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Abstract

We introduce and examine dbEmpLikeGOF, an R package for performing goodness-
of-fit tests based on sample entropy. This package also performs the two sample distri-
bution comparison test. For a given vector of data observations, the provided function
dbEmpLikeGOF tests the data for the proposed null distributions, or tests for distribu-
tion equality between two vectors of observations. The proposed methods represent a
distribution-free density-based empirical likelihood technique applied to nonparametric
testing. The proposed procedure performs exact and very efficient p values for each test
statistic obtained from a Monte Carlo (MC) resampling scheme. Note by using an MC
scheme, we are assured exact level α tests that approximate nonparametrically most pow-
erful Neyman-Pearson decision rules. Although these entropy based tests are known in the
theoretical literature to be very efficient, they have not been well addressed in statistical
software. This article briefly presents the proposed tests and introduces the package, with
applications to real data. We apply the methods to produce a novel analysis of a recently
published dataset related to coronary heart disease.

Keywords: empirical likelihood, likelihood ratio, goodness-of-fit, sample entropy, nonparamet-
ric tests, normality, two-sample comparisons, uniformity.

1. Introduction

1.1. Empirical likelihood

Empirical likelihood (EL) allows researchers the benefit of employing powerful likelihood
methods (maximizing likelihoods) without having to choose a parametric family for the data.

http://www.jstatsoft.org/
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A thorough overview of empirical likelihood methods can be found in Owen (2001). The
research in this area continues to grow while empirical likelihood methods are being extended
to many statistical problems as in, for example, Vexler, Yu, Tian, and Liu (2010) or Yu,
Vexler, and Tian (2010).

In short, an outline of the EL approach can be presented as follows. Given independently
identically distributed observations X1, . . . , Xn, the EL function has the form of Lp = Πn

i=1pi
where the components pi, i = 1, . . . , n maximize the likelihood Lp (maximum likelihood esti-
mation) provided that empirical constraints, based on X1, . . . , Xn are in effect (

∑n
i=1 pi =

1,
∑n

i=1 piXi = 0, under the hypothesis EX1 = 0). Computation of the EL’s compo-
nents pi, i = 1, . . . , n used to be an exercise in Lagrange multipliers. This nonparametric
approach is a product of the consideration of the ‘distribution-functions’-based likelihood
Πn
i=1F (Xi) − F (Xi−) over all distribution functions F where F (Xi−) denotes the left hand

limit of F at Xi.

The following extensions from these methods involve a density-based likelihood methodology
for goodness-of-fit testing. The proposed extensions have been motivated by developing test
statistics that approximate nonparametrically most powerful Neyman-Pearson test statistics
based on likelihood ratios. A density-based EL methodology can be introduced utilizing the
EL concept as in Vexler and Gurevich (2010a), Vexler and Gurevich (2010b), Gurevich and
Vexler (2011). Following the EL methodology, the likelihood function Lf = Πn

i=1f(Xi) where
f(·) is a density function of Xi can be approximated by Πn

i=1fi, where values of fi should
maximize Πn

i=1fi provided that an empirical constraint which corresponds to
∫
f(u)du = 1

under an underlying hypothesis is in effect. Outputs of the density based EL approach have
a structure that utilize sample entropy (for example, Vexler and Gurevich 2010a). To date,
density based EL tests have not been presented in R packages (R Core Team 2013) but are
known to be very efficient in practice. Moreover, despite the fact that many theoretical
articles have considered very powerful entropy-based tests, to our knowledge there does not
exist software procedures to execute procedures based on sample entropy in practice.

1.2. Goodness-of-fit tests

Goodness-of-fit tests commonly arise when researchers are interested in checking whether the
data come from an assumed parametric model. In certain situations, this question manifests to
test whether two datasets come from the same parametric model. Commonly used goodness-
of-fit tests include the Shapiro-Wilks (SW) test, Kolmogorov-Smirnov (KS) test, the Lilliefors
(L) test, Wilcoxon rank sum test (WRS), the Cramér-von-Mises test, and the Anderson-
Darling test (Darling 1957; Lilliefors 1967; Hollander, Wolfe, and Wolfe 1973; Royston 1991).

Recently several new goodness-of-fit tests have been developed using density based empirical
likelihood methods. These powerful new tests offer exact level α tests with critical values that
can be easily obtained via Monte Carlo approaches.

