
Test Equating Using the Kernel Method with the R
Package kequate

Björn Andersson
Uppsala University

Kenny Bränberg
Ume̊a University

Marie Wiberg
Ume̊a University

Abstract

In standardized testing the equating of tests is important in order to ensure fairness
for test-takers. Recently, the kernel method of test equating has gained popularity. The
kernel method of test equating comprises five steps: 1) pre-smoothing, 2) estimation of
the score probabilities, 3) continuization, 4) equating, and 5) computing the standard
error of equating and the standard error of equating difference. We present the software
package kequate for R. kequate implements the kernel method of test equating for six dif-
ferent equating designs: equivalent groups, single group, counter balanced, non-equivalent
groups with anchor test using either chain equating or post-stratification equating and
non-equivalent groups using covariates. For all designs, it is possible to conduct an item-
response theory observed score equating as a supplement. Diagnostic tools aiding in the
search for a proper log-linear model in the pre-smoothing step for use in conjunction with
the R function glm are also included.

Keywords: kernel equating, observed-score test equating, item-response theory, R.

1. Introduction

When standardized achievement tests are used the main concern is that it they are fair to
the individual test takers and between current and former test takers. In order to ensure
fairness when a test is given at different time points or when different versions of the same
standardized test are given, a statistical procedure known as equating is used. Equating is a
statistical process which is used to adjust scores on different test forms so that the test forms
can be used interchangeably (Kolen and Brennan 2004). There are five important equating
requirements which need to be satisfied in order for a function to be called an equating. See
e.g. von Davier, Holland, and Thayer (2004), Lord (1980) and Kolen and Brennan (2004).
First, the equal construct requirement, which means that only tests which measure the same
construct should be equated. Second, the equal reliability requirement, meaning that the tests
need to be of equal reliability in order to be equated. Third, the symmetry requirement which
requires the equating transformations to be symmetrical. Fourth, the equity requirement,
which means that it should be a matter of indifference to each test taker whether test form
X or test form Y is administered. Fifth, the population invariance requirement, which means
that the equating should be the same regardless of the group of test takers on which the
equating was performed. There exist many equating methods which to the most extent
satisfy these requirements. In this guide we will concentrate on observed-score equating,
and more specifically on the observed-score kernel method of test equating which fulfill these
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requirements (von Davier et al. 2004).

The kernel method of test equating (von Davier et al. 2004) is an observed-score test equating
method comprising five steps: pre-smoothing, score probability estimation, continuization,
computation of the equating function and computation of the standard errors of the equating
function. The kernel equating method has a number of advantages over other observed-score
test equating methods. In particular, it provides explicit formulas for the standard errors
of equating in five different designs and directly uses information from the pre-smoothing
step in the estimation of these. Kernel equating can also handle equating using covariates in
a non-equivalent groups setting and provides a method to compare two different equatings
using the standard error of the difference between two equating functions. Since this is a
unified equating framework which has a large applicability both for the testing industry, the
research community and practitioners it is of high interest to create software that anyone
with an interest in equating can use. This manual introduces and exemplifies the package
kequate (Andersson, Bränberg, and Wiberg 2013), an implementation of the kernel method
of test equating using five different data collection designs in the statistical programming
environment R (R Development Core Team 2013), and is structured as follows. In Section 2
the kernel equating framework is introduced. Section 3 contains a description of how to
aggregate and sort data on the individual level and how to estimate log-linear models with
the R function glm()(stats R Development Core Team 2013). We give examples for all the
included equating designs and instruct how to decide between different model specifications
using tools provided by kequate. The package kequate is described in Section 4 and in
Section 5 examples of equating using kequate for all equating designs are given.

2. Theoretical background

This section will comprise a brief description of the kernel method of test equating. For a
complete description please read the excellent book by von Davier et al. (2004). However,
before we can go through the steps of kernel equating we need to describe the different data
collection designs used in this study. The first four are standard data collection designs (see,
e.g., Kolen and Brennan, 2004, or von Davier et al., 2004). The last data collection design
is a more uncommon case and is used if we have additional information which is correlated
with the test scores. For a detailed description please refer to Bränberg (2010) and Bränberg
and Wiberg (2011).

2.1. Data collection designs

We have incorporated the possibility of five different data collection designs:

� The equivalent groups design (EG): Two independent random samples are drawn from a
common population of test takers, P, and the test form X is administered to one sample
while test form Y is administered to the other sample. No test takers are taking both
X and Y.

� The single group design (SG): Two test forms X and Y are administered to the same
group of test takers drawn from a single population P. All test takers are taking both
X and Y.
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� The counter balanced design (CB): Two test forms X and Y are administered to the
same group of test takers drawn from a single population P. One part of the group first
takes test form X and then test form Y. The other part of the group takes the test forms
in a counterbalanced order, i.e., first test form Y and then test form X. This could also
be viewed as two EG designs or as two SG designs.

� The Non-Equivalent groups with Anchor Test design (NEAT): A sample of test takers
from population P are administered test form X, and another sample of test takers from
population Q are administered test form Y. Both samples are also administered a set
of common (i.e., anchor) items (test form A). With the NEAT design there are two
commonly used equating methods:

– Chain Equating (CE): The idea is to first link test form X to the anchor test form
A and then link test form A to test form Y.

– Post-Stratification Equating (PSE): The idea is to link both test form X and test
form Y to test form A using a synthetic population, which is a blend of populations
P and Q. The equating is performed on the synthetic population.

� The Non-Equivalent groups with Covariates design (NEC): A sample of test takers
from population P are administered test form X, and another sample of test takers from
population Q are administered test form Y. For both samples we also have observations
on background variables correlated with the test scores (i.e., covariates). Using a method
similar to the NEAT PSE case, a synthetic population is defined and an equating is
performed on this population.

2.2. The kernel method of test equating

Following the notation in von Davier et al. (2004), let X and Y be the names of the two
test forms to be equated and X and Y the scores on X and Y. We will assume that the test
takers taking the tests are random samples from a population of test takers, so X and Y are
regarded as random variables. Observations on X will be denoted by xj for j = 1, . . . , J .
Observations on Y will be denoted by yk for k = 1, . . . ,K. If X and Y are number right
scores, J and K will be the number of items plus one.

We will use
rj = P (X = xj | T) (1)

for the probability of a randomly selected individual in population T scoring xj on test X,
and

sk = P (Y = yk | T) (2)

for the probability of a randomly selected individual in population T scoring yk on test Y.

The goal is to find the link between X and Y in the form of an equipercentile equating
function in the target population T, the population on which the equating is to be done. The
equipercentile equating function is defined in terms of the cumulative distribution functions
(cdf’s) of X and Y in the target population. Let

F (x) = P (X ≤ x | T) (3)
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and
G (y) = P (Y ≤ y | T) (4)

be the cdf’s of X and Y over the target population T. If the two cdf’s are continuous and
strictly increasing the equipercentile equating function of X to Y is defined by

y = EquiY (x) = G−1 (F (x)) . (5)

The kernel method of test equating includes five steps: 1) pre-smoothing, 2) estimation of
the score probabilities, 3) continuization, 4) equating, and 5) computing the standard error
of equating (SEE) and the standard error of equating difference (SEED).

