margins are those which have been wrongly classified. As it was stated before, there were two
and four cases in each set, respectively.

R> iris.bagging.margins <- margins(iris.bagging, iris[train, ])

R> iris.bagging.predmargins <- margins(iris.predbagging, iris[-train, ])

R> iris.bagging.margins

$margins

[1] 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

[15] 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.1 0.1 0.1

[29] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

[43] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 -0.1

[57] 0.2 -0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

[71] 0.2 0.2 0.2 0.2 0.2

R> iris.bagging.predmargins

$margins

[1] 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
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Figure 3: Margins for bagging in the iris example.

[15] 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.1 0.1 0.1

[29] 0.1 0.1 0.1 0.1 0.1 0.1 -0.2 0.1 -0.2 0.1 0.1 0.1 0.1 0.1

[43] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2

[57] 0.2 0.2 0.2 0.2 0.2 -0.1 0.2 0.2 -0.1 0.2 0.2 0.2 0.2 0.2

[71] 0.2 0.2 0.2 0.2 0.2

Figure 3 shows the cumulative distribution of margins for the bagging classifier developed in
this application, where the blue line corresponds to the training set and the green line to the
test set. For bagging, the 2.66% of blue negative margins matches the training error and the
5.33% of the green negative ones the test error.

R> margins.test <- iris.bagging.predmargins[[1]]

R> margins.train <- iris.bagging.margins[[1]]

R> plot(sort(margins.train), (1:length(margins.train)) /

+ length(margins.train), type = "l", xlim = c(-1,1),

+ main = "Margin cumulative distribution graph", xlab = "m",

+ ylab = "% observations", col = "blue3", lwd = 2)

R> abline(v = 0, col = "red", lty = 2, lwd = 2)

R> lines(sort(margins.test), (1:length(margins.test)) / length(margins.test),

+ type = "l", cex = 0.5, col = "green", lwd = 2)

R> legend("topleft", c("test","train"), col = c("green", "blue"), lty = 1,

+ lwd = 2)

In the current version of the package, the last function is errorevol which calculates the
error evolution of an AdaBoost.M1, AdaBoost-SAMME or bagging classifier for a data frame
as the ensemble size grows. This function has the same two arguments than margins and
outputs a list with only the vector with the error evolution. This information can be useful
to see how fast bagging and boosting reduce the error of the ensemble. In addition, it can
detect the presence of overfitting and, in those cases, the convenience of pruning the ensemble
using the relevant predict function.
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Figure 4: Error evolution for boosting in the iris example.

Although, due to the small size of the ensembles, this example is not the most appropriate
case to show the error evolution usefulness, it is used just for demonstrative purposes.

R> evol.test <- errorevol(iris.adaboost, iris[-train, ])

R> evol.train <- errorevol(iris.adaboost, iris[train, ])

R> plot(evol.test$error, type = "l", ylim = c(0, 1),

+ main = "Boosting error versus number of trees", xlab = "Iterations",

+ ylab = "Error", col = "red", lwd = 2)

R> lines(evol.train$error, cex = .5, col = "blue", lty = 2, lwd = 2)

R> legend("topleft", c("test", "train"), col = c("red", "blue"), lty = 1:2,

+ lwd = 2)

4. Examples

The package adabag is now more deeply illustrated through other two classification examples.
The first example shows a dichotomous classification problem using a simulated dataset previ-
ously used by Hastie, Tibshirani, and Friedman (2001, pp. 301–309) and Culp, Johnson, and
Michailides (2006). The second example is a four classes data set from the UCI repository of
machine learning databases (Bache and Lichman 2013). This example and iris are available
in the base and mlbench R packages.

4.1. A dichotomous example

The two classes simulated data set consists of ten standard independent Gaussians which are
used as features and the two classes defined as

Y =

{
1

∑
X2

j > 9.34

−1 otherwise
(5)

Here the value 9.34 is the median of a Chi-squared random variable with 10 degrees of freedom
(sum of squares of 10 standard Gaussians). There are 2000 training and 10000 test cases,
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approximately balanced. In order to enhance the comparison, stumps are also used as weak
classifiers and 400 iterations are run as in Hastie et al. (2001) and Culp et al. (2006). Thus,
there are only two arguments in the boosting function to be set. They are coeflearn

("Breiman", "Freund" or "Zhu") and boos (TRUE or FALSE). Since for k = 2 classes the Freund
and Zhu options are completely equivalent, the latter is not considered in this example. The
code for running the four possible combinations of parameters is available in the additional
file, and a summary of the main results is shown below.