1.3. EL ratio test for normality

The derivation of the EL ratio test for normality can be found in Vexler and Gurevich (2010b).
To outline this method, we suppose that the data consist of n independent and identically
distributed observations X1, . . . , Xn. Consider the problem of testing the composite hypoth-
esis that a sample X1, . . . , Xn is from a normal population. Notationally, the null hypothesis
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is
H0 : X1, . . . , Xn ∼ N(µ, σ2), (1)

where N(µ, σ2) denotes the normal distribution with unknown mean µ and unknown standard
deviation σ. Generally speaking when the density functions fH1 and fH0 corresponding to
the null and alternative hypotheses, are completely known, the most powerful test statistic is
the likelihood ratio:

n∏
i=1

fH1(Xi)

n∏
i=1

fH0(Xi)

=

n∏
i=1

fH1(Xi)

(2πσ2)−n/2exp (−
∑n

i=1(Xi − µ)2/2σ2)
, (2)

where, under the null hypothesis, X1, . . . , Xn are normal with mean µ and variance σ2. In
the case of the unknown µ and σ2, the maximum likelihood estimation applied to (2) changes
the ratio to,

n∏
i=1

fH1(Xi)

(2πes2)−n/2
, (3)

where s represents the sample standard deviation.

Applying the maximum EL method to (3) forms the likelihood ratio test statistic

Tmn = (2πes2)n/2
n∏
i=1

2m

n
(
X(i+m) −X(i−m)

) , (4)

where m is assumed to be less than n/2. Using empirical likelihood modifications, the maxi-
mum EL method applied to (3), and following Vexler and Gurevich (2010b), to test the null
hypothesis at (1) we can use the test statistic,

Vn = min
1≤m<n1−δ

(2πes2)n/2
n∏
i=1

2m

n
(
X(i+m) −X(i−m)

) (5)

where 0 < δ < 1, s denotes the sample standard deviation, and X(1), . . . , X(n) represent the
order statistics corresponding to the sample X1, . . . , Xn. Note, here, X(j) = X(1) if j ≤ 1 and
X(j) = X(n) if j ≥ n.

We employ the following decision rule, we reject the null hypothesis if and only if

log(Vn) > C, (6)

where C is a test threshold and Vn is the test statistic defined in (5).

Since
sup
µ,σ

PH0{log (Vn) > C} = PX1,...,Xn∼N(0,1){log (Vn) > C}, (7)

the type I error of the test at (6) can be calculated exactly using a Monte Carlo approach.
Type I error for the test in (6) refers to the probability of rejecting the null hypothesis in (1)
when, in fact, the null hypothesis is true. Figure 1 displays the Monte Carlo roots Cα of the
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Figure 1: The curves display the value of the thresholds Cα for the test statis-
tic log(Vn) with δ = 0.5 corresponding to the significance (α) levels of α =
0.01, 0.025, 0.05, 0.125, 0.15, 0.25, 0.3, 0.4, 0.45 that are plotted against the sample sizes n =
5, 10, 15, . . . , 100.

equation PX1,...,Xn∼N(0,1) {log (Vn) > Cα} = α for different values of α and n. (For each value
of α and n, the solutions were derived from 75,000 samples of size n.) The setting of δ = 0.5
is motivated by the work presented in Vexler and Gurevich (2010b). In general, the choice of
δ is not critical for these goodness-of-fit tests.

1.4. EL ratio test for uniformity

One can show that tests for uniformity correspond to general goodness-of-fit testing problems
when the null hypothesis is based on completely known distribution functions. The full
derivation of the EL ratio test for uniformity can be found in Vexler and Gurevich (2010b).
We consider the test for the uniform distribution on the interval [0, 1] (Uni(0, 1)), specifying
the null distribution

H0 : Y1, . . . , Yn ∼ Uni(0, 1) (8)

versus the alternative that Y1, . . . , Yn are from a nonuniform distribution F (y).

Before considering the hypothesis in (8), consider the problem of testing

H0 : f = fH0 vs H1 : f = fH1 , (9)

where, under the alternative hypothesis, fH1 is completely unknown and under the null hy-
pothesis fH0(x) = fH0(x;θ) is known up to the vector of parameters ~θ = (θ1, . . . , θd), where
d ≥ 1 defines a dimension of the vector θ. In accordance with maximizing EL, for the test in
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Figure 2: The curves display the value of the thresholds Cα for the test statis-
tic log(Un) with δ = 0.5 corresponding to the significance (α) levels of α =
0.01, 0.025, 0.05, 0.125, 0.15, 0.25, 0.3, 0.4, 0.45 that are plotted against the sample sizes n =
5, 10, 15, . . . , 100.

(9) we obtain the statistic,

Gn = min
1≤m<n1−δ

n∏
i=1

2m

n(X(i+m) −X(i−m))

n∏
i=1

fH0(Xi; θ̂)

. (10)

Applying the result in (10) to the specific hypothesis in (8) and using the outputs from Vexler
and Gurevich (2010b), we suggest the following EL ratio test statistic

Un = min
1≤m<n1−δ

n∏
i=1

2m

n
(
Y(i+m) − Y(i−m)

) , (11)

where 0 < δ < 1 and Y(1), . . . , Y(n) correspond to the order statistics from the sample
Y1, . . . , Yn. Note, Y(j) = Y(1) if j ≤ 1 and Y(j) = Y(n) if j ≥ n. The event

log(Un) > C (12)

implies that H0 is rejected, where C is a test threshold. The significance level of this test can
be calculated according to the following equation,

PH0 {log(Un) > Cα} = PX1,...,Xn∼Uni(0,1) {log(Un) > Cα} = α. (13)

Figure 2 shows the roots Cα of the equation in (13) for different values of α and n. (For each
value of α and n, the solution is derived from 75,000 samples of size n).