Step 1: Pre-smoothing

In pre-smoothing, a statistical model is fitted to the empirical distribution obtained from the
sampled data. We assume that much of the irregularities seen in the empirical distributions
are due to sampling error, and the goal of smoothing is to reduce this error. In equating the
raw data are two sets of univariate, bivariate or multivariate discrete distributions (depending
on the data collection design). One way to perform pre-smoothing is by fitting a polynomial
log-linear model to the proportions obtained from the raw data. We will show this for the
NEAT design. For details the interested reader is refered to, i.e., Holland and Thayer (2000)
or von Davier et al. (2004).

In the NEAT design each test taker has a score on one of the test forms and a score on
an anchor test. Let A be the score on the anchor test form A. Observations on A will be
denoted by al for l = 1, . . . , L. Let nXjl be the number of test takers with X = xj and
A = al, and nY kl be the number of test takers with Y = yk and A = al . We assume that
nXA = (nX11, . . . , nXJL)t and nY A = (nY 11, . . . , nY KL) are independent and that they each
have a multinomial distribution. The log likelihood function for X is given by

LX = cX +
∑
j,l

nXjl log (pjl) (6)

where pjl = P (X = xj ,A = al | T ). The target population T is a mixture of the two popu-
lations P and Q, T = wP + (1− w)Q, where 0 ≤ w ≤ 1.

The log-linear model for pjl is given by

log (pjl) = αX +

TX∑
i=1

xij +

TA∑
i=1

ail +

IX∑
i=1

IA∑
i′=1

xija
i′
l . (7)

The log likelihood function for Y and the log-linear model for qkl = P (Y = yk,A = al | T )
can be written in a similar way. The log-linear models can also contain additional parameters,
to take care of lumps and spikes in the marginal distributions. The specification of such models
is however not discussed further herein. (The interested reader is referred to von Davier et al.,
2004).

Step 2: Estimation of the score probabilities

The score probabilities are obtained from the estimated score distributions from step 1. The
most important part of step 2 is the definition and use of the design function. The design
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function is a function mapping the (estimated) population score distributions into (estimates
of) r and s, where r = (r1, r2, . . . , rJ)t and s = (s1, s2, . . . , sK). The function will vary
between different data collection designs. For example, in an EG design it is simply the
identity function as compared with PSE in a NEAT design where the design function is given
by (

r
s

)
=

 ∑
l

(
w +

(1−w)
∑

k qkl∑
j pjl

)
pl∑

l

(
(1− w) +

w
∑

j pjl∑
k qkl

)
ql

 (8)

where pl = (p1l, p2l, . . . , pJl)
t and ql = (q1l, q2l, . . . , qKl)

t.

Step 3: Continuization

Test score distributions are discrete and the definition of the equipercentile equating function
given in Equation 5 cannot be used unless we deal with this discreteness in some way. Prior to
the development of kernel equating, linear interpolation was usually used to obtain continuous
cdf’s from the discrete cdf’s (Kolen and Brennan, 2004). In kernel equating continuous cdf’s
are used as approximations to the estimated discrete step-function cdf’s generated in the pre-
smoothing step. Following von Davier et al. (2004) we will use a Gaussian kernel. Logistic
and uniform kernels have also been described in the literature (Lee and von Davier 2011) and
are available as options in kequate. In what follows, only the formulas for X are shown but
the computations for Y are analogous. The discrete cdf F (x) is approximated by

FhX
(x) =

∑
j

rjΦ

(
x− aXxj − (1− aX)µX

hXaX

)
(9)

where µX =
∑

j xjrj is the mean of X in the target population T, hX is the bandwidth, and
Φ (·) is the standard Normal distribution function. The constant aX is defined as

aX =

√
σ2X

σ2X + h2X
(10)

where σ2X =
∑

j (xj − µX)2 rj is the variance of X in the target population T. There are
several ways of choosing the bandwidth hX . We want the density functions to be as smooth
as possible without losing the characteristics of the distributions. We recommend the use of a
penalty function to deal with this problem, see von Davier et al. (2004). For hX the penalty
function is given by

PEN (hX) =
∑
j

(
r̂j − f̂hX

(xj)
)2

+ κ
∑
j

Bj (11)

where f̂hX
(x) is the estimated density function, i.e., the derivative of F̂hX

(x) and κ is a
constant. Bj is an indicator that is equal to one if the derivative of the density function is
negative a little to the left of xj and positive a little to the right of xj , or if the derivative
is positive a little to the right of xj and negative a little to the right of xj . Otherwise Bj is
equal to zero. With a bandwidth that minimizes PEN (hX) in Equation 11 the estimated
continuous density function f̂hX

(x) will be a good approximation of the discrete distribution
of X, without too many modes.
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Step 4: Equating

Assume that we are interested in equating X to Y. If we use the continuized cdf’s described
previously we can define the kernel equating function as

êY (x) = Ĝ−1
hY

(
F̂hX

(x)
)
, (12)

which is analog to the equipercentile equating function defined in Equation 5.

Step 5: Calculating the standard error of equating (SEE) and the standard error of
equating difference (SEED)

One of the advantages with the kernel method of test equating is that it provides a neat way
to compute the standard error of equating (SEE). The SEE for equating X to Y is given by

SEEY (x) =
√

Var (êY (x)). (13)

In kernel equating the δ-method is used to compute an estimate of the SEE. Let R and S be
the vectors of pre-smoothed score distributions. If R and S are estimated independently the
covariance can be written as

Cov

(
R̂

Ŝ

)
=

(
CRC

t
R 0

0 CSC
t
S

)
= CCt (14)

where

C =

(
CR 0
0 CS

)
. (15)

The pre-smoothed score distributions are transformed into r and s using the design function.
The Jacobian of this function is

JDF =

(
∂r
∂R

∂r
∂S

∂s
∂R

∂s
∂S

)
. (16)

In the final step of kernel equating, estimates of r and s are used in the equating function to
calculate equated scores. The Jacobian of the equating function is given by

JeY =
(

∂eY
∂r ,

∂eY
∂s

)
. (17)

If

(
R̂

Ŝ

)
is approximately normally distributed with mean

(
R
S

)
and variance given in

Equation 14, then
Var (êY (x)) = ‖JeY JDFC‖2 (18)

and
SEEY (x) = ‖JeY JDFC‖ (19)

where ‖υ‖ denotes the Euclidian norm of vector υ.
The standard error of equating difference (SEED), which can be used to compare different
kernel equating functions, is defined as

SEEDY (x) =
√
V ar (ê1 (x)− ê2 (x)) = ‖Je1JDFC− Je2JDFC‖ , (20)
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i.e., the Euclidian norm of the difference between the two vectors Je1JDFC and Je2JDFC. The
equating function is designed to transform the continuous approximation of the distribution
of X into the continuous approximation of the distribution of Y. In order to diagnose the
effectiveness of the equating function we need to consider what this transformation does to
the discrete distribution of X. One way of doing this is to compare the moments of the
distribution of X with the moments of the distribution of Y. Following von Davier et al.
(2004) we use the Percent Relative Error in the pth moments, the PRE (p), which is defined
as

PRE (p) = 100
µp (eY (X))− µp (Y)

µp (Y)
(21)

where µp (eY (X)) =
∑

j (eY (xj))
p rj and µp (Y) =

∑
k (yk)p sk.

