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Abstract

We present the R package mixsmsn, which implements routines for maximum likeli-
hood estimation (via an expectation maximization EM-type algorithm) in finite mixture
models with components belonging to the class of scale mixtures of the skew-normal
distribution, which we call the FMSMSN models. Both univariate and multivariate re-
sponses are considered. It is possible to fix the number of components of the mixture to
be fitted, but there exists an option that transfers this responsibility to an automated
procedure, through the analysis of several models choice criteria. Plotting routines to
generate histograms, plug-in densities and contour plots using the fitted models output
are also available. The precision of the EM estimates can be evaluated through their esti-
mated standard deviations, which can be obtained by the provision of an approximation
of the associated information matrix for each particular model in the FMSMSN family. A
function to generate artificial samples from several elements of the family is also supplied.
Finally, two real data sets are analyzed in order to show the usefulness of the package.

Keywords: skew-normal distribution, finite mixtures, EM algorithm, scale mixtures, culster-
ing.

1. Introduction

In this paper we present the R (R Core Team 2013) package mixsmsn, a powerful tool to fit
finite mixtures of distributions, which are densities of the form

g(x|Θ) =

g∑
i=1

pif(x|θi), (1)

http://www.jstatsoft.org/
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where pi ≥ 0, i = 1, . . . , g, with
∑g

i=1 pi = 1, are called mixing weights, the density f(·|θi) is
the i-th component of the mixture, which is indexed by the (possibly multivariate) parameter
θi, i = 1, . . . , n and Θ = ((p1, . . . , pg)>,θ>1 , . . . ,θ

>
g )>.

Mixture models have been widely applied in several scientific areas as a tool for modeling
population heterogeneity, allowing posterior unsupervised classification of the observations,
for example. Also, because of its extreme flexibility, this class of models is an excellent alter-
native to approximate complicated probability densities, presenting multimodality, skewness
and heavy tails. The theme has received considerable attention in the statistical and applied
literature, with highly recommended texts available. To cite only a few, we have the books of
McLachlan and Peel (2000), Frühwirth-Schnatter (2006), Schlattmann (2010) and Mengersen,
Robert, and Titterington (2011), and the special editions of the journal Computational Statis-
tics & Data Analysis (Böhning and Seidel 2003; Böhning, Seidel, Alfó, Garel, Patilea, and
Walther 2007). Besides this, at this moment, another special issue is being prepared in this
journal, edited by B. Böhning, C. Hennig, G. McLachlan and P. McNicholas.

A considerable portion of the literature in mixture models refers to symmetric components,
like normal or Student-t. Inference in these cases has been extensively studied, as we can
see in the references cited above. After Azzalini and his colleagues (Azzalini 1985; Azzalini
and Valle 1996; Azzalini and Capitanio 1999) work, there was a rapid dissemination of the
theory and applications of asymmetric distributions. Other proposals extending the normal
or the Student−t distributions are very popular also, see Sahu, Dey, and Branco (2003), for
example. In the last 5 years, there are some effort to generalize mixture models results, in
order to obtain a greater degree of flexibility, introducing components that accommodate
asymmetry and/or heavy tails. Notice that if the true distribution of at least one component
has one of these characteristics, then the model fit using a symmetric distribution can result
in undesirable results, like overestimation of the number of components of the mixture, for
example. Some works that replace the normal assumption in mixture models by more flexible
distributions are Lin, Lee, and Hsieh (2007a), Lin, Lee, and Yen (2007c), Cabral, Bolfarine,
and Pereira (2008), Lin (2009), Castillo and Daoudi (2009), Karlis and Santourian (2009),
Lin (2010), Basso, Lachos, Cabral, and Ghosh (2010), Frühwirth-Schnatter and Pyne (2010),
Vrbik and McNicholas (2012), Ho, Pyne, and Lin (2012), Cabral, Lachos, and Prates (2012)
and Lee and McLachlan (2013).

We can find several R packages for finite mixture models like, for instance, flexmix (Leisch
2004; Grün and Leisch 2008), mixAK (Komárek 2009), mixreg (Turner 2011), bayesmix (Grün
2011), mclust (Fraley, Raftery, Murphy, and Scrucca 2012), mixtools (Benaglia, Chauveau,
Hunter, and Young 2009) and EMCluster (Chen, Maitra, and Melnykov 2013). But none
of them deals with the issue of skewed or heavy-tailed components. Regarding R packages
for modeling data presenting skewness and/or outliers (but not unobserved heterogeneity),
we can cite the package sn (Azzalini 2011), which provides functions related to the skew-
normal (SN) and the skew-Student-t distributions and the package nlsm (Garay, Prates, and
Lachos 2012), which deals with estimation in univariate non-linear regression models with
observational errors belonging to the class of scale mixtures of the skew-normal distribution
(SMSN, Lachos, Ghosh, and Arellano-Valle 2010).