6 dbEmpLikeGOF: Empirical Likelihood Goodness-of-fit Tests in R

Note, the test for uniformity in (12) will cover a generalized version of the goodness-of-fit
problem when the distribution in H0 is completely known. In other words, if we consider the
random sample X1, . . . , Xn from a population with a density function f and a finite variance
we can test the hypotheses:

H0 : F = FH0 vs H1 : F = FH1 , (14)

where, under the alternative hypothesis, FH1 is completely unknown, whereas under the null
hypothesis, FH0(x) = FH0(x;θ) is known up to the vector of parameters θ = (θ1, . . . , θd).
Note, d ≥ 1 defines the dimension for θ. Although a strong assumption, by assuming that
densities exist under the alternative, we are able to demonstrate asymptotic consistency of the
proposed test statistic. By employing the probability integral transformation (Dodge 2006),
if X1, . . . , Xn ∼ fH0 , with fH0 completely known, then Yi = F−1

H0
(Xi) ∼ Uni(0, 1). Hence,

the uniformity test in (12) can be employed on data Y1, . . . , Yn to test whether X1, . . . , Xn

conforms with density fH0 .

1.5. EL ratio test for distribution equality

In this section we present the EL ratio test for examining if two datasets are from the same
distribution. The complete derivation for this case can be found in Gurevich and Vexler
(2011). In short, let X1 = (X11, X12, . . . , X1n1) denote independent observations in the first
dataset and X2 = (X21, X22, . . . , X2n2) denote independent observations in another dataset.
Under H0 (equal distributions), we assume that both groups are identically distributed. That
is, our null hypothesis is

H0 : FX1 = FX2 (15)

where FX1 and FX2 denote the cumulative density function (CDF) for the observations in X1

and X2, respectively.

To derive the test for (15), we consider that the likelihood ratio can be expressed as,

R =

n∏
i=1

ni∏
j=1

fXi(xi(j))

n∏
i=1

ni∏
j=1

fX(xi(j))

, (16)

where the xi(j) indicates the j-th order statistic for the group i. Following the EL concept,
we approximate the likelihoods and integrals and obtain the non parametric approximation
to (16) as,

R̃m,v,n1,n2 =

n1∏
i=1

2m

n1δm1j

n2∏
j=1

2v

n2δv2j
. (17)

The proper selection of m and v in the current literature of entropy-based decision making
recommends selecting values utilizing information regarding alternative distributions when
sample sizes are finite. Ultimately using the work in Yu et al. (2010), we look at selecting m
and v by minimizing R̃ over appropriate ranges. This suggests the following test statistic for



Journal of Statistical Software 7

n1 α n2
10 15 20 25 30 35 40 45 50

10 0.01 5.2249 6.4875 7.0649 7.0628 7.6580 8.2567 8.8410 8.8204 9.4151
0.03 5.2230 6.4845 7.0614 7.0608 7.6534 8.2508 8.8375 8.8152 9.4125
0.05 5.2198 6.4803 7.0584 7.0572 7.6496 8.2469 8.8329 8.8116 9.4082
0.10 5.2174 6.4684 7.0490 7.0461 7.6363 8.2369 8.8207 8.7972 9.3969
0.30 5.1986 6.4048 7.0166 7.0008 7.5933 8.1853 8.7725 8.7450 9.3487

15 0.01 6.4819 7.7007 8.3128 8.2926 8.8968 9.4823 10.0879 10.0353 10.6478
0.03 6.4788 7.6977 8.3097 8.2876 8.8930 9.4770 10.0844 10.0316 10.6442
0.05 6.4738 7.6960 8.3061 8.2844 8.8895 9.4713 10.0813 10.0272 10.6403
0.10 6.4632 7.6907 8.2988 8.2757 8.8791 9.4588 10.0694 10.0170 10.6299
0.30 6.4025 7.6443 8.2673 8.2359 8.8400 9.4163 10.0130 9.9653 10.5839

20 0.01 7.0562 8.3157 8.9355 8.9828 9.5897 10.1909 10.7870 10.7672 11.3622
0.03 7.0526 8.3126 8.9331 8.9784 9.5860 10.1878 10.7825 10.7625 11.3543
0.05 7.0495 8.3095 8.9308 8.9756 9.5836 10.1844 10.7777 10.7584 11.3503
0.10 7.0411 8.3003 8.9246 8.9667 9.5749 10.1745 10.7673 10.7456 11.3425
0.30 7.0082 8.2699 8.8990 8.9270 9.5337 10.1290 10.7282 10.6870 11.2925