R> n <- 12000

R> p <- 10

R> set.seed(100)

R> x <- matrix(rnorm(n * p), ncol = p)

R> y <- as.factor(c(-1, 1)[as.numeric(apply(x^2, 1, sum) > 9.34) + 1])

R> data <- data.frame(y, x)

R> train <- sample(1:n, 2000, FALSE)

R> formula <- y ~ .

R> vardep <- data[ , as.character(formula[[2]])]

R> cntrl <- rpart.control(maxdepth = 1, minsplit = 0, cp = -1)

R> mfinal <- 400

R> data.boosting <- boosting(formula = formula, data = data[train, ],

+ mfinal = mfinal, coeflearn = "Breiman", boos = TRUE, control = cntrl)

R> data.boostingBreimanTrue <- data.boosting

R> table(data.boosting$class, vardep[train],

+ dnn = c("Predicted Class", "Observed Class"))

Observed Class

Predicted Class -1 1

-1 935 281

1 55 729

R> 1 - sum(data.boosting$class == vardep[train]) / length(vardep[train])

[1] 0.168

R> data.predboost <- predict.boosting(data.boosting, newdata = data[-train, ])

R> data.predboost$confusion

Observed Class

Predicted Class -1 1

-1 4567 1468

1 460 3505

R> data.predboost$error

[1] 0.1928

R> data.boosting$imp
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X1 X2 X3 X4 X5 X6 X7

10.541101 11.211198 11.195706 14.000324 8.161411 15.087848 4.827447

X8 X9 X10

8.506216 7.433147 9.035603

R> data.boosting <- boosting(formula = formula, data = data[train, ],

+ mfinal = mfinal, coeflearn = "Freund", boos = FALSE, control = cntrl)

R> data.boostingFreundFalse <- data.boosting

R> table(data.boosting$class, vardep[train], dnn = c("Predicted Class",

+ "Observed Class"))

Observed Class

Predicted Class -1 1

-1 952 78

1 38 932

R> 1 - sum(data.boosting$class == vardep[train]) / length(vardep[train])

[1] 0.058

R> data.predboost <- predict.boosting(data.boosting, newdata = data[-train,])

R> data.predboost$confusion

Observed Class

Predicted Class -1 1

-1 4498 613

1 529 4360

R> data.predboost$error

[1] 0.1142

R> data.boosting$imp

X1 X2 X3 X4 X5 X6 X7

10.071340 9.884980 10.874889 10.625273 11.287803 10.208411 8.716455

X8 X9 X10

8.093104 9.706120 10.531625

The test errors for the four aforementioned combinations on the 400-th iteration (Table 4)
are 15.36%, 19.28%, 11.42% and 16.84%, respectively. Therefore, the winner combination in
terms of accuracy is boosting with coeflearn = "Freund" and boos = FALSE. Results for
this pair of parameters are similar to those obtained by Hastie et al. (2001) and Culp et al.
(2006), 12.2% and 11.1%, respectively. In addition, the training error (5.8%) is also very close
to that achieved by Culp et al. (6%).
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Options 400 Iterations Mininum (Iterations)

"Breiman"/FALSE 15.36 15.15 (374)
"Breiman"/TRUE 19.28 17.20 (253)
"Freund"/FALSE 11.42 11.42 (398)
"Freund"/TRUE 16.84 16.05 (325)

Table 4: Test error in percentage.

Moreover, Table 4 shows the minimum error achieved along the process and the iteration
number for which this minimum value has been reached. This is possible thanks to the
errorevol function. The pair Freund-FALSE (Figure 7) achieves the lowest test error and it
is worth standing out that this value corresponds nearly to the end of the training process.
Thus, it can be reasonably thought that the optimum value has not still been reached. The
evolution of the errors for the four combinations are graphically shown in Figures 5, 6, 7
and 8, that are built running the following code for each case.