3. Pre-smoothing using R

Before the actual equating can begin, the raw score data usually needs to be processed via a
step called pre-smoothing. In this step, the distribution of the score probabilities is estimated
using a log-linear model. The main function of kequate has been designed to be used in
conjunction with the R function glm(). The input to kequate thus preferably consists of
objects created by glm() but the option exists to provide vectors and matrices containing
estimated probabilities and design matrices from the log-linear model specification. There is
also the option of using observed proportions. In this section, we first describe a method for
converting data from the individual level into frequencies of score values for the population as
a whole and then we describe and exemplify the estimation of the log-linear models for each
data design. Lastly we discuss how the model fit for the specified log-linear models can be
assessed.

3.1. Aggregating and sorting the data

Test data often consists of data at the individual level, i.e. there is a data frame, matrix
or vector containing the score for each individual taking the test along with other possible
information about this individual such as covariates or the score on an anchor test. In order to
use such data in equating, the data needs to be converted into frequencies for each combination
of score values or score value and covariate values. kequate contains the function kefreq()

which can handle univariate and bivariate data. kefreq() has the following function call:

kefreq(in1, xscores, in2, ascores)

in1 is the individual data for test X, xscores is the vector of possible scores for test X, in2
is the individual data for the parallel test Y or anchor test A (if applicable) and ascores is
the vector of possible scores for the anchor test A. If the interest lies only in retrieving the
score frequencies of a single test with possible scores from integers 0 to 20 and the data is in
a vector simeq$bivar1$X, the frequencies are obtained by writing

R> freq <- kefreq(simeq$bivar1$X, 0:20)

This will create a data frame with two vectors: freq$X denoting the score values and
freq$frequency containing the frequencies for the particular score values. When equating
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using the equivalent groups (EG) design, the frequencies for each of the tests can be obtained
in this manner. For a single group (SG) or non-equivalent groups with anchor test (NEAT)
design, we need to consider scores from two separate tests for each individual and compute
the frequency for each combination of score values. In a NEAT design, for parallel tests X
and Y with score values from 0 to 20 and an anchor test A with score values 0 to 10, we want
two vectors of size 21*11=231. In this case, we assume that the data on the individual level
from population P is in a data frame with vectors X and A containing the score of each test
for every individual. By writing

R> SGfreq <- kefreq(simeq$bivar1$X, 0:20, simeq$bivar1$A, 0:10)

we retrieve the frequencies for each combination of scores on tests X and A, in a data frame
ordered first by the score on test A and then by the score on test X. The observed frequencies
retrieved by kefreq() can now be used to estimate the smoothed score distributions using
log-linear models as described in the following.

3.2. Estimating the score probabilities with the R function glm()

The procedure for estimating the score probability distributions differs between the equating
designs and the different procedures are discussed separately in what follows, exemplifying
the estimation methods with the R function glm(). The proportions follow a multinomial
distribution in theory, but this is equivalent to the frequencies being Poisson-distributed,
given the sum of the frequencies. So after dividing the resulting fitted values with the sum of
the frequencies, we will retrieve the same estimates as when having modelled the proportions
directly. Since modelling Poisson data is straight forward in R, we model the frequencies
themselves rather than the proportions.

Equivalent groups design

In an EG design, two groups that have been randomly selected from a common population
are given separate but parallel tests. The resulting estimated frequencies can then be used
to equate the two tests used. In selecting the univariate model for each of the two groups,
the statistical criterion AIC is recommended to be used since it has proved to be the most
effective among a number of selection strategies (Moses and Holland 2009). A simple method
is to start with the ten first moments and then remove the highest moments and take notice
of the change in AIC. When the AIC no longer decreases the model is satisfactory. Using
the function glm() in R, with FXEG being a data frame containing a vector freq with the
frequencies for each score value and a vector X of possible score values, we can write:

R> EGX <- glm(freq~I(X) + I(X^2) + I(X^3) + I(X^4) + I(X^5), family =

+ "poisson", data = FXEG, x = TRUE)

Together with the glm object from the model for Y, the object created can be supplied to
kequate to conduct an equating.

Single group design

The SG design requires the estimation of a bivariate log-linear model for test scores on X and
A. The first step is to estimate the two univariate score distributions for tests X and A. This is
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done in the same way as in the EG design above. After having obtained satisfactory univariate
models, the bivariate model needs to be estimated. The bivariate model should include the
univariate moments of the respective univariate log-linear models, along with cross-moments
between the two tests X and A. We consider for inclusion in the bivariate log-linear model
the cross-moments up to the highest moments contained in the univariate log-linear models.
By way of a criterion such as the AIC or a likelihood ratio test, the different models are then
evaluated and the most appropriate one is chosen. With the R function glm(), with a data
frame SGfreq containing vectors with the score frequencies frequency and score values X and
A, we estimate the log-linear model with two univariate moments for each of the tests and the
cross-moments X ∗A and X2 ∗A2 by writing

R> SGglm <- glm(frequency~I(X) + I(X^2) + I(A) + I(A^2) + I(A^3) + I(X):I(A)

+ + I(X^2):I(A^2), data = SGfreq, family = "poisson", x = TRUE)

Counterbalanced design

In a counterbalanced design, two independent random groups from a common population
take the same tests X and Y to be equated. However, they take the tests in a different order,
so that one group first takes test X and then test Y, while the other group first takes test
Y and then test X. The purpose of this setup is to ensure that any order effects are equally
pronounced for both of the tests. To further ensure the validity of the equating, the sample
sizes are usually chosen to be equal or almost equal between the groups. Pre-smoothing for
the counterbalanced design is done exactly like for a SG design, except in this case we fit
separate log-linear models for each of the two independent random groups.

Non-equivalent groups with anchor test design

A NEAT design contains two independent single group designs, resulting in data for two joint
distributions P and Q. The components of P and Q are defined as

pjl = P (X = xj , A = al|P ) (22)

qkl = P (Y = yk, A = al|Q) (23)

where xj is the score of the j:th item on test X, yk is the score of the k:th item of test Y and al
is the score of the l:th item of the anchor test A. There are two common methods for equating
tests in a NEAT setting: chain equating (CE) and post-stratification equating (PSE). The
pre-smoothing models for these two equating methods do not differ, so the following guide is
valid for both CE and PSE.