25 0.01 7.0695 8.3077 8.9712 9.0562 9.6745 10.2986 10.8985 10.9047 11.5256
0.03 7.0663 8.3045 8.9673 9.0535 9.6710 10.2929 10.8947 10.9012 11.5200
0.05 7.0624 8.3010 8.9630 9.0486 9.6678 10.2889 10.8918 10.8976 11.5167
0.10 7.0505 8.2918 8.9537 9.0396 9.6587 10.2795 10.8830 10.8851 11.5060
0.30 6.9997 8.2478 8.9175 9.0002 9.6139 10.2385 10.8425 10.8401 11.4572

30 0.01 7.6563 8.8949 9.5886 9.6636 10.2997 10.9110 11.5353 11.5588 12.1544
0.03 7.6530 8.8907 9.5851 9.6606 10.2951 10.9073 11.5326 11.5553 12.1514
0.05 7.6490 8.8878 9.5825 9.6574 10.2922 10.9026 11.5282 11.5511 12.1485
0.10 7.6378 8.8785 9.5727 9.6474 10.2821 10.8922 11.5200 11.5402 12.1387
0.30 7.5943 8.8380 9.5305 9.6089 10.2397 10.8484 11.4847 11.5012 12.0907

35 0.01 8.2490 9.4841 10.1938 10.2783 10.9105 11.5302 12.1554 12.1973 12.7912
0.03 8.2455 9.4804 10.1893 10.2739 10.9080 11.5270 12.1509 12.1922 12.7877
0.05 8.2403 9.4754 10.1853 10.2705 10.9037 11.5232 12.1460 12.1861 12.7847
0.10 8.2309 9.4664 10.1743 10.2608 10.8926 11.5143 12.1342 12.1759 12.7741
0.30 8.1824 9.4163 10.1294 10.2220 10.8488 11.4732 12.0924 12.1343 12.7228

40 0.01 8.8545 10.0826 10.7819 10.8933 11.5321 12.1583 12.7709 12.8080 13.4148
0.03 8.8515 10.0789 10.7777 10.8902 11.5284 12.1546 12.7677 12.8044 13.4108
0.05 8.8476 10.0752 10.7730 10.8878 11.5241 12.1511 12.7637 12.7998 13.4063
0.10 8.8348 10.0629 10.7614 10.8759 11.5147 12.1413 12.7521 12.7897 13.3969
0.30 8.7839 10.0101 10.7171 10.8357 11.4727 12.0982 12.7155 12.7384 13.3528

45 0.01 8.8205 10.0466 10.7657 10.9100 11.5541 12.1744 12.8068 12.8520 13.4708
0.03 8.8143 10.0425 10.7615 10.9062 11.5501 12.1724 12.8022 12.8457 13.4644
0.05 8.8094 10.0392 10.7581 10.9025 11.5465 12.1689 12.7976 12.8409 13.4605
0.10 8.7982 10.0290 10.7463 10.8940 11.5378 12.1581 12.7868 12.8303 13.4505
0.30 8.7423 9.9804 10.6967 10.8490 11.4923 12.1150 12.7384 12.7843 13.4009

50 0.01 9.4276 10.6427 11.3561 11.4996 12.1675 12.7951 13.4223 13.4760 14.0931
0.03 9.4231 10.6376 11.3523 11.4937 12.1628 12.7914 13.4176 13.4709 14.0873
0.05 9.4187 10.6328 11.3484 11.4895 12.1587 12.7859 13.4130 13.4663 14.0842
0.10 9.4037 10.6219 11.3374 11.4794 12.1460 12.7737 13.4054 13.4546 14.0708
0.30 9.3520 10.5700 11.2834 11.4316 12.0993 12.7285 13.3588 13.4088 14.0186

Table 1: The critical values for log(Rn1,n2) with δ = 0.10 for the two sample comparison with
various sample sizes n1 and n2 at significance level α.
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the hypothesis in (15),

R̃n1,n2 = min
ln1≤m≤un1

n1∏
j=1

2m

n1∆m1j
min

ln2≤v≤un2

n2∏
j=1

2v

n2∆v2j
, (18)

ln = n0.5+δ, un = min(n1−δ, n/2), δ ∈ (0, 0.25).

The ∆mij function is defined as:

∆mij =
1

n1 + n2

2∑
k−1

ni∑
i=1

(
I(xkl ≤ xi(j+m))− I(xkl ≤ xi(j−m))

)
, (19)

where I() denotes an indicator function that takes the value 1 if the condition in the paren-
thesis is satisfied and takes the value 0, otherwise. Note, here, xi(j+m) = xi(ni), if j +m ≥ ni
and xi(j−m) = xi(1) if j −m ≤ 1.