In this work, we assume that the components of the mixture belong to the class of SMSN
distributions. It is a rich class of flexible distributions, including versions of classical sym-
metric distributions (like normal, Student-t, etc.), accommodating simultaneously skewness
and robustness to discrepant observations. Both the univariate (Basso et al. 2010) and the
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multivariate (Cabral et al. 2012) cases are considered. The estimation procedure is maximum
likelihood via an EM-type algorithm. The available component distributions are: normal,
Student-t, skew-normal, skew-contaminated normal, skew-slash and skew-Student-t.

In our proposal, the user can pass values to the arguments of the functions with great flex-
ibility. Specifically, the user can specify its own set of starting values for initialization of
the algorithm and also specify the number of components to be fitted, although there are
automated options to do theses tasks. In particular, the choice of the number of components
is made through the analysis of several classical models selection criteria (like AIC and BIC)
and the starting values are defined through a combination of the k-means method and the
method of moments. In addition, there are functions to generate histograms and contour plots
of the data, to generate artificial observations from finite mixtures of SMSN distributions and
to obtain an approximated information matrix for each subfamily considered. Also, the unsu-
pervised clustering of the observations, which is an important issue related to modeling using
finite mixtures, is provided.

The library mixsmsn has been used recently with great success in several applications. See,
for example, Basso et al. (2010) and Cabral et al. (2012). But we believe that exists a
vast collection of possible applications, which includes, for instance, image processing, signal
processing and analysis of microarray data.

The remainder of the paper is organized as follows. In Section 2 we give a short introduction to
the theory of the finite mixtures of SMSN distributions and estimation via EM-type algorithm;
in Section 3 we present the two real data sets that will be used to illustrate the usefulness of
the package; in Section 4 we introduce the functions useful to fit mixtures and to generate
random samples from the available mixture distributions; in Section 5 we proceed full analyses
of real data sets.

2. Finite mixtures of scale mixtures of skew-normals

2.1. The skew-normal distribution

A skew-normal distribution is a distribution that extends the normal one by the introduction
of an additional parameter (or maybe more than one) regulating skewness. Some versions,
extensions and unification of the skew-normal distribution are carefully surveyed in works like
Azzalini (2005) and Arellano-Valle and Azzalini (2006).

For our purposes, we say that a p × 1 random vector Y follows a skew-normal distribution
with p× 1 location vector µ, p× p positive definite dispersion matrix Σ and p× 1 skewness
parameter vector λ, and we write Y ∼ SNp(µ,Σ,λ), if its density is given by

SNp(y|µ,Σ,λ) = 2φp(y|µ,Σ)Φ(λ>Σ−1/2(y − µ)),

where λ> denotes the transpose of λ, Σ−1/2 is the square root of Σ−1, that is, Σ−1/2Σ−1/2 =
Σ−1 (this square root is unique see, for example, Theorem 3.5 in Zhang 2011), φp(·|µ,Σ)
stands for the density of the p–variate normal distribution with mean vector µ and covariance
matrix Σ, Np(µ,Σ) say, and Φ(·) represents the distribution function of the standard uni-
variate normal distribution. We drop some indices when there is no possibility of confusion:
N(0, 1) and φ(·) will denote the univariate standard normal distribution and its respective
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density, for instance. It is important to note that the case λ = 0p corresponds to the usual
p−variate normal distribution, where 0p is the null vector of dimension p× 1.

2.2. Univariate finite mixtures of scale mixtures of skew-normals

First we will present the definition of the family of scale mixtures of the skew-normal distri-
bution (SMSN), given by Branco and Dey (2001). Here, we consider the case p = 1 and drop
some indices, writing Y ∼ SN(µ, σ2, λ), for example.

Definition 1 The distribution of the random variable Y belongs to the univariate SMSN
family when Y = µ+ U−1/2Z, where µ ∈ R is a location parameter, Z ∼ SN(0, σ2, λ) and U
is a positive random variable, independent of Z, with distribution function H(·|ν).

In the definition above σ2 > 0 and λ ∈ R are scale and shape parameters, respectively,
and H(·|ν) is known as the mixing scale distribution, indexed by the (possibly multivariate)
parameter ν. The marginal density of Y is

SMSN(y|µ, σ2, λ,ν) = 2

∫ ∞
0

φ(y|µ, u−1σ2)Φ(u
1
2λσ−1(y − µ))dH(u|v).

See Basso et al. (2010) for details like moments and a fundamental stochastic representation
for the SMSN family.