In the case of a NEAT design the same basic procedure as in an SG design applies but
two bivariate log-linear models instead of one must be estimated (one for each of the two
populations). The large sample sizes usually found when using a NEAT design allows for the
specification of more complicated log-linear models than in other designs, and these models
can thus cater more specifically to the particular features of the data that may arise when
conducting test equating. The following complexities in the data are common in test data
and can be modelled when sample sizes are large (von Davier, Holland and Thayer, 2004):
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a.) ”teeth” or ”gaps” in the observed frequencies which occur at regular intervals because of
scores being rounded to integer values

b.) a ”lump” at 0 in the marginal distributions caused by negative values being rounded to
0

Because of the fact that such features are common-place in test score data, they may need to
be accounted for when conducting the pre-smoothing. The way that this is carried out is to
specify additional variables in the log-linear model, indicating zero-values and gap-values. To
check for these features in the data at hand, the marginal frequencies of X and A in population
P and the marginal frequencies of Y and A in population Q should be plotted. If there are
any spikes or lumps at zero or any particular score values in these marginal frequencies, the
corresponding additional parameters should be included in the respective models. The way
that this is done using R is to create new indicator variables for the particular score values
that exhibit irregularities. As in the other designs, the data should be ordered by the score
vectors for tests Y and X as conducted in the function kefreq(). In case the data is not
aggregated using kefreq(), the data can be ordered by the following method. We assume
that the data is in a data frame PNEAT, with vectors frequency, X and A. To order such a
data frame by the A-vector and, in case of equal values of a, by the X-vector, we write:

R> PNEATordered <- PNEAT[order(PNEAT$A, PNEAT$X),]

When the data is aggregated and sorted correctly, additional variables may need to be specified
to model lumps and spikes in the observed data. Below we describe a procedure in R using
data frames and the [] operator to specify these variables. We let PNEAT be a data frame with
vectors frequency, X and A, as defined above, with the test X having score values 0:20 and
the test A having score values 0:10. Studying the marginal frequencies, we have discovered
that there is a lump at score value zero for test X and a spike at score values 5, 10, 15 and
20 for test X. In light of this, we want to specify additional variables for each of these score
values. For the zero score value and for score values 5, 10, 15 and 20, we want an indicator
variable taking on value 1 if X is equal to the particular values and for score values 5, 10, 15
and 20 we additionally want to specify a variable which takes on value 5 if X is equal to 5 and
so on for 10, 15 and 20. To create these variables we first define the new variables in the data
frame:

R> PNEAT$indx0 <- numeric(length(PNEAT$X))

R> PNEAT$ind1x <- numeric(length(PNEAT$X))

R> PNEAT$ind2x <- numeric(length(PNEAT$X))

This will create variables of equal length to the others in the data frame containing zero values.
We then use the operator [] to specify that our new variables should take on particular values
if the variable x in the data frame has the corresponding value:

R> PNEAT$indx0[PNEAT$X==0] <- 1

R> PNEAT$ind1x[PNEAT$X %in% c(5, 10, 15, 20)] <- 1

R> PNEAT$ind2x[PNEAT$X==5] <- 5

R> PNEAT$ind2x[PNEAT$X==10] <- 10

R> PNEAT$ind2x[PNEAT$X==15] <- 15

R> PNEAT$ind2x[PNEAT$X==20] <- 20
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Similarly, additional variables can be created for any particular values of the A variable.
When we have suitable data we can begin the estimation of the log-linear model. First,
univariate log-linear models are found using methods identical to the EG case, for each of the
four univariate distributions. Having specified these models, the bivariate models for each
population is specified in a manner similar to the SG case considering cross-moments up to
the highest univariate moments in each univariate log-linear model. Additionally, possible
indicator variables and moments of score values corresponding to the particular indicator
variables need to be specified. In this example we include the first three moments of the test
to be equated and the first two moments of the anchor test. An interaction term between
the first moment for the test to be equated and the anchor test is included along with an
interaction term between the first moment of the test to be equated and the second moment
of the ancor test. Each indicator variable defined above is included. For the variable ind2x

the first two moments are included. The function call to glm() is given below.

R> PNEATglm <- glm(frequency~I(X) + I(X^2) + I(X^3) + I(A) + I(A^2) +

+ I(X):I(A) + I(X):I(A^2) + I(indx0) + I(ind1x) + I(ind2x) + I(ind2x^2),

+ data = PNEAT, family = "poisson", x = TRUE)

Non-equivalent groups with covariates design

Instead of (or in addition to) using an anchor test to equate tests in a non-equivalent groups
design, covariates of test takers can be used to conduct an equating. The same framework as
in a NEAT PSE design is used in the NEC design, but inplace of an anchor test the method
uses information from covariates to equate the tests. As in the other designs, the observed
data needs to be modelled using log-linear models. In the NEC case the model specification
is somewhat more complicated, and the data management can be more laborious. In kequate
the function kefreq() cannot be used to tabulate frequency data since the covariates can be
of any type and not just integers. The aggregation of the individual data in a NEC design is
therefore not easily generalized into a single function. Instead, the data aggregation can be
done manually in R using built-in functions. We illustrate how this can be done with a simple
example. Consider a test X to be equated with a parallel test Y, which has integer score values
from 0 to 40. In addition to the test results, there exists information on the individuals in
the form of two covariates, one of which is the grade in mathematics (a quantitative variable
with possible values 1, 2 and 3) and the other is a qualitative variable representing type of
education (two values). In total, there are thus six different combinations of covariates that
are possible. The desired frequency vector is then of size 41*6. At our disposal is a data
frame (called data11) with observations from indivuduals for the test to be equated (variable
S11) and the covariates considered (variables edu and math). We want to aggregate and sort
this data so that each entry in the created vector is a frequency corresponding to a particular
combination of test score and covariate values where the data is sorted first by the grade in
mathematics, then by the type of education and lastly by the test score received. To do so
we use a combination of the functions table() and as.data.frame():

R> testfreq <- as.data.frame(table(factor(data11$S11, levels = 0:40, ordered

+ = TRUE), factor(data11$edu, levels = 1:2, ordered = TRUE),

+ factor(data11$math, levels = 1:3, ordered = TRUE), dnn = c("S11", "edu",

+ "math")))
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This will create a data frame with a single vector Freq, which contains 41*6 cells each con-
taining a frequency corresponding to the possible score values and covariate combinations.
The score and covariate vectors need now be specified. We do so by specifying a data frame,
using the rep() function to create the vectors needed:

R> testdata11 <- data.frame(frequency = testfreq$Freq, S11 = rep(0:40, 6),

+ edu = rep(1:2, each=41*3), math = rep(1:3, each = 41*2))

This call creates a data frame with the correctly sorted vectors to be used in the bivariate glm
model. To estimate the log-linear model in the NEC case we proceed just as we would in a
regular bivariate log-linear model specification. First, the univariate model for the test scores
is estimated like in the EG case (kefreq() can be used to create the score frequency vector).
A bivariate log-linear model is then specified using the moments from the univariate model
while adding the variables corresponding to the covariates. Interactions between the moments
for the tests and the covariates need to be considered along with interactions between the
covariates. In our example, math is a quantitative variable and higher moments of this variable
can thus be needed and possible interactions between these and other variables may need to
be considered. edu is a factor and thus needs to be specified as such in the glm() function
call.