The test rejects the null hypothesis for large values of log R̃n1,n2 . Note that we define ∆lij =
1/(n1 + n2) if ∆lij = 0.

Significance of level α can be determined since I(X > Y ) = I(F (X) > F (Y )) for any
distribution function F . Hence, the null distribution of R̃n1,n2 is independent with respect to
the form of the underlying distributions given H0. Hence, we can tabulate universal critical
values regardless of the null distribution of the Xij ’s.

Table 1 shows the critical values for the logarithm of R̃n1,n2 for common sample sizes and
significance levels. These critical values were obtained from deriving Monte Carlo roots of

PH0(log(R̃n1,n2) > Cα) = α

based on 75,000 repetitions of sampling X1j ∼ N(0, 1) and X2j ∼ N(0, 1).

In the following we present the structure and functioning of the package, with applications to
real datasets.

2. What is package dbEmpLikeGOF?

In summary, the dbEmpLikeGOF package provides a function dbEmpLikeGOF to be used for
empirical likelihood based goodness-of-fit tests based on sample entropy. The function can also
perform the two sample EL ratio test for the hypothesis in (15). The output of dbEmpLikeGOF
analysis is an object containing the test statistic and the p value. Standard bootstrap options
can be used in conjunction with the object (statistic) in order to make confidence sets a
straightforward and automated task.

The proposed function provides the test statistic and p value, where the user can specify an
option for the p value to be obtained from a Monte Carlo simulation or via interpolation
from stored tables. A complementary function is also included in this package to compute
the cut-off value for the appropriate tests of normality and uniformity.

To perform the goodness of fit function, we call the dbEmpLikeGOF function:

dbEmpLikeGOF(x = data, y = na, testcall = "uniform", pvl.Table = FALSE,

num.mc = 1000)
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where data represents a vector of data and the testcall option allows the user to perform the
goodness-of-fit test for uniformity (uniform) or normality (normal). The pvl.Table option
when set to TRUE employs a stored table of p values to approximate the p value for the given
situation, when set to FALSE, a Monte Carlo simulation scheme is employed to estimate the
p value. The number of simulations in the Monte Carlo scheme can be controlled using the
num.mc option.

In the event that the user specifies both x and y in dbEmpLikeGOF the two sample distribution
equality hypothesis in (15) is performed using the logarithm of the statistic in (18).

Further input options for dbEmpLikeGOF include specifying δ (delta) in (11) and
δ (delta.equality) in (18). We recommend using the default settings and note that these
procedures are fairly robust to the specification of δ.

In certain situations the user may simply be interested in obtaining the cut-off value for a
given test and sample size. The function returnCutoff is designed to return the cut-off value
for the specified goodness-of-fit test at a given α significance level. For example, the following
code:

returnCutoff(samplesize, testcall = "uniform", targetalpha = 0.05,

pvl.Table = FALSE, num.mc = 200)

will return the Monte Carlo based test statistic cutoff for determining significance at level
0.05 for the null hypothesis in (8) with decision rule in (12).

The required input for returnCutoff requires the user to specify the sample size (samplesize)
and targetalpha represents the significance level of the test. If the user specifies samplesize
as a two element vector, then it is assumed that the user is specifying the two sample sizes for
the distribution equality test. Note, num.mc represents the number of Monte Carlo simulations
performed to estimate the cut-off value. Similar to the dbEmpLikeGOF, there is an option to
use stored tables to obtain the cutoff rather than Monte Carlo simulations. The logical
variable pvl.Table when true will determine the cut-off from interpolation based on stored
tables. Importantly, note that the cutoff values for the test statistics in (5), (11), and (18)
are returned on the logarithm scale with base e.

Using the methodology developed by North, Curtis, and Sham (2003), for each test statistic,
Tobs, the Monte Carlo p value is computed according to the equation below:

p value =
1 +

∑M
j=1 I (T (x1, . . . , xn) > Tobs)

M + 1
(20)

where M represents the number of simulations and T (x1, . . . , xn) is the statistic from the
simulated data (x1, . . . , xn) and Tobs is the observed statistic.