R> data.boosting <- data.boostingFreundFalse

R> errorevol.train <- errorevol(data.boosting, data[train, ])

R> errorevol.test <- errorevol(data.boosting, data[-train, ])

R> plot(errorevol.test[[1]], type = "l", ylim = c(0, 0.5),

+ main = "Adaboost error versus number of trees", xlab = "Iterations",

+ ylab = "Error", col = "red", lwd = 2)

R> lines(errorevol.train[[1]], cex = 0.5, col = "blue", lty = 1, lwd = 2)

R> legend("topright", c("test", "train"), col = c("red", "blue"), lty = 1,

+ lwd = 2)

R> abline(h = min(errorevol.test[[1]]), col = "red", lty = 2, lwd = 2)

R> abline(h = min(errorevol.train[[1]]), col = "blue", lty = 2, lwd = 2)

The option Breiman/TRUE (Figure 6) achieves its best result much before of the 400-th itera-
tion and starts increasing after 253 iterations showing definitely a clear example of overfitting.
This can be solved pruning the ensemble as shown next.

R> data.prune <- predict.boosting(data.boosting, newdata = data[-train, ],

+ newmfinal = 253)

R> data.prune$confusion

Observed Class

Predicted Class -1 1

-1 4347 1040

1 680 3933

R> data.prune$error

[1] 0.172
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Figure 5: AdaBoost error versus number of trees with options "Breiman"/FALSE.
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Figure 6: AdaBoost error versus number of trees with options "Breiman"/TRUE.
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Figure 7: AdaBoost error versus number of trees with options "Freund"/FALSE.
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Figure 8: AdaBoost error versus number of trees with options "Freund"/TRUE.

4.2. A multiclass example

In order to show the usefulness of this package solving problems beyond the dichotomous case,
a four classes example is used in this section. This problem will help to illustrate the use of
the functions in problems quite more complex than the iris one. Specifically, the Vehicle

data set drawn from the UCI repository is employed. This data set contains 846 samples and
the purpose is to classify a given vehicle silhouette as one of four types (bus, opel, saab and
van), using a set of 18 numerical features extracted from the silhouette.

With the aim of showing the advantages of using ensembles, results from a single tree are
compared to those obtained with boosting and bagging. The single tree is built by means of
the rpart package, which is automatically called when loading the adabag package. Due to
the high number of classes, trees with maximum depth of 5 are used both in the single and
the ensemble cases. The ensembles consist of 50 trees.

In order to compare the error of the four methods, 50 iterations are run and the mean result
is calculated. On the other hand, to analyze some characteristics of the ensembles, as the
variable relative importance and the margins, a specific model is necessary, so the model
which achieves the minimum error is used.

From Table 5 it can be concluded that the single tree, with a mean test error of 32.39%, is
beaten by bagging, 27.4% and particularly by Adaboost.M1 and SAMME with a much lower
error, 23.94% and 24.25%, respectively. Finally, attending to the minimum error achieved by
each method, the lowest test error is 17.73% by the SAMME algorithm showing its promising
adaptation for the multiclass case. However, there is not a huge difference among the two
boosting methods.

CART Bagging AdaBoost.M1 SAMME

mean 0.3239007 0.2740426 0.2394326 0.2425532
s.d. 0.0299752 0.0274216 0.0225558 0.0292594
min. 0.2553191 0.2021277 0.1914894 0.1773050
max. 0.3971631 0.3262411 0.2872340 0.2943262

Table 5: Test error for 50 iterations.
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R> data("Vehicle")

R> l <- length(Vehicle[ , 1])

R> sub <- sample(1:l, 2 * l/3)

R> maxdepth <- 5

R> Vehicle.rpart <- rpart(Class~., data = Vehicle[sub,], maxdepth = maxdepth)

R> Vehicle.rpart.pred <- predict(Vehicle.rpart, newdata = Vehicle,

+ type = "class")

R> 1 - sum(Vehicle.rpart.pred[sub] == Vehicle$Class[sub]) /

+ length(Vehicle$Class[sub])

[1] 0.2464539

R> tb <- table(Vehicle.rpart.pred[-sub], Vehicle$Class[-sub])

R> tb

bus opel saab van

bus 62 3 3 0

opel 3 26 6 1

saab 3 29 50 5

van 5 5 9 72

R> 1 - sum(Vehicle.rpart.pred[-sub] == Vehicle$Class[-sub]) /

+ length(Vehicle$Class[-sub])