R> glm11 <- glm(frequency~I(S11) + I(S11^2) + I(S11^3) + I(S11^4) +

+ I(math) + I(math^2) + factor(edu) + I(S11):I(math) + I(S11):factor(edu) +

+ I(math):factor(edu), data = data11, family = "poisson", x = TRUE)

3.3. Assessing model fit

The equating design considered does not in itself affect the way the log-linear models are
assessed for validity. There are however certain differences between assessing univariate and
bivariate models. As mentioned previously, simply using the AIC to decide on the best model
has been shown to be an effective way in the univariate case and this is the recommendation
given here. To further ensure that the selected model is satisfactory, the residuals from the
model can be analyzed. The Freeman-Tukey residuals are defined as

FTi =
√
ni +

√
ni + 1−

√
4 ∗ m̂i + 1, (24)

where ni is the i:th observed frequency and m̂i is the i:th fitted frequency. If the observed
frequencies are assumed to be Poisson distributed, then the Freeman-Tukey residuals are
approximately standard normal distributed. kequate includes the function FTres() which
calculates the Freeman-Tukey residuals from an estimated log-linear model. It takes as input
either an object of class glm or two vectors where one contains the observed frequencies and
where the other contains the estimated frequencies from the log-linear model. We write

R> FTglm <- FTres(EGX$y, EGX$fitted.values)

Due to the high number of zero frequencies in an observed bivariate test data frequency
distribution, an analysis of the Freeman-Tukey residuals is not very useful in the bivariate
case. With a bivariate log-linear model, it is instead worthwhile to see how well the estimated
distribution approximates the observed distribution by investigating the conditional means,



Bjorn Andersson, Kenny Branberg, Marie Wiberg 13

variances, skewnesses and kurtoses of the observed and estimated bivariate distributions. This
is facilitated in kequate by the function cdist() which calculates these conditional moments
for observed and estimated bivariate frequency distributions. The input given to cdist()

should be two matrices containing the observed and estimated frequencies, respectively, on
a common population. If Pest is the estimated frequency matrix and Pobs is the observed
frequency matrix, we can write

R> NEATPcdist <- cdist(Pest, Pobs)

The object returned by cdist() is of class cdist and contains four data frames which store
the conditional parameters of each distribution (for tests X and A, the output contains both
the parameters for X|A and for A|X for both the observed and the estimated distributions).
If the conditional parameters of the estimated distribution do not deviate too much from the
conditional parameters of the observed distribution, then the estimated log-linear model is
proper to use.

In selecting a bivariate log-linear model we recommend using a criterion such as the AIC or a
likelihood ratio test to compare models to each other, and then to verify the suitability of the
model by assessing the conditional parameters. If the conditional parameters are dissimilar
between the observed and estimated distributions, additional parameters may need to be
added to accurately model the observed data.

4. Kernel equating with kequate

The package kequate for R enables the equating of two parallell tests with the kernel method
of equating for the EG, SG, CB, NEAT PSE, NEAT CE and NEC designs. kequate can use
glm objects created using the R function glm() (stats R Development Core Team 2013) as
input arguments and estimate the equating function and associated standard errors directly
from the information contained therein. Support is also provided for item-response theory
models estimated using the R package ltm. The S4 system of classes and methods, a more
formal and rigorous way of handling objects in R (for details see e.g. Chambers (2008)),
is used in kequate, providing methods for the generic functions plot() and summary() for
a number of newly defined classes. The main function of the package is kequate(), which
enables the equating of two parallel tests using the previously defined equating designs. The
function kequate() has the following formal function call: kequate(design, ...) where
design is a character vector indicating the design used and ... should contain the additional
arguments which depend partly on the design chosen. The possible data collection designs
and the associated function calls are described below. Explanations of each argument that
may be supplied to kequate() are collected in Table 1.

EG: kequate("EG", x, y, r, s, DMP, DMQ, N, M, hx = 0, hy = 0, hxlin = 0,

hylin = 0, KPEN = 0, wpen = 1/4, linear = FALSE, irtx = 0, irty = 0,

smoothed = TRUE, kernel= "gaussian", slog = 1, bunif = 0.5, altopt = FALSE)

SG: kequate("SG", x, y, P, DM, N, hx = 0, hy = 0, hxlin = 0, hylin = 0,

KPEN = 0, wpen = 1/4, linear = FALSE, irtx = 0, irty = 0, smoothed = TRUE,

kernel = "gaussian", slog = 1, bunif = 0.5, altopt = FALSE)
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CB: kequate("CB", x, y, P12, P21, DM12, DM21, N, M, hx = 0, hy = 0,

hxlin = 0, hylin = 0, wcb = 1/2, KPEN = 0, wpen = 1/4, linear = FALSE,

irtx = 0, irty = 0, smoothed = TRUE, kernel = "gaussian", slog = 1,

bunif = 0.5, altopt = FALSE)

NEAT CE: kequate("NEAT_CE", x, y, a, P, Q, DMP, DMQ, N, M, hxP = 0, hyQ = 0,

haP = 0, haQ = 0, hxPlin = 0, hyQlin = 0, haPlin = 0, haQlin = 0, KPEN = 0,

wpen = 1/4, linear = FALSE, irtx = 0, irty = 0, smoothed = TRUE,

kernel = "gaussian", slog = 1, bunif = 0.5, altopt = FALSE)

NEAT PSE: kequate("NEAT_PSE", x, y, P, Q, DMP, DMQ, N, M, w = 0.5, hx = 0,

hy = 0, hxlin = 0, hylin = 0, KPEN = 0, wpen = 1/4, linear = FALSE,

irtx = 0, irty = 0, smoothed = TRUE, kernel = "gaussian", slog = 1,

bunif = 0.5, altopt = FALSE)

NEC: kequate("NEC", x, y, P, Q, DMP, DMQ, N, M, hx = 0, hy = 0, hxlin = 0,

hylin = 0, KPEN = 0, wpen = 1/4, linear = FALSE, irtx = 0, irty = 0,

smoothed = TRUE, kernel = "gaussian", slog = 1, bunif = 0.5, altopt = FALSE)

The arguments containing the score probabilities and design matrices that are supplied to
kequate can either be objects of class glm or design matrices and estimated probability vec-
tors/matrices. For ease of use, it is recommended to estimate the log-linear models using the
R function glm() and utilize the objects created by glm() as input to kequate(). For help in
estimating log-linear models, see Section 3. Optional arguments to specify the continuization
parameters directly are also available for all equating designs. In addition, there exists the
option to only conduct a linear equating and an option to use unsmoothed input proportions.
By default a Gaussian kernel is used but the option to use either a logistic or uniform ker-
nel is provided. In the NEAT PSE case, the weighting of the synthetic populations can be
specified. For all designs, if using pre-smoothed input data, the equated values and the SEE
are calculated. Using unsmoothed data, SEE is calculated only in the EG case. The SEED
between the linear equating function and the kernel equipercentile equating function is also
calculated. For each design there is also the option to use data from an IRT model to conduct
an IRT observed-score equating using the kernel equating framework. This is accomplished
by supplying matrices of probabilities to answer each question correctly for each ability level
on two parallell tests X and Y, as estimated beforehand using an IRT model.