2.1. Availability

The dbEmpLikeGOF package is available from the Comprehensive R Archive Network at
http://CRAN.R-project.org/package=dbEmpLikeGOF and also available for download from
the author’s department webpage (http://sphhp.buffalo.edu/biostat/research/software/
dbEmpLikeGOF/index.php).

http://CRAN.R-project.org/package=dbEmpLikeGOF
http://sphhp.buffalo.edu/biostat/research/software/dbEmpLikeGOF/index.php
http://sphhp.buffalo.edu/biostat/research/software/dbEmpLikeGOF/index.php
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3. Examples

This section provides examples of using dbEmpLikeGOF with the corresponding R code. Us-
ing several publicly available datasets and a novel dataset we compare our results with results
from other goodness-of-fit tests including Shapiro-Wilks (SW), Kolmogorov-Smirnov (KS),
Wilcoxon rank sum (WRS), and Lilliefors (L) tests. The SW test for normality was imple-
mented using the R function shapiro.test. The one and two sample KS tests were implemented
using the R function ks.test. The Lilliefors test introduced in Lilliefors (1967) is an adaptation
of the Kolmogorov-Smirnov test for normality. We have included the Lilliefors test for nor-
mality as implemented in the R package nortest in our simulations (Gross 2012). The two
sample WRS test was implemented using the R function wilcox.test (R Core Team 2013).

Note that Monte Carlo studies presented in Vexler and Gurevich (2010a) and Gurevich and
Vexler (2011) showed various situations when the density based EL test clearly outperformed
the classical procedures.

3.1. Real data examples

Snowfall dataset

We consider the 63 observations of the annual snowfall amounts in Buffalo, New York, as
observed from 1910/11 to 1972/73 (data in Figure 3 and Table 2); see, for example, Parzen
(1979). Importantly, we note that the snowfall data is not normally distributed, namely due
to the impossibility of negative snowfall amounts. However, we have examined numerous
publications that have studied this data and all of them recognize that the data is sufficiently
close to normally distributed. In Carmichael (1976) the Buffalo snowfall dataset was “chosen
to illustrate the response of the different methods to approximately normal data.” More
notably, Parzen (1979) states “all our D̃ and |ϕ̂|2-based diagnostic tests of the hypothesis H0
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Figure 3: Left: Histogram of snowfall data in Buffalo, NY from 1910/11 to 1972/73. Right:
Snowfall data displayed as a time series. Using the EL test for normality, we conclude that
the distribution for the data is consistent with a normal distribution (p value = 0.321).
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Buffalo snowfall dataset (n = 63)

126.4 82.4 78.1 51.1 90.9 76.2 104.5 87.4 110.5
25.0 69.3 53.5 39.8 63.6 46.7 72.9 79.6 83.6
80.7 60.3 79.0 74.4 49.6 54.7 71.8 49.1 103.9
51.6 82.4 83.6 77.8 79.3 89.6 85.5 58.0 120.7

110.5 65.4 39.9 40.1 88.7 71.4 83.0 55.9 89.9
84.8 105.2 113.7 124.7 114.5 115.6 102.4 101.4 89.8
71.5 70.9 98.3 55.5 66.1 78.4 120.5 97.0 110.0

Table 2: The amount of snowfall in Buffalo, New York, for each of 63 winters from 1910/11
to 1972/73. See Parzen (1979) for more details.
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Figure 4: Snow fall dataset examples where the density-based EL statistic is significant
(p value < 0.05), but the Kolmogorov-Smirnov (KS) test and Shapiro Wilks (SW) test are
not significant (p values > 0.05). The normal density (red curve) is determined using the
sample mean and sample standard deviation to estimate the mean and standard deviation.
The black curve represents the kernel density for a randomly chosen subset from the snowfall
dataset.
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that Buffalo snowfall is normal confirm that it is. The quantile-box plot of Buffalo snowfall,
given in Figure E, also indicates that it is normal.” For these reasons, we believe the snowfall
dataset is sufficiently close to Gaussian.

We perform the proposed test for (1) with the statistic in (5). We obtain the value of the test
statistic to be 8.49 with an MC based p value of 0.321 using the following command,

R> data("Snow")

R> dbEmpLikeGOF(x = snow, testcall = "normal", pvl.Table = FALSE,

+ num.mc = 5000)

where snow represents the vector of annual snowfall amounts. Note, when using a KS test to
examine the same hypothesis for the snowfall dataset we obtain a p value of 0.9851 and a SW
p value of 0.5591. Thus, we conclude that there is not significant evidence to conclude that
the snowfall data is inconsistent with a normal distribution.

To examine the robustness of our tests, we employed a resampling technique where we ran-
domly removed 10, 20 and 50 percent of the data and examined the significance of the test
statistics derived from the remaining dataset. For each test, we repeated this technique 2000
times where the results are summarized in Table 3. When randomly removing 10, 20, and 50
percent of the data, we obtained a significant density based EL test statistic in 3, 5.8 and 6.6
percent of the simulations, respectively. From the work in Parzen (1979), it is suggested that
the Snowfall dataset follows a normal distribution. Table 4 displays the average p value for
each of the tests when randomly removing the data. Ultimately, the results from randomly
removing a percentage of observations demonstrates the robustness of the proposed test in
controlling the type I error.

