
JSS Journal of Statistical Software
November 2013, Volume 55, Issue 9. http://www.jstatsoft.org/

On Circulant Embedding for Gaussian Random

Fields in R

Tilman M. Davies
University of Otago

David J. Bryant
University of Otago

Abstract

The high-dimensionality typically associated with discretized approximations to Gaus-
sian random fields is a considerable hinderance to computationally efficient methods for
their simulation. Many direct approaches require spectral decompositions of the asso-
ciated covariance matrix and so are unable to complete the solving process in a timely
fashion, if at all. However under certain conditions, we may construct block-circulant
versions of the covariance matrix at hand thereby allowing access to fast-Fourier methods
to perform the required operations with impressive speed. We demonstrate how circulant
embedding and subsequent simulation can be performed directly in the R language. The
approach is currently implemented in C for the R package RandomFields, and used in
the recently released package lgcp. Motivated by applications dealing with spatial point
processes we restrict attention to stationary Gaussian fields on R2, where sparsity of the
covariance matrix cannot necessarily be assumed.

Keywords: multivariate normal, fast-Fourier transform, point pattern.

1. Introduction

The utility of the fast-Fourier transform (FFT) in reducing the computational costs asso-
ciated with the evaluation of complicated problems is well understood. It can occasionally
be difficult, however, to interpret the rather abstract notions associated with translating this
technique to fit given applications. To this end, authors of more detailed works provide gen-
eralized instructions on how it may be performed. For example, Wand and Jones (1995, Ap-
pendix D) demonstrate how the FFT is employed to dramatically increase the speed of kernel
density estimation, and Dietrich and Newsam (1993) and Wood and Chan (1994) discuss use
of the FFT in terms of multidimensional Gaussian fields, techniques subsequently accessed
for spatial point pattern modeling using the log-Gaussian Cox process (LGCP) by Møller,
Syversveen, and Waagepetersen (1998).

http://www.jstatsoft.org/

2 On Circulant Embedding for Gaussian Random Fields in R

It can be especially useful, particularly from the point of view of users of the methodology,
to express what may be considered as rather abstract mathematical notions in an applied,
intuitively sensible fashion. Motivated primarily by the analysis of planar point patterns and
their underlying intensity functions, the core aim of this work is to therefore augment, in a
practical sense, the theory-based instructions in Appendix E of Møller and Waagepetersen
(2004) for simulation of Gaussian fields on a restricted region W ⊂ R2 via circulant embedding
and the two-dimensional FFT. This goal is achieved in the form of a simple tutorial in R (R
Core Team 2013), with conceptual illustrations supported by a clear coding strategy.

The remainder of this paper is structured as follows. Section 2 introduces the aim of gener-
ating a realization of a spatially continuous Gaussian field on a finite subset of the plane by
considering the discretization of the region into a set of disjoint cells. Section 3 outlines the
procedure that must be taken in order to validate use of the FFT for the Gaussian field on
W , by considering a torus-wrapped extension of a rectangular lattice over the region. The
speed and efficiency of the FFT approach in generating single realizations within the local
R environment is compared against alternative methods in Section 4, and Section 5 times
multiple realizations. Concluding remarks are provided in Section 6.

2. Basic concept

Consider a stationary, spatially continuous Gaussian field Y on R2 with mean µ ≡ µ(x) and
stationary, isotropic covariance function σ2r(‖x − y‖, φ), where σ2 is the (scalar) variance,
‖ · ‖ denotes Euclidean distance and r is a specified correlation function which also depends
on a scale parameter φ. We are typically interested in Y on W ⊂ R2; x,y ∈ W , with W a
bounded region with Lebesgue measure |W | > 0. To simulate a realization of Y in practice,
we must discretize W into a suitably fine set of d disjoint cells, each of which is assumed to
be a single component of the d-dimensional multivariate Gaussian variable Y . The simplest
strategy (and as it happens, a strategy which works well for implementation of the FFT) is
to construct a (M + 1) × (N + 1) grid over the encapsulating rectangle AW ; M,N ≥ 1, so
that

Y ∼ N(µ,ΣY), (1)

where, according to our assumptions about the process, µ is the d = MN -dimensional vector
of the stationary process mean µ, and ΣY is the MN ×MN -dimensional covariance matrix
(owing to the fact we use the grid cell centroids to define the dependence structure – this
will become clearer in a moment). The covariance matrix is computed from the MN ×MN -
dimensional set of Euclidean distances D; see Equation 4 below.

Represent the maximum ranges spanning W (and hence AW) along the x- and y-axes with
Rx(A), and Ry(A) respectively. Defining ∆x = Rx(A)/M and ∆y = Ry(A)/N to be the
horizontal and vertical grid spacings respectively, a grid I is constructed over AW . This is
given as

I =
[
(xmin + ∆xm, ymin + ∆yn) : m ∈ {0, . . . ,M}, n ∈ {0, . . . , N}

]
, (2)

where obviously Rx(I) ≡ Rx(A) and Ry(I) ≡ Ry(A), and xmin, ymin are the lowest (bot-
tom left) coordinates of AW . Important calculations such as finding inter-cell distances and
determining region inclusion are defined in terms of the lattice of cell centroids:

C(m,n) = [xmin + (m− 0.5)∆x, ymin + (n− 0.5)∆y]; m = 1, . . . ,M ;n = 1, . . . , N. (3)

Journal of Statistical Software 3

The covariance matrix is computed from the MN×MN cell-centroid-wise matrix of Euclidean
distances D. Let scalar indices i ∈ {1, . . . ,MN} and j ∈ {1, . . . ,MN} uniquely reference
each centroid (m,n) within I. Then

D[i, j] = ‖C(i) − C(j)‖, (4)

thus allowing
ΣY [i, j] = σ2r(D[i, j];φ).