[1] 0.2553191

R> mfinal <- 50

R> cntrl <- rpart.control(maxdepth = 5, minsplit = 0, cp = -1)

R> Vehicle.bagging <- bagging(Class ~ ., data = Vehicle[sub, ],

+ mfinal = mfinal, control = cntrl)

R> 1 - sum(Vehicle.bagging$class == Vehicle$Class[sub]) /

+ length(Vehicle$Class[sub])

[1] 0.1365248

R> Vehicle.predbagging <- predict.bagging(Vehicle.bagging,

+ newdata = Vehicle[-sub, ])

R> Vehicle.predbagging$confusion

Observed Class

Predicted Class bus opel saab van

bus 68 3 3 0

opel 1 33 9 1

saab 0 31 48 2

van 0 3 4 76

R> Vehicle.predbagging$error
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[1] 0.2021277

R> Vehicle.adaboost <- boosting(Class ~., data = Vehicle[sub, ],

+ mfinal = mfinal, coeflearn = "Freund", boos = TRUE, control = cntrl)

R> 1 - sum(Vehicle.adaboost$class == Vehicle$Class[sub])/

+ length(Vehicle$Class[sub])

[1] 0

R> Vehicle.adaboost.pred <- predict.boosting(Vehicle.adaboost,

+ newdata = Vehicle[-sub,])

R> Vehicle.adaboost.pred$confusion

Observed Class

Predicted Class bus opel saab van

bus 68 1 0 0

opel 1 41 22 3

saab 0 21 49 0

van 1 3 2 70

R> Vehicle.adaboost.pred$error

[1] 0.1914894

R> Vehicle.SAMME <- boosting(Class ~ ., data = Vehicle[sub, ],

+ mfinal = mfinal, coeflearn = "Zhu", boos = TRUE, control = cntrl)

R> 1 - sum(Vehicle.SAMME$class == Vehicle$Class[sub]) /

+ length(Vehicle$Class[sub])

[1] 0

R> Vehicle.SAMME.pred <- predict.boosting(Vehicle.SAMME,

+ newdata = Vehicle[-sub, ])

R> Vehicle.SAMME.pred$confusion

Observed Class

Predicted Class bus opel saab van

bus 71 0 0 0

opel 1 43 24 1

saab 0 21 46 0

van 0 2 1 72

R> Vehicle.SAMME.pred$error

[1] 0.177305
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Comparing the relative importance measure for bagging and the two boosting classifiers,
they agree in pointing out the two least important variables. The Max.L.Ra has the highest
contribution in bagging and AdaBoost.M1 and the second one for SAMME. Figures 9, 10 and
11 show the variables ranked by its relative importance value.

R> sort(Vehicle.bagging$importance, decreasing = TRUE)

Max.L.Ra Sc.Var.maxis Elong Comp Max.L.Rect Sc.Var.Maxis

20.06153052 11.34898853 9.85195343 8.21094638 7.90785330 5.71291406

D.Circ Scat.Ra Circ Pr.Axis.Ra Skew.maxis Skew.Maxis

5.47042335 5.23492044 4.62644012 4.32449318 3.84967772 3.46614732

Kurt.maxis Kurt.Maxis Ra.Gyr Rad.Ra Holl.Ra Pr.Axis.Rect

2.98563804 2.09313159 1.70889907 1.56229729 1.54524768 0.03849798

R> sort(Vehicle.adaboost$importance,decreasing = TRUE)

Max.L.Ra Elong Max.L.Rect Pr.Axis.Ra Sc.Var.maxis Scat.Ra

12.0048265 8.2118048 8.1391111 7.2979696 6.8809291 6.8360291

D.Circ Sc.Var.Maxis Comp Skew.maxis Rad.Ra Ra.Gyr

6.6569366 6.3137727 6.2558542 4.9731790 4.6792429 4.5205229

Kurt.maxis Skew.Maxis Circ Kurt.Maxis Holl.Ra Pr.Axis.Rect

4.3519975 3.6190249 3.4026665 2.9646815 2.7585392 0.1329119

R> sort(Vehicle.SAMME$importance, decreasing = TRUE)