To study the power of the EL statistic, we examine four snowfall datasets where each dataset
is obtained by randomly removing 50 percent of the snowfall data. These datasets represent
examples where the EL based test is significant (p value < 0.05), while the KS and SW tests
are not significant (p values > 0.05). These examples are summarized by displaying the kernel
density estimates and the hypothesized distributions as shown in Figure 4. From the examples
in Figure 4, there is the potential for the EL tests to be more powerful than KS and SW tests.

Birth dataset

As another example of dbEmpLikeGOF, we examine a baby boom dataset summarizing the
time of birth, sex, and birth weight for 44 babies born in one 24-hour period at a hospital
in Brisbane, Australia. These data appeared in an article entitled “Babies by the Dozen
for Christmas: 24-Hour Baby Boom” in the newspaper The Sunday Mail on 1997-12-21.
According to the article, a record 44 babies were born in one 24-hour period at the Mater
Mothers’ Hospital, Brisbane, Australia, on 1997-12-18. The article listed the time of birth,
the sex, and the weight in grams for each of the 44 babies where the full dataset can be found
at Dunn (1999). We examine whether an exponential distribution can be used to model
the times between births. From the work in Dunn (1999), it is suggested that this data is
exponentially distributed. The data summarizing the time between births is shown in Table 5.
Using the KS test for an exponential distribution, we obtain a p value of 0.3904. We transform
the data in Table 5 using the inverse exponential distribution and thus the transformed data
can be examined using the EL ratio test for uniformity. The following command returns the
test statistic (11) and p value,
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Dataset Test 10% removed 20% removed 50% removed

Snowfall EL 0.0315 0.0705 0.0575
KS 0.0000 0.0000 0.0000
SW 0.0000 0.0000 0.0010

L 0.0000 0.0000 0.0065

Birth EL 0.0020 0.0035 0.0165
KS 0.0020 0.0070 0.0125

Table 3: Resampling results for Snowfall dataset and Birth dataset. With 2000 simulations, we
randomly remove 10, 20, and 50 percent of the observations in the original dataset (Snowfall
or Birth). In each remaining dataset, we compute the test statistic and the percentage of
significant test statistics (at level 0.05) are summarized in each cell. EL refers to the density-
based empirical likelihood test; KS, SW, and L denote the Kolmogorov-Smirnov, Shapiro-
Wilks, and Lilliefors tests, respectively.

Dataset Test 10% removed 20% removed 50% removed

Snowfall EL 0.2981 0.3001 0.3396
KS 0.9589 0.9309 0.8792
SW 0.5576 0.5480 0.5454

L 0.7704 0.6960 0.6062

Birth EL 0.6108 0.5686 0.5080
KS 0.4625 0.5151 0.5547

Table 4: Resampling results for Snowfall dataset and Birth dataset. With 2000 simulations, we
randomly remove 10, 20, and 50 percent of the observations in the original dataset (Snowfall
or Birth). In each remaining dataset, we compute the test statistic and the mean p values are
summarized in each cell. EL refers to the density-based empirical likelihood test; KS, SW,
and L denote the Kolmogorov-Smirnov, Shapiro-Wilks, and Lilliefors tests, respectively.

R> data("Baby")

R> dbEmpLikeGOF(x = baby, testcall = "uniform", pvl.Table = FALSE,

+ num.mc = 5000)

where baby represents the vector of transformed data. When this test is employed, we observe
a MC based p value of 0.6626. Ultimately, for this data the time between births can be
adequately modeled using an exponential distribution.

Similar to the snowfall dataset, we examine the robustness of our results by employing a
bootstrap scheme where the bootstrap resamplings are taken when removing 10, 20, or 50
percent of the original dataset. The results are summarized in Tables 3 and 4. With 2000
simulations where we randomly remove 10, 20, and 50 percent of the observations from the
original dataset, we find significant statistics in 0, 0.2, and 2 percent of the simulated datasets,
respectively.

To examine the power of the EL statistic, we examine four birth datasets where the EL test
is significant (p value < 0.05), while the KS test is not significant (see Figure 5). Figure 5
displays the data driven kernel density estimate against the hypothesized distribution. From
these examples, there may be situations where the EL test for uniformity may be more
powerful than the traditional KS test.
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Inter-time births (n = 43)

Time between births (minutes) Tally Empirical probability

0–19 18 0.419
20–39 12 0.279
40–59 6 0.140
60–79 5 0.116

80+ 2 0.047
Total 43 1.001

Table 5: The time between births for 44 babies born in one 24 hour period at the Mater
Mothers’ Hospital, Brisbane, Australia, on 1997-12-18. See Dunn (1999) for more details.
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Figure 5: Birth dataset examples where the density-based EL statistic is significant (p value
< 0.05), but the Kolmogorov-Smirnov (KS) test is not significant (p values > 0.05). The
exponential density (red curve) has a rate parameter of the inverse of the sample mean. The
black curve represents the kernel density for a randomly chosen subset from the birth dataset.
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A TBARS data example