The package kequate creates an object of class keout which includes information about the
equating. To access information from an object of class keout, a number of get-functions
are available. They are described in Table 2. Methods for the class keout are implemented
for the functions plot() and summary(). Additionally, the function genseed() can be used
to compare any two equatings that utilize the same log-linear models. It takes as input two
objects created by kequate and calculates the SEED between them. A useful comparison is
for example between a chain equating and a post-stratification equating in the NEAT design.
A method for the function plot() is implemented for the objects created by genseed(). The
package also includes a function kefreq() to tabulate frequency data from individual test
score data and functions FTres() and cdist() to be used when specifying the log-linear
pre-smoothing models. FTres() calculates the Freeman-Tukey residuals given a specified
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Argument(s) Designs Description

x, y ALL Score value vectors for test X and test Y.

a CE Score value vector for the anchor test A.

r, s EG Score probability vectors for tests X and Y. Alternatively
objects of class glm.

P SG, CE, PSE,
NEC

Matrix of bivariate score probabilities for tests X and Y (SG),
tests X and A (CE, PSE), or test X and covariates (NEC) on
population P. Alternatively an object of class glm.

Q CE, PSE, NEC Matrix of bivariate score probabilities for tests Y and A (CE,
PSE) or test Y and covariates (NEC) on population Q. Al-
ternatively an object of class glm.

P12, P21 CB Matrices of bivariate score probabilities for tests X and Y.
Alternatively objects of class glm.

DMP, DMQ CE, PSE, NEC Design matrices for the specified bivariate log-linear models
on populations P and Q, respectively (or groups taking test
X and Y, respectively, in an EG design). Not needed if P and
Q are of class glm.

DM SG Design matrix for the specified bivariate log-linear model.
Not needed if P is of class glm.

DM12, DM21 CB Design matrices for the specified bivariate log-linear models.
Not needed if P12 and P21 is of class glm.

N ALL The sample size for population P (or the group taking test X
in the EG design). Not needed if r, P, or P12 is of class glm.

M EG, CB, CE,
PSE, NEC

The sample size for population Q (or the group taking test Y
in the EG design). Not needed if s, Q, or P21 is of class glm.

w PSE Optional argument to specify the weight given to population
P. Default is 0.5.

hx, hy, hxlin, hylin EG, SG, CB,
PSE, NEC

Optional arguments to specify the continuization parameters
manually.

hxP, hyQ, haP, haQ,
hxPlin, hyQlin, haPlin,
haQlin

CE Optional arguments to specify the continuization parameters
manually.

wcb CB The weighting of the two test groups in a counterbalanced
design. Default is 1/2.

KPEN ALL Optional argument to specify the constant used in deciding
the optimal continuization parameter. Default is 0.

wpen ALL An argument denoting at which point the derivatives in the
second part of the penalty function should be evaluated. De-
fault is 1/4.

linear ALL Logical denoting if a linear equating only is to be performed.
Default is FALSE.

irtx, irty ALL Optional arguments to provide matrices of probabilities to
answer correctly to the questions on the parallel tests X and
Y, as estimated in an IRT model.

smoothed ALL A logical argument denoting if the data provided are pre-
smoothed or not. Default is TRUE.

kernel ALL A character vector denoting which kernel to use, with options
”gaussian”, ”logistic”, ”stdgaussian” and ”uniform”. Default is
”gaussian”.

slog ALL The parameter used in the logistic kernel. Default is 1.

bunif ALL The parameter used in the uniform kernel. Default is 0.5.

altopt ALL Logical which sets the bandwidth parameter equal to a vari-
ant of Silverman’s rule of thumb. Default is FALSE.

Table 1: Arguments supplied to kequate().
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log-linear model and cdist() calculates the conditional means, variances, skewnesses and
kurtoses of the tests to be equated given an anchor test, for both the fitted distributions and
the observed distributions. For details on how to use the functions kefreq(), FTres() and
cdist(), see Section 3.

5. Examples

We exemplify the main function kequate() by equating using each of the designs available in
kequate. We demonstrate how to use different types of input arguments and how each optional
argument can be used. Additionally, we show how to utilize functions that are common to
all designs.

5.1. Equivalent groups design

Now, let the parallel tests X and Y have common score vectors <0, 1, 2, . . . , 19, 20>. The
tests are each administered to a randomized group drawn from the same population, thus
we have an EG design. We assume that the log-linear models have been specified using the
glm() function in R and that two objects EGX and EGY have been created. To equate the two
tests using an equipercentile equating with pre-smoothing, we call the function kequate() as
follows:

R> keEG <- kequate("EG", 0:20, 0:20, EGX, EGY)

This will create an R object keEG of class keout containing information about the equating,
retrieved by using the functions described in Table 1. With the EG design, it is also possible
to equate two tests using the full kernel equating framework with observed data instead of pre-
smoothed data. The additional argument smoothed = FALSE needs to be given to kequate()

in such a case. As an example, with observed frequency vectors EGX and EGY, we can write:

R> keEGobs <- kequate("EG", 0:20, 0:20, EGX$y/1453, EGY$y/1455, N = 1453,

+ M = 1455, smoothed = FALSE)

Function Output

getEquating() A data frame with the equated values, SEEs and other information
about the equating.

getPre() A data frame with the PRE for the equated distribution.

getType() A character vector describing the type of equating conducted.

getScores() A vector containing the score values for the equated tests.

getH() A data frame containing the values of h used in the equating.

getEq() A vector containing the equated values.

getEqlin() A vector containing the equated values of the linear equating.

getSeelin() A vector containing the SEEs for the equated values of the linear
equating.

getSeed() An object of class genseed containing the SEED between the
KE-equipercentile equating and the linear equating (if applicable).

Table 2: Functions to retrieve information from the resulting keout objects.
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The object created is of class keout and contains similar information to an object from an
equating with pre-smoothed data. To print useful information about the equating, we can
utilize the summary() function. Using the EG example above, we write:

R> summary(keEG)

Design: EG equipercentile

Kernel: gaussian

Sample Sizes:

Test X: 1453

Test Y: 1455

Score Ranges:

Test X:

Min = 0 Max = 20

Test Y:

Min = 0 Max = 20

Bandwidths Used:

hx hy hxlin hylin

1 0.6149381 0.5876612 3807.166 3935.618

Equating Function and Standard Errors:

Score eqYx SEEYx

1 0 -0.2241901 0.3336964

2 1 0.8119515 0.4999345

3 2 2.0698233 0.4448023

4 3 3.3264659 0.3309315

5 4 4.5052857 0.2618649

6 5 5.6111928 0.2252960

7 6 6.6642914 0.2022103

8 7 7.6848680 0.1864710

9 8 8.6910773 0.1780239

10 9 9.6985119 0.1761879

11 10 10.7194306 0.1779169

12 11 11.7612527 0.1803009

13 12 12.8245174 0.1831748

14 13 13.9012029 0.1880667

15 14 14.9749203 0.1941770

16 15 16.0239970 0.1980949

17 16 17.0264907 0.1994432

18 17 17.9642900 0.2025414

19 18 18.8237650 0.2050840

20 19 19.5971796 0.1850748

21 20 20.3299513 0.1279824
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Comparing the Moments:

PREYx

1 0.005767558

2 0.010243209

3 0.026481413

4 0.056344177

5 0.104575447

6 0.176517969

7 0.276731825

8 0.408619497

9 0.574492121

10 0.775781278

The summary() function can be used in kequate to print information from any object of class
keout. The output is similar for all designs. The first part contains information about the
score range and bandwidths. The second part contains the equating function with its standard
error. Finally, the percent relative error (PRE) is given.