D.Circ Max.L.Ra Max.L.Rect Pr.Axis.Ra Scat.Ra Sc.Var.Maxis

8.759478 8.373885 8.216298 7.869849 7.675569 7.190486

Comp Rad.Ra Skew.Maxis Skew.maxis Ra.Gyr Elong

6.554652 6.158310 5.712122 5.644969 4.652892 4.578929

Kurt.Maxis Kurt.maxis Circ Sc.Var.maxis Holl.Ra Pr.Axis.Rect

4.175756 4.171116 3.223761 2.969842 2.749949 1.322136

R> barplot(sort(Vehicle.bagging$importance, decreasing = TRUE),

+ main = "Variables Relative Importance", col = "lightblue",

+ horiz = TRUE, las = 1, cex.names = .6, xlim = c(0, 20))

Figures 12, 13 and 14 show the cumulative distribution of margins for the bagging and boosting
classifiers developed in this application. The margin of the training set is coloured in blue
and the test set in green. For AdaBoost.M1, 19.15% of green negative margins matches the
test error. For SAMME, the blue line is always positive owing to the null training error. It
should also be pointed out that almost 10% of the observations in bagging, for both sets,
achieve the maximum margin equal to 1, which is specially outstanding taking into account
the large number of classes. To be brief only the code for one of the ensembles is shown here
but all of them are available in the additional file.

R> margins.train <- margins(Vehicle.bagging, Vehicle[sub, ])[[1]]

R> margins.test <- margins(Vehicle.bagging.pred, Vehicle[-sub, ])[[1]]
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Figure 9: Variables relative importance for bagging in the Vehicle data.

Max.L.Ra

Elong

Max.L.Rect

Pr.Axis.Ra

Sc.Var.maxis

Scat.Ra

D.Circ

Sc.Var.Maxis

Comp

Skew.maxis

Rad.Ra

Ra.Gyr

Kurt.maxis

Skew.Maxis

Circ

Kurt.Maxis

Holl.Ra

Pr.Axis.Rect

Variables relative importance

0 5 10 15 20

Figure 10: Variables relative importance for AdaBoost.M1 in the Vehicle data.
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Figure 11: Variables relative importance for SAMME in the Vehicle data.
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Figure 12: Margins for bagging in the Vehicle data.
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Figure 13: Margins for AdaBoost.M1 in the Vehicle data.
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Figure 14: Margins for SAMME in the Vehicle data.
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R> plot(sort(margins.train), (1:length(margins.train)) /

+ length(margins.train), type = "l", xlim = c(-1,1),

+ main = "Margin cumulative distribution graph", xlab = "m",

+ ylab = "% observations", col = "blue3", lty = 2, lwd = 2)

R> abline(v = 0, col = "red", lty = 2, lwd = 2)

R> lines(sort(margins.test), (1:length(margins.test)) / length(margins.test),

+ type = "l", cex = .5, col = "green", lwd = 2)

R> legend("topleft", c("test", "train"), col = c("green", "blue3"),

+ lty = 1:2, lwd = 2)

5. Summary and concluding remarks

In this paper, the R package adabag consisting of eight functions is described. This package
implements the AdaBoost.M1, SAMME and bagging algorithms with CART trees as base
classifiers, capable of handling multiclass tasks. The ensemble trained can be used for predic-
tion on new data using the generic predict function. Cross validation accuracy estimations
can also be achieved for these classifiers. In addition, the evolution of the error as the en-
semble grows can be analysed. This can help to detect overfitting and, on the other hand, if
the ensemble has not been developed enough and should keep growing. In the former case,
the classifier can be pruned without rebuilding it again from the start, selecting a number of
iterations of the current ensemble. Furthermore, not only the predicted class is provided, but
also its margin and an approximation to the probability of all the classes.

The main functionalities of the package are illustrated here by applying them to three well-
known datasets from the classification literature. The similarities and differences among the
three algorithms implemented in the package are also discussed. Finally, the addition of some
of the plots used here to the package, with the aim of increasing the interpretability of the
results, is part of the future work.

Acknowledgments

The authors are very grateful to the developers of the Vehicle dataset, Pete Mowforth and
Barry Shepherd from the Turing Institute, Glasgow, Scotland. Moreover, the authors would
like to thank the Editors Jan de Leeuw and Achim Zeileis and two anonymous referees for
their useful comments and suggestions.

References
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