For simplicity, we will set M = N in this example. Figure 1 displays an irregular study
region W upon which I defined as a 30× 30 rectangular grid (hence 29× 29 cells) has been
superimposed. (Aside: This is the spatial window for the Chorley-Ribble cancer data available
in the package spatstat; Baddeley and Turner 2005). The spatial window is obtained with

R> library("spatstat")

R> data("chorley", package = "spatstat")

R> W <- chorley$window

R> AW <- as.rectangle(W)

R> W

window: polygonal boundary

enclosing rectangle: [343.45, 366.45] x [410.41, 431.79] km

To construct I and obtain the grid centroids as per Equations 2 and 3, we enlist a helper
function grid.prep, defined fully in the replication code in the supplementary files. Briefly,
this function takes a polygonal (or rectangular) spatial window of class owin from spatstat
as W, and requires the user to specify the number of cells in the horizontal M and vertical N
directions (M and N in our present notation). The final argument, ext, is used in circulant
embedding procedures and will be explained in Section 3.

R> M <- N <- 29

R> mygrid <- grid.prep(W = W, M = M, N = N, ext = 2)

The returned object mygrid is a named list comprised of numeric vectors giving the grid
and centroid locations, as well as additional information relevant to the lattice which will be
explained in the article as needed. Using mygrid, the code producing Figure 1 is given in the
replication code in the supplementary files.

Using the horizontal and vertical centroid coordinates (mcens and ncens respectively) from
the list returned by grid.prep, we compute the inter-cell distance matrix D. This is straight-
forwardly achieved by taking (squared) differences between axis-specific ‘coordinate matrices’
with transposed versions of themselves:

R> cent <- expand.grid(mygrid$mcens, mygrid$ncens)

R> mmat <- matrix(rep(cent[, 1], M * N), M * N, M * N)

R> nmat <- matrix(rep(cent[, 2], M * N), M * N, M * N)

R> D <- sqrt((mmat - t(mmat))^2 + (nmat - t(nmat))^2)

Now assume, for the sake of illustration, we have defined r to be the exponential correla-
tion function such that r(u) = exp{−|u|/φ}. After specifying desired variance and scale
parameters for the process, we find the covariance matrix corresponding to Y as

4 On Circulant Embedding for Gaussian Random Fields in R

Figure 1: The regular rectangular grid I constructed over AW . A realization of Y will initially
occur over all cells in I. Dark green shading indicates those cells whose centroids fall inside
the irregular W , light green otherwise.

R> sigma <- 5

R> phi <- 1

R> r <- function(u, phi) exp(-abs(u)/phi)

R> SIGMA.Y <- sigma^2 * r(D, phi)

R> dim(SIGMA.Y)

[1] 841 841

R> SIGMA.Y[1:6, 1:6]

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 25.0000000 11.310962 5.117515 2.315361 1.047558 0.4739557

[2,] 11.3109624 25.000000 11.310962 5.117515 2.315361 1.0475583

[3,] 5.1175148 11.310962 25.000000 11.310962 5.117515 2.3153607

[4,] 2.3153607 5.117515 11.310962 25.000000 11.310962 5.1175148

[5,] 1.0475583 2.315361 5.117515 11.310962 25.000000 11.3109624

[6,] 0.4739557 1.047558 2.315361 5.117515 11.310962 25.0000000

Assuming provision of a mean value µ, we are now ready to simulate realizations of this
particular field. For simulation of Y (u), u ∈ AW , we require the eigendecomposition of ΣY ;
an operation that can be computed faster and more efficiently with the FFT (in comparison
to other methods) when dealing with circulant, and in our two-dimensional application, block
circulant matrices. Albeit symmetrical, ΣY is in its current form not block-circulant. To
overcome this issue, and therefore have access to the Fourier transform methods, we must
artificially embed ΣY in its own circulant matrix.

Journal of Statistical Software 5

Figure 2: The extended rectangular grid Iext over Aext,W . Once more, dark green shading
indicates those cells whose centroids fall inside the irregular W , light green otherwise.

3. Circulant embedding

Circulant embedding of ΣY is achieved by considering Y on an extended (Mext+1)×(Next+1)
grid at least twice the cell-size of the original, in the sense that Mext ≥ 2M and Next ≥ 2N .
This is necessary to avoid the behavior of the field within the sub-region of interest, namely
W , becoming contaminated by so-called ‘wrap-around’ effects owing to the periodic nature
of the Fourier transform.

Denote the extended encapsulating rectangle by AW,ext. We now consider simulation of

Yext ∼ N(µext,ΣYext), (5)

where µext and ΣYext are