5.2. Single group design

Besides equating, kequate allows for the linking of two tests of abitrary lengths. Let X and
A be two tests to be linked, with test X having 20 items and test A having 10 items. In a
single group design, we let a random group of individuals from a population take both test
X and test A. For this design we then have combinations of scores for the two tests for each
individual, which we tally to get the frequency for each combination of scores. Usually we
specify a log-linear model for the observed frequencies. In the following, let SGglm be a glm

object containing a suitable bivariate log-linear model specification. To link tests X and A
we write

R> keSG <- kequate("SG", 0:20, 0:10, SGglm)

We retrieve a summary of this linking by writing

R> summary(keSG)

Design: SG equipercentile

Kernel: gaussian

Sample Sizes:

Test X: 1000

Test Y: 1000

Score Ranges:

Test X:

Min = 0 Max = 20
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Test Y:

Min = 0 Max = 10

Bandwidths Used:

hx hy hxlin hylin

1 0.615916 0.5192427 4031.951 2623.711

Equating Function and Standard Errors:

Score eqYx SEEYx

1 0 -0.73997910 0.04929646

2 1 -0.34600814 0.06297769

3 2 0.02819245 0.08033265

4 3 0.47091652 0.10012015

5 4 0.99425842 0.10531106

6 5 1.58837831 0.10359513

7 6 2.22173937 0.09303308

8 7 2.88822251 0.08364760

9 8 3.56740461 0.08089167

10 9 4.25360747 0.07926449

11 10 4.95021359 0.07900888

12 11 5.64724113 0.08105965

13 12 6.33976377 0.08206030

14 13 7.03030445 0.08484337

15 14 7.70567553 0.09402136

16 15 8.34635783 0.10273328

17 16 8.94117251 0.10360049

18 17 9.45801753 0.09695126

19 18 9.89326490 0.07837113

20 19 10.26592870 0.06199123

21 20 10.66924269 0.04817069

Comparing the Moments:

PREYx

1 -0.0063317181

2 0.0002226963

3 -0.0043704370

4 0.1168442446

5 0.3794920377

6 0.8024039111

7 1.3969647553

8 2.1711231238

9 3.1308754446

10 4.2812771712

Now, let’s say we have done the pre-smoothing using another function in R or using an
external software package and want to supply kequate() with the relevant information from
this model. The expected class of the argument P is then a matrix of estimated bivariate
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0 0 0 0 0 0 0
1 1 0 0 0 0 0
...

...
...

...
...

...
...

19 361 0 0 0 0 0
20 400 0 0 0 0 0
0 0 1 1 1 0 0
1 1 1 1 1 1 1
2 4 1 1 1 2 4
...

...
...

...
...

...
...

20 400 1 1 1 20 400
0 0 2 4 8 0 0
1 1 2 4 8 2 4
...

...
...

...
...

...
...

20 400 2 4 8 40 1600
...

...
...

...
...

...
...

0 0 10 100 1000 0 0
1 1 10 100 1000 10 100
...

...
...

...
...

...
...

20 400 10 100 1000 200 40000


Table 3: The design matrix from the SG log-linear model specification.

probabilities from the log-linear model. Additionally we need to specify the arguments DM

and N in the kequate() function call. The object DM is the design matrix from the log-
linear model, which should be an object of class matrix containing values of the explanatory
variables for each score value combination provided in the log-linear model specification while
the object N is the sample size. To provide the same log-linear model as in the above function
call, but using these additional arguments instead of a glm object, we define the matrix DMSG,
of size 241 ∗ 7, as an object of class matrix containing cells as in the matrix given in Table 3
below. We then link the two tests by writing

R> keSGDM <- kequate("SG", 0:20, 0:10, P = PSG, DM = DMSG, N = 1000)

The same linking is then conducted, since the log-linear models are identical between the two
different function calls.

5.3. Counterbalanced design

The counterbalanced design features two separate groups taking two tests, X and Y, to be
equated. One of the groups takes test X first and then test Y, while the other group first takes
test Y and then takes test X. In principle, the counterbalanced design can be viewed as two
single group designs utilized in conjunction. For each group, a separate bivariate log-linear
model is specified just like in the SG case. The two log-linear models are then provided to
kequate() and tests X and Y are equated. We assume that the log-linear models have been
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specified and that two objects, CBglm12 and CBglm21 have been created using the R function
glm(). In a CB design we then write

R> keCB <- kequate("CB", 0:40, 0:40, glmCB12, glmCB21)

Unique to the CB design is the argument wcb, which specifies the weighting of the two groups
taking the test. The default is wcb = 1/2, meaning that the two groups are given the same
weight.

5.4. Non-equivalent groups design

Chain equating

In a NEAT design, let the parallel tests X and Y have common score vectors <0, 1, 2, . . . , 19,
20> and let the anchor test A have the score vector <0, 1, 2, . . . , 9, 10>. Using chain equating,
we can equate these two tests without assuming that the group taking test X and the group
taking test Y come from the same population. In chain equating, this is accomplished by first
linking test X to the anchor test A, and then linking the anchor test A to the test Y. We
assume that the log-linear model is estimated using a method similar to that in Section 3.2,
and that PNEATglm and QNEATglm are the resulting glm objects. We equate the two tests by
writing

R> keNEATCE <- kequate("NEAT_CE", 0:20, 0:20, 0:10, PNEATglm, QNEATglm)

This creates a glm object keNEATCE which can be used as input to the generic functions plot()
and summary(), among others. Thus, we plot the the equating function and the standard
error of equating by writing

R> plot(keNEATCE)

The resulting plot can be seen in Figure 1.

Post-stratification equating

We again want to equate two tests X and Y with common score vectors <0, 1, 2, . . . , 19,
20>. By using an anchor test we can equate these tests without assuming that the populations
taking each test are perfectly identical. The log-linear model estimation procedure for CE
and NEAT do not differ, so we again suppose that FPNEATglm and FQNEATglm are appropriate
glm objects containing bivariate log-linear models over P and Q respectively. We can then
equate the tests X and Y in a NEAT PSE design by writing:

R> keNEATPSE <- kequate("NEAT_PSE", 0:20, 0:20, PNEATglm, QNEATglm)

This will create an object of class keout containing information about the equating. No
matter the design used, the objects are still of the same class with certain slots filled in while
others are not depending on the design.

Like for all objects of class keout, we can plot the object FNEATPSE by writing:

R> plot(keNEATPSE)
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Figure 1: The equated values and corresponding SEE for each score value in a NEAT CE
design.
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The resulting graph is shown in Figure 2, where the first plot compares the score values on
X with the equated values and where the second plot gives the standard error of the equated
values for each score value of X. The same type of graph is plotted for all equating designs.
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Figure 2: The equated values and corresponding SEE for each score value in a NEAT PSE
design.