For a novel analysis using the density-based EL software, we consider data from a study
evaluating biomarkers related to atherosclerotic (CHD) coronary heart disease (see acknowl-
edgments). A population-based sample of randomly selected residents of Erie and Niagara
counties of the state of New York, United States of America, was the focus of this investiga-
tion. The New York State Department of Motor Vehicles drivers’ license rolls were utilized
as the sampling frame for adults between the ages of 35 and 65; where the elderly sample
(age 65–79) was randomly selected from the Health Care Financing Administration database.
Participants provided a 12-hour fasting blood specimen for biochemical analysis at baseline,
and a number of parameters were examined from fresh blood samples. A complete descrip-
tion of this dataset is available at Schisterman, Faraggi, Browne, Freudenheim, Dorn, Muti,
Armstrong, Reiser, and Trevisan (2001).

A cohort of 5620 men and women were selected for the analyses yielding 1209 cases (individuals
that had a heart attack) and 4411 controls (no heart attack history). In a subset of this
dataset, we examine the significance of the thiobarbituric acid reactive substances (TBARS)
variable which is known to play a role in atherosclerotic coronary heart disease process.
TBARS was measured in patient serum samples using reverse-phase high performance liquid
chromatography and spectrophotometric approaches.

For the analysis of the TBARS dataset, we would like to test the claim that the TBARS
distribution is different between the cohort of patients that have suffered a heart attack and
the cohort of patients that have not suffered a heart attack. If the null hypothesis is true, we
expect the empirical distribution of the TBARS variable to be very similar in the two cohorts,
if the null hypothesis is not true, we expect the empirical distributions to be very different
(e.g., TBARS is stochastically greater in the heart attack population). A quantile-quantile
(QQ) plot of this data is shown in Figure 6 (left).
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Figure 6: Left: A quantile-quantile (QQ) plot comparing the distribution of TBARS for
patients with a previous heart attack against the distribution of TBARS for patients without
a previous heart attack. Right: Histogram of the test statistic for TBARS distribution equality
based on 2000 bootstrap resamplings.
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Figure 7: TBARS examples where the density-based EL distribution equality statistic is
significant (p value < 0.05), but the two-sample Kolmogorov-Smirnov (KS) test and two-
sample Wilcoxon rank sum (WRS) test are not significant (p values > 0.05).

We employed a bootstrap strategy to study the TBARS variable using the statistic in (18).
The strategy was based on randomly choosing 200 patients, where 100 patients had previously
suffered a heart attack and 100 patients did not have a heart attack. The distribution of
TBARS was examined for equality between the heart attack patient cohort and the no heart
attack patient cohort. We repeated this procedure 2000 times calculating the frequency of the
event of a significant statistic. Rather than obtain a p value associated with each statistic,
we employed the returnCutoff command to obtain the cutoff for significance,

R> tbar.cut <- returnCutoff(100, testcall = "distribution.equality",

+ targetalpha = 0.05, num.mc = 5000)

Figure 6 (right) displays the histogram of the logarithm of the two sample test statistic
calculated in (18). 5.9 percent of the bootstrap resamplings yielded a significant test statistic.
These results were also compared against the two sample KS test and two sample WRS test
to compare distribution equality. Using the KS test, 3.4 percent of the resamplings were
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significant (p value < 0.05). Using the two sample WRS test, 4.5 percent of the resamplings
were significant (p value < 0.05).

Thus all of the statistical tests suggest that TBARS is not significantly different in heart
attack patients. This is further confirmed when examining the mean p values in the resampled
datasets. The mean p values are 0.5262, 0.5002, and 0.4489 for the KS, WRS, and empirical
likelihood tests, respectively.

To examine the power of the two sample EL test, we focus on four examples comparing 100
patients that had previously suffered a heart attack and 100 patients that did not have a
heart attack, where the EL statistic is significant, however, the KS and WRS tests are not
significant. Figure 7 displays the density for each cohort when a kernel density smoother is
employed with the bandwidth chosen according to Equation 3.31 in Silverman (1986). These
examples highlight situations where there may be a power advantage obtained using the
density-based EL statistics over traditional goodness-of-fit tests such as the two sample KS
test and two sample WRS test.

4. Conclusions

The package dbEmpLikeGOF provides R users with a new and powerful way to perform
goodness-of-fit tests using empirical likelihood ratios. We focus on two sample tests and tests
for normality and uniformity which are common distributions to test in applied studies. Monte
Carlo methods and interpolation are used to estimate the cutoff values and exact p values for
the proposed tests. The proposed procedure can execute entropy based structured tests that
have not been addressed in statistical software. We believe that the dbEmpLikeGOF package
will help investigators to use density based empirical likelihood approaches for goodness-of-fit
tests in practice.
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