For each choice of H(·|ν) in Definition 1 we obtain a different member of the family. These
are some examples:

� The univariate normal distribution: this is the case when U = 1 and λ = 0;

� The univariate skew-normal distribution: this is the case when U = 1;

� The univariate skew-Student-t distribution: this is the case when U ∼ Gamma(ν/2, ν/2),
with ν > 0 and Gamma(a, b) denoting the gamma distribution with mean a/b;

� The univariate skew-slash distribution: this is the case when U ∼ Beta(ν, 1), ν > 0;

� The univariate skew-contaminated normal distribution: this is the case when U is a
discrete random variable taking state ν2 with probability ν1 and state 1 with probability
1− ν1, where ν1 and ν2 are in the interval (0, 1).

A finite mixture of SMSN distributions model (FMSMSN) is a density defined as in (1),
where the i-th component of the mixture is a SMSN distribution with parameters µi, σ

2
i ,

λi and νi. Concerning the parameters indexing the mixing distributions, we assume that
ν1 = . . . = νg = ν. For the particular cases presented above we will use the notations
FMNOR, FMSN, FMST, FMSSL and FMSCN, respectively.

2.3. Multivariate finite mixtures of scale mixtures of skew-normals

It is straightforward to extend the definition of scale mixtures of the SN distribution to the
multivariate case.
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Definition 2 The p−dimensional random vector Y belongs to the SMSN family when Y =
µ + U−1/2Z, where µ : p × 1 is a location vector parameter, Z ∼ SNp(0,Σ,λ) and U is a
positive random variable, independent of Z, with distribution function H(·|ν).

In the definition above Σ is a p× p positive definite scale matrix, λ is the p× 1 shape vector
and H(·|ν) is the mixing distribution, exactly as before. Thus, the marginal density of Y is

SMSNp(y|µ,Σ,λ,ν) = 2

∫ ∞
0

φp(y|µ, u−1Σ)Φ(u
1
2λ>Σ−

1
2 (y − µ))dH(u|v). (2)

For more details see Cabral et al. (2012).

As in the univariate SMSN family, if the random variable U is chosen to follow one the distri-
butions presented in Section 2.2 and Definition 2 is applied, we have versions of the normal,
skew-normal, skew-Student-t, skew-slash and skew-contaminated normal as specific members
of the multivariate SMSN family. Also, extending the ideas presented for the univariate
FMSMSN case, we can define multivariate FMSMSN distributions by considering that the
i-th component of the mixture is a SMSN density with parameters µi, Σi, λi and ν.

2.4. Maximum likelihood estimation via an EM-type algorithm

In Basso et al. (2010) and Cabral et al. (2012) the algorithms used to implement the estimation
routine of the package mixsmsn are presented in details, the former paper deals with the
univariate case while the latter deals with the multivariate case. It is worth to mention that the
algorithm is very general, encompassing all members of the SMSN family. However, because
of computational effort reasons, only the distributions presented in sections 2.2 and 2.3 are
considered. Excepting for the skew-slash case, the updating expressions for the location, scale
and skewness parameters are written in a closed form. This is an advantage over competitors,
like the algorithm presented by Lin (2010), where in the E-step Monte Carlo integration
is needed and the moments of the truncated multivariate normal distribution have to be
computed (in fact, this author considered the skew-normal of Sahu et al. 2003).

Another interesting feature of the package is that, considering the parametrization

∆i = Σ
1/2
i δi, δi =

λi√
1 + λ>i λi

, Γi = Σi −∆i∆
>
i , i = 1, . . . , g,

we have that a more parsimonious model is achieved by supposing Γ1 = . . . = Γg = Γ, which
can be seen as an extension of the normal mixture model with restricted variance-covariance
components.

2.5. The observed information matrix

The package mixsmsn provides an approximation of the asymptotic covariance matrix of the
vector of EM estimates, using a method suggested by Basford, Greenway, Mclachlan, and
Peel (1997). In Basso et al. (2010) and Cabral et al. (2012) we can find expressions for all
cases considered in Section 2.2 and Section 2.3 and an extensive simulation study evaluating
the quality of estimates of the standard deviations obtained through this method.
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3. Data Sets

In this section we present two data sets: the body mass index (BMI), which will be useful to
illustrate the applicability of the package for the univariate case, and the Old Faithful geyser,
for a multivariate illustration.

3.1. Body mass index

The body mass index data set was collected for men aged between 18 to 80 years old. It came
from the National Health and Nutrition Examination Survey, made by the National Center
for Health Statistics (NCHS) of the Center for Disease Control (CDC) in the USA. With the
increase of chronic diseases around the USA, attention was attracted to the obesity problem
in the past few years. It is known that people with obesity have higher chances of developing
chronic diseases. To quantify overweight and obesity, the BMI, which is defined as the ratio
of body weight in kilograms and body height in meters squared, was selected as the standard
measure, where people with high BMI (> 25) are considered to have overweight and people
with BMI > 30 are considered to be obese.

Lin, Lee, and Hsieh (2007b) considered the reports made in years 1999-2000 and years 2001-
2002. In their paper they only considered participants who have weight within [39.50 kg, 70.00
kg] and [95.01 kg, 196.80 kg], allowing them to explore a mixture pattern. From the original
4579 participants, they used a total of 2123, where the first group had 1069 participants and
the second 1054. In their analysis, Lin et al. (2007b) fitted the models FMNOR, FMT (that
is, with Student t components), FMSN and FMST.

3.2. Old Faithful geyser

Park geologists have been collecting data of geyser eruptions over different USA parks. The
Yellowstone National Park was created in 1872 and was the first America’s national park.
Inside the Yellowstone National Park are Old Faithful and a collection of the world’s most
extraordinary geysers and hot springs.

Azzalini and Bowman (1990) presented an analysis of data from the Old Faithful geyser.
It consists of 272 pairs of measurements, referring to the time interval between the starts
of successive eruptions and the duration of the subsequent eruption. Scientists have been
analyzing the Old Faithful data since 1978 (e.g., Denby and Pregibon 1987; Silverman 1985).
Background information on the Old Faithful geyser is provided by Rinehart (1969).

4. mixsmsn

In this section we will show how to fit and analyze data using univariate and multivariate
FMSMSN distributions through the package mixsmsn.

4.1. Univariate finite mixtures of scale mixtures of skew-normals

The function smsn.mix() is responsible for the implementation of the inferential procedures
to fit the univariate FMSMSN distributions presented in Section 2.2. It has the form
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smsn.mix(y, nu, mu = NULL, sigma2 = NULL, shape = NULL, pii = NULL,

g = NULL, get.init = TRUE, criteria = TRUE, group = FALSE,

family = "Skew.normal", error = 0.00001, iter.max = 100,

calc.im = TRUE, obs.prob = FALSE, kmeans.param = NULL)

where y is the vector of responses and nu is the initial value for the mixing distribution
parameter (it must be bidimensional for the FMSCN case, with coordinates constrained to
the interval (0,1)). For the FMNOR and FMSN models, any value can be passed to this
argument, since it will be ignored. The argument g is the number of mixture components
to be fitted; get.init is a TRUE/FALSE variable to choose if the initial values should be
created, if its value is FALSE it is necessary to specify: pii is the g-dimensional vector of
initial values for the weights (pii is constrained to sum 1), mu must be a g-dimensional vector
with the the i-th coordinate being the starting value for the location parameter of the i-th
component of the mixture, sigma2 and shape are also g-dimensional vectors, following the
same pattern, with starting points for scale and shape parameters, respectively, i = 1, . . . , g;
criteria is a TRUE/FALSE variable to choose if the criteria (AIC, DIC, ECD and ICL) should
be calculated or not; group is a TRUE/FALSE variable to choose if an unsupervised clustering
of the observations should be performed, if its value is TRUE then each subject in the sample is
allocated to one and only one of g groups (cluster, class). We allocate the subject i to group
j∗, where j∗ = arg max{ẑij , j = 1, . . . , g} and ẑij is the estimated posterior probability

ẑij =
p̂jSMSN(yi|µ̂j , σ̂2j , λ̂j , ν̂)∑g

k=1 p̂kSMSN(yi|µ̂k, σ̂2k, λ̂k, ν̂)
,

where the notation µ̂j indicates the estimate of µj and so on. If obs.prob = TRUE, then a
matrix with these probabilities is provided; family sets the component distribution family of
the mixture to be fitted (Normal, t, Skew.normal, Skew.t, Skew.slash and Skew.cn); error
is the stopping criterion for the EM algorithm; iter.max is the maximum number of iterations
for the EM algorithm when it does not achieve convergence; calc.im is a TRUE/FALSE variable
to choose if the information matrix must be provided and the standard errors reported. If
get.init = TRUE, then the initial values for the EM algorithm are obtained using a combina-
tion of the R function kmeans and the method of moments. Sees details in Basso et al. (2010).
If kmeans.param = NULL, the the default values of the function kmeans are used, otherwise
the user must pass a list with alternative parameters values, for example kmeans.param =

list(iter.max = 20, n.start = 2, algorithm = "Forgy").

Another important function in the mixsmsn package is rmix(). With rmix() it is possible
to generate data from any of the SMSN distributions presented in Section 2.2. The function
rmix() has the form

rmix(n, pii, family, arg)

where n is the number of observations to be generated, pii and family are as above and arg

is a list with each entry containing a vector with the necessary parameters of the distribution
specified in family.

For the family of univariate FMSMSN distributions we also have the following functions:
mix.hist(), mix.dens(), mix.lines(), mix.print(), smsn.search() and im.smsn(). The
function mix.hist() is equivalent to the R function hist() and plots a histogram of the data
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with the plug-in (fitted) density superimposed. The function mix.dens() plot the estimated
density (or log-density) of the fitted model. The function mix.lines() is similar to the R
function lines() and allow to add estimated densities curves in the plot generated by the
mix.dens() function. The mix.print() function is equivalent to the R function print()

and prints some basic information of the output. The im.smsn() function provides the
approximated information matrix of the FMSMSN parameters.

The smsn.search() is responsible to search for the best model under a pre-specified criterion
(AIC, BIC, EDC or ICL) and from a specified range of number of mixture components (g)
to be considered. Denoting the vector with all parameters to be estimated by Θ and its EM
estimator by Θ̂, we have that the AIC, BIC and EDC are of the form −2`(Θ̂) + γcn where
`(Θ̂) is the actual log-likelihood, γ is the number of free parameters that have to be estimated
under the model and the penalty term cn is a convenient sequence of positive numbers. The
ICL is defined as −2`?(Θ̂) +γ log(n) where `?(Θ̂) is the integrated log-likelihood. For further
details see Basso et al. (2010) and Cabral et al. (2012).

We will show the usage of the functions presented above in Section 5.

4.2. Multivariate finite mixtures of scale mixtures of skew-normals

The function smsn.mmix() is responsible for the implementation of the EM-type algorithm
for the multivariate FMSMSN models presented in Section 2.3. It has the form

smsn.mmix(y, nu=1, mu = NULL, Sigma = NULL, shape = NULL, pii = NULL,

g = NULL, get.init = TRUE, criteria = TRUE, group = FALSE,

family = "Skew.normal", error = 0.0001, iter.max = 100, uni.Gama = FALSE,

calc.im=FALSE, obs.prob = FALSE, kmeans.param = NULL)

where the parameters are multivariate versions of the ones presented for the function
smsn.mix(). The parameter uni.Gama is introduced here and is a TRUE/FALSE variable to
choose the option Γ1 = . . . = Γg, see Section 2.4.

As presented in the univariate case, the rmmix() is the equivalent data generator for the
multivariate FMSMSN distributions. However, in this case, the parameter arg is a list of g
lists with each one containing the necessary parameters of the selected family.

In addition, we have the following functions: rmmix(), mix.contour(), smsn.search() and
imm.smsn(). The mix.contour() function plots the contour of the fitted output when the
dimension of the analysis is 2. The imm.smsn() function provides an approximated informa-
tion matrix of the FMSMSN parameters. Finally, the smsn.search() function searches for
the best model under one of the possible criterion presented in Section 2.2, for a pre-specified
range of values of g. Section 5 has an illustration of the usage of the functions above.

5. Examples continued

In this section we revisit the examples presented in Section 3 in order to illustrate the useful-
ness of the mixsmsn package, both in the univariate and in the multivariate cases.
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5.1. Body mass index data

The BMI data presented in Section 3.1 was incorporated in the package mixsmsn and will be
used to illustrate the inferential methods using the univariate FMSMSN models available in
the package.

The initial step is to load the BMI data

R> library("mixsmsn")

R> data("bmi")

Once the data is loaded we are able to obtain an overview of the response variable, by
constructing a histogram

R> hist(bmi$bmi, breaks = 40, main = "Histogram of BMI", xlab = "bmi")

(see Figure 1) where we can visualize that the data has a bimodality with some right skewness
for each mode, and it seems to be reasonable to fit to this data FMSMSN models with two
components. In order to do so, we will rely on the smsn.mix() function.

R> par(mfrow = c(2, 2))

R> Snorm.analysis <- smsn.mix(bmi$bmi, nu = 3, g = 2, get.init = TRUE,

+ criteria = TRUE, group = TRUE, family = "Skew.normal", calc.im = FALSE)

R> mix.hist(bmi$bmi, Snorm.analysis)

R> St.analysis <- smsn.mix(bmi$bmi, nu = 3, g = 2, get.init = TRUE,

+ criteria = TRUE, group = TRUE, family = "Skew.t", calc.im = FALSE)

Histogram of BMI
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Figure 1: BMI histogram.
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Histogram of Skew.t fit
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Histogram of Skew.cn fit
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Histogram of Skew.slash fit
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Figure 2: Fitted FMSMSN distributions with the BMI response, from left to right: FMSN,
FMST, FMSCN and FMSSL.

R> mix.hist(bmi$bmi, St.analysis)

R> Scn.analysis <- smsn.mix(bmi$bmi, nu = c(0.3, 0.3), g = 2, get.init = TRUE,

+ criteria = TRUE, group = TRUE, family = "Skew.cn", calc.im = FALSE)

R> mix.hist(bmi$bmi, Scn.analysis)

R> Sslash.analysis <- smsn.mix(bmi$bmi, nu = 3, g = 2, get.init = TRUE,

+ criteria = TRUE, group = TRUE, family = "Skew.slash", calc.im = FALSE)

R> mix.hist(bmi$bmi, Sslash.analysis)

Once the models are fitted, Figure 2 shows the plots generated by the function mix.hist()

for the mixtures of skew-normal, skew-Student t, skew-contaminated normal and skew-slash



Journal of Statistical Software 11

Model AIC BIC EDC ICL

FMSN 13972.95 13821.22 13828.86 13992.45
FMST 13754.06 13782.33 13789.76 14016.90

FMSCN 13748.51 13776.77 13784.41 14007.47
FMSSL 13751.98 13780.24 13787.88 13987.77

Table 1: Models selection criteria for the BMI data set (all models with two components).

distributions, respectively, with the respective plug-in densities superimposed. This figure
shows some evidence that the FMSN model presents the worst performance. With the help
of the mix.print() function we can obtain the estimates of the parameters and the values of
the models selection criteria.

R> mix.print(Snorm.analysis)

Number of observations: 2107

group 1 group 2

mu 29.207 19.907

sigma2 53.588 8.931

shape 1.920 1.215

AIC: 13792.95

BIC: 13821.22

EDC: 13828.86

ICL: 13992.45

EM iterations: 11

Table 1 presents the values of the models selection criteria for each mixture model. From it
we can see that the FMSCN model presents the best fit according to AIC, BIC and EDC
criterions, while FMSSL performs better under the ICL criteria. After this we can use the
im.smsn() function to obtain the approximated information matrix of the parameters and
further the respective estimated standard deviations.

R> bmi.im <- im.smsn(bmi$bmi, Sslash.analysis)

R> sdev <- sqrt(diag(solve(bmi.im$IM)))

R> sdev

mu1 sigma1 shape1 p1 mu2 sigma2 shape2

0.60863704 5.84197907 0.71105460 0.02879698 0.43553030 2.43468500 0.52871330

nu

0.42393606
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Now we introduce the function smsn.search(), fitting normal mixtures with number of com-
ponents varying from 1 to 5. By default, the value passed to the argument criteria is "BIC"
and the alternatives are "AIC", "EDC" or "ICL". In this case, for illustration purposes, we
will use the "AIC" criterion. As before, in order to obtain starting points for the estimation
algorithm, we can pass alternative values for the argument kmeans.param, altering the default
values of the R function kmeans. See Section 4.1 for details.

R> bmi.analysis <- smsn.search(bmi$bmi, nu = 3, g.min = 1, g.max = 5,

+ family = "Normal", criteria = "aic")

R> bmi.analysis$criteria

g=1 g=2 g=3 g=4 g=5

14472.38 13835.42 13745.19 13746.49 13749.53

R> mix.print(bmi.analysis$best.model)

Number of observations: 2107

group 1 group 2 group 3

mu 21.743 32.504 39.081

sigma2 5.227 11.232 46.242

AIC: 13745.19

BIC: 13790.41

EDC: 13802.63

ICL: 14283.64

EM iterations: 8

Then, between the normal mixture models considered, the best fit occurs when we have three
components – although, as commented before, the data has a clear bimodal nature. That is,
we need more normal than skew-slash components to accommodate the asymmetric and/or
heavy tailed behaviour of this data, showing the flexibility of the latter model.

5.2. Old Faithful geyser data

To illustrate the applicability of the package in the multivariate case, we consider the Old
Faithful data mentioned before. Now we will impose starting values for the parameters of the
SMSN distributions under consideration, instead of generate them, as we proceeded in the
previous example. This is done by fixing FALSE for the argument get.init. First, we load
the data.

R> data("faithful")

After this, we pass the initial values to mixsmsn using the following codes
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R> mu1 <- c(5, 77)

R> Sigma1 <- matrix(c(0.18, 0.60, 0.60, 41), 2, 2)

R> shape1 <- c(0.69, 0.64)

R> mu2 <- c(2, 52)

R> Sigma2 <- matrix(c(0.15, 1.15, 1.15, 40), 2, 2)

R> shape2 <- c(4.3, 2.7)

R> pii<-c(0.65, 0.35)

R> mu <- list(mu1, mu2)

R> Sigma <- list(Sigma1, Sigma2)

R> shape <- list(shape1, shape2)

Once the initial values are fixed, we run the package in order to fit the multivariate SMSN
models cited in Section 2.3

R> par(mfrow = c(2, 2))

R> Norm.analysis <- smsn.mmix(faithful, nu = 3, mu = mu, Sigma = Sigma,

+ shape = shape, pii = pii, g = 2, get.init = FALSE, group = TRUE,

+ family = "Normal", calc.im = FALSE)

R> mix.contour(faithful, Norm.analysis, x.min = 1, x.max = 1, y.min = 15,

+ y.max = 10, levels = c(0.1, 0.015, 0.005, 0.0009, 0.00015))

R> Snorm.analysis <- smsn.mmix(faithful, nu = 3, mu = mu, Sigma = Sigma,

+ shape = shape, pii = pii, g = 2, get.init = FALSE, group = TRUE,

+ family = "Skew.normal", calc.im = FALSE)

R> mix.contour(faithful, Snorm.analysis, x.min = 1, x.max = 1, y.min = 15,

+ y.max = 10, levels = c(0.1, 0.015, 0.005, 0.0009, 0.00015))

R> St.analysis <- smsn.mmix(faithful, nu = 3, mu = mu, Sigma = Sigma,

+ shape = shape, pii = pii, g = 2, get.init = FALSE, group = TRUE,

+ family = "Skew.t", calc.im = FALSE)

R> mix.contour(faithful, St.analysis, x.min = 1, x.max = 1, y.min = 15,

+ y.max = 10, levels = c(0.1, 0.015, 0.005, 0.0009, 0.00015))

R> Scn.analysis <- smsn.mmix(faithful, nu = c(0.3, 0.3), mu = mu,

+ Sigma = Sigma, shape = shape, pii = pii, g = 2, get.init = FALSE,

+ group = TRUE, family = "Skew.cn", calc.im = FALSE)

R> mix.contour(faithful, Scn.analysis, x.min = 1, x.max = 1, y.min = 15,

+ y.max = 10, levels = c(0.1, 0.015, 0.005, 0.0009, 0.00015))

Table 2 presents the models choice criteria. From it we can see that the FMSCN model has
the best performance. Also, from this table we can see that the FMST and the FMSCN
models have very close results, providing a better fit than the FMSN or FMNOR ones. Fig-
ure 3 presents the contours of the fitted models. In this figure, the points are distinguished
by different colors through information provided by the commands Norm.analysis$group,
Snorm.analysis$group and so on. They yield a vector of the same length of the data vector,
and its i-th coordinate (with value 1 or 2, in this case) represents the group where the i-th
subject will be allocated. Observe that, although the function mix.contour() is applicable
only for bivariate data, the multivariate functions smsn.mmix() and imm.smsn() work for any
p ≥ 2.

Having chosen the FMSCN model, we will show how to use the function imm.smsn() to obtain
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Figure 3: Contours of the fitted FMSMSN distributions for the Old Faithful data, from left
to right: FMNOR, FMSN, FMST and FMSCN.

Model AIC BIC EDC ICL

FMNOR 2292.53 2350.22 2313.31 2350.72
FMSN 2265.55 2323.24 2286.32 2325.18
FMST 2265.09 2322.78 2285.86 2324.87

FMSCN 2264.98 2322.68 2285.76 2324.56

Table 2: Models selection criteria for the Old Faithful data (all models with two components).
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the approximated information matrix and the respective standard deviation estimates of the
EM estimates.

R> faithful.im <- imm.smsn(faithful, Scn.analysis)

R> sdev <- sqrt(diag(solve(faithful.im$IM)))

R> sdev

mu1_1 mu1_2 shape1_1 shape1_2 Sigma1_11 Sigma1_12

5.765085e-01 6.159679e+00 2.166146e+00 1.460854e+00 2.602896e+00 1.177035e+00

Sigma1_22 mu2_1 mu2_2 shape2_1 shape2_2 Sigma2_11

4.411384e+01 3.230842e-02 1.240486e+00 2.324035e+00 2.695586e+00 2.304114e+00

Sigma2_12 Sigma2_22 pii1 nu1 nu2

1.558676e+00 4.047053e+01 2.991640e-02 1.161834e+03 1.299269e+03

The function smsn.search() presented in Section 5.1 can also be used for multivariate data.
We present an example of its usage with the normal distribution.

R> faithful.analysis <- smsn.search(faithful, nu = 3, g.min = 1, g.max = 5,

+ family = "Normal")

R> faithful.analysis$criteria

g=1 g=2 g=3 g=4 g=5

2624.440 2350.222 2374.135 2412.447 2444.987

We can see that, for the normal distribution, the best fit is achieved using two components.

5.3. Simulating data with mixsmsn

The mixsmsn package provides the functions rmix() and the rmmix() to generate data sets
for the univariate and multivariate FMSMSN distributions, respectively. These tools allow
researchers to create simulated data sets with several different parameters setups, improving
the undertanding of the phenomena under study. We start presenting how to generate data
for univariate FMSMSN models using the function rmix(). To use the random data generator
the user must specify the parameters values.

R> mu1 <- 5

R> mu2 <- 20

R> mu3 <- 35

R> sigma2.1 <- 9

R> sigma2.2 <- 16

R> sigma2.3 <- 9

R> lambda1 <- 5

R> lambda2 <- -3

R> lambda3 <- -6

R> nu <- 5

R> pii <- c(0.5, 0.2, 0.3)
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Having done this, the user must organize these values in order to call properly the function
rmix(). Here, we will generate a sample of size n = 5000 from a mixture of skew-Student t
distributions with 3 components.

R> arg1 <- c(mu1, sigma2.1, lambda1, nu)

R> arg2 <- c(mu2, sigma2.2, lambda2, nu)

R> arg3 <- c(mu3, sigma2.3, lambda3, nu)

R> y <- rmix(n = 5000, p = pii, family = "Skew.t",

+ arg = list(arg1, arg2, arg3))

In the multivariate case, the procedure is similar. First, we define the values of the parameters
of interest.

R> mu1 <- c(0, 0)

R> Sigma1 <- matrix(c(3, 1, 1, 3), 2, 2)

R> shape1 <-c(4, 4)

R> nu1 <- 4

R> mu2 <- c(5, 5)

R> Sigma2 <- matrix(c(2, 1, 1, 2), 2, 2)

R> shape2 <-c(2, 2)

R> nu2 <- 4

R> pii <- c(0.6, 0.4)

Then, we create a list of arguments that will be passed to the function rmmix() to generate
a sample of size n = 1000 from a mixture of bivariate skew-Student t distributions with 2
components.

R> arg1 <- list(mu = mu1, Sigma = Sigma1, shape = shape1, nu = nu1)

R> arg2 <- list(mu = mu2, Sigma = Sigma2, shape = shape2, nu = nu2)

R> y <- rmmix(n = 1000, p = pii, family = "Skew.t",

+ arg = list(arg1, arg2))

R> setwd(wd)

6. Discussion

In this paper we presented the R package mixsmsn, an ensemble of routines useful to analyze
data presenting a strong non-normal pattern, including skewness, multimodality and heavy
tails, modeling using distributions that are members of an extreme flexible class, which is
composed by finite mixtures of distributions that are scale mixtures of the skew-normal dis-
tribution. The package allows the user to proceed a full analysis, including point estimation
via an EM-type algorithm, estimates of their standard deviations, a proper visualization of
the data with immersed estimated densities (in the univariate case) or contours of the esti-
mated densities (in the bivariate case), and generation of artificial data from distributions in
the family. The posterior unsupervised classification of the observations is also possible, the
output incorporates the grouping criterion proposed by Basso et al. (2010) and Cabral et al.
(2012) as a tool for clustering. We analyzed two real data sets, in order to show the efficacy of
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the package. We hope that this package can be useful for practitioners in several areas where
modeling data with mixtures is applicable, like medicine, image processing, signal processing,
genetics, economics, to cite only a few. As in these areas the usage of normal or Student t
components is still very popular, although in some cases the nature of the data clearly do
not support this, our belief is that the analysis could be substantially improved by modeling
using the skew heavy-tailed models provided by the package.
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Celso Rômulo Barbosa Cabral
Departamento de Estat́ıstica
Universidade Federal do Amazonas
CEP 69077-000 , Manaus, Amazonas, Brazil
E-mail: celsoromulo@gmail.com

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 54, Issue 12 Submitted: 2011-12-16
August 2013 Accepted: 2013-03-21

mailto:marcosop@est.ufmg.br
mailto:hlachos@ime.unicamp.br
mailto:celsoromulo@gmail.com
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Finite mixtures of scale mixtures of skew-normals
	The skew-normal distribution
	Univariate finite mixtures of scale mixtures of skew-normals
	Multivariate finite mixtures of scale mixtures of skew-normals
	Maximum likelihood estimation via an EM-type algorithm
	The observed information matrix

	Data Sets
	Body mass index
	Old Faithful geyser

	mixsmsn
	Univariate finite mixtures of scale mixtures of skew-normals
	Multivariate finite mixtures of scale mixtures of skew-normals

	Examples continued
	Body mass index data
	Old Faithful geyser data
	Simulating data with mixsmsn

	Discussion