In the above function calls, the default settings have been used. Under the default settings,
both a KE-equipercentile equating and a linear equating is done. The continuization parame-
ters will by default be set to the optimal value in the KE-equipercentile case and to 1000*std
error for the test scores in the linear case. It is possible to choose these parameters manually
by specifying additional arguments in the function call. With a NEAT PSE design there are
four continuization parameters to consider: hx, hy, hxlin and hylin. As an example, we can
write:

R> keNEATPSEnew <- kequate("NEAT_PSE", 0:20, 0:20, PNEATglm, QNEATglm, hx =

+ 0.5, hy = 0.5, hxlin = 1000, hylin = 1000)
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Equating using covariates

In the NEC design, instead of using an anchor test to enable the equating of two tests when the
groups taking the test are not equivalent, we utilize background information on the individuals
taking the tests. We conduct the equating based on the log-linear model specification given
for the non-equivalent groups with covariates design in Section 3.2. The glm-objects NECPglm
and NECQglm for each test have been specified and we equate the two versions of the test by
writing

R> NECtest2012 <- kequate("NEC", 0:40, 0:40, glm12, glm11)

The output is given below, showing that test X is slightly more difficult when we have con-
ditioned on relevant background variables. The estimated standard errors are small for the
score values with high sample sizes but for very low and very high score values the standard
errors are higher.

R> summary(NECtest2012)

Design: NEAT/NEC PSE equipercentile

Kernel: gaussian

Sample Sizes:

Test X: 10000

Test Y: 10000

Score Ranges:

Test X:

Min = 0 Max = 40

Test Y:

Min = 0 Max = 40

Bandwidths Used:

hx hy hxlin hylin

1 0.7349791 0.6419202 4942.594 4992.187

Equating Function and Standard Errors:

Score eqYx SEEYx

1 0 -1.3451733 0.18440764

2 1 -0.9602358 0.21184555

3 2 -0.5965234 0.24086116

4 3 -0.1807460 0.29052409

5 4 0.3718115 0.39285575

6 5 1.2026127 0.55387445

7 6 2.3858738 0.63292883

8 7 3.7556148 0.56340012

9 8 5.1190791 0.44154993

10 9 6.4000732 0.33341712
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11 10 7.5933184 0.25256026

12 11 8.7145722 0.19557255

13 12 9.7815387 0.15626443

14 13 10.8092981 0.12949489

15 14 11.8101771 0.11144626

16 15 12.7944755 0.09930141

17 16 13.7711410 0.09101927

18 17 14.7481911 0.08520129

19 18 15.7327840 0.08096997

20 19 16.7308141 0.07784470

21 20 17.7459113 0.07563340

22 21 18.7779679 0.07433909

23 22 19.8219681 0.07404189

24 23 20.8685273 0.07474435

25 24 21.9068450 0.07629801

26 25 22.9285493 0.07851807

27 26 23.9299209 0.08136647

28 27 24.9117372 0.08505367

29 28 25.8778739 0.09008035

30 29 26.8339312 0.09728423

31 30 27.7863959 0.10788864

32 31 28.7423417 0.12351269

33 32 29.7095326 0.14614045

34 33 30.6968516 0.17811935

35 34 31.7150841 0.22226129

36 35 32.7781764 0.28196733

37 36 33.9051490 0.36089590

38 37 35.1226443 0.46049481

39 38 36.4664776 0.56793437

40 39 37.9666641 0.60513954

41 40 39.4943127 0.39106744

Comparing the Moments:

PREYx

1 0.0004354898

2 0.0006263782

3 0.0017850002

4 0.0039847488

5 0.0069822363

6 0.0098190710

7 0.0105350784

8 0.0060890515

9 -0.0075719942

10 -0.0353342991

R> plot(NECtest2012)
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The resulting plot is seen in Figure 3. kequate enables the usage of logistic and uniform
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Figure 3: Equated values and SEE in the case of equating with covariates.

kernels in addition to the default gaussian kernel. To utilize a different kernel the argument
kernel is specified in the kequate() function call. Below, the previously defined log-linear
models are used to equate the two tests in the NEC design using a logistic and a uniform
kernel.

R> NECtestL <- kequate("NEC", 0:40, 0:40, glm12, glm11, kernel = "logistic")

R> NECtestU <- kequate("NEC", 0:40, 0:40, glm12, glm11, kernel = "uniform")

In this case the equating function is almost identical between the three kernels but there are
some differences in the standard error of equating for low and high score values, which can
be seen in Figure 4.

5.5. Additional features

kequate also enables IRT observed-score equating (IRT-OSE) using the arguments irtx and
irty. We let irtmatx and irtmaty be matrices where each column represents an ability level
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Figure 4: SEE for three different kernels in the case of equating with covariates.

in an IRT model and each row represents a question on the test to be equated. Each cell in
the matrix should then contain the estimated probability to answer correctly to a question
on the parallel tests for a certain ability level. To equate using IRT-OSE, we write:

R> keEGirt <- kequate("EG", 0:20, 0:20, EGX, EGY, irtx = simeq$irt2, irty =

+ simeq$irt1)

This will instruct kequate() to conduct an IRT-OSE in the kernel equating framework in
addition to a regular equipercentile equating. It is possible to use unsmoothed frequencies
while conducting an IRT-OSE. Specifying linear = TRUE will instruct kequate() to do a
linear equating for both the regular method and for the IRT-OSE. Using IRT-OSE is not
limited to an EG design. It can be used as a supplement in any of the designs available in
kequate.

For all designs it is also possible to specify the constants KPEN and wpen used in finding the
optimal continuization parameters. Defaults are KPEN = 0 and wpen = 1/4. Additionally, the
logical argument linear can be used to specify that a linear equating only is to be performed,
where default is linear = FALSE. Given two different equating functions derived from the
same log-linear models, the SEED between two equatings can be calculated. In kequate, the
function genseed() takes as input two objects of class keout and calculates the SEED between
two kernel equipercentile or linear equatings. By default the kernel equipercentile equatings
are used. To instead compare two linear equatings to each other, the logical argument linear
= TRUE should be used when calling genseed(). The output from genseed() is an object of
class genseed which can be plotted using plot(), creating a suitable plot of the difference
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between the equating functions and the associated SEED. To compare a NEAT PSE equating
to a NEAT CE design and to plot the resulting object, we write:

R> SEEDPSECE <- genseed(keNEATPSE, keNEATCE)

R> plot(SEEDPSECE)

The resulting plot is seen in Figure 5. Given an object of class keout created by kequate()
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Figure 5: The difference between PSE and CE in a NEAT design for each score value with
the associated SEED.

using the function call linear = FALSE (default), the SEED between the KE-equipercentile
and the linear equating functions can be retrieved by using the getSeed() function. The
function getSeed() returns an object of class genseed which can be plotted using the generic
function plot(), resulting in a graph similar to the one in Figure 5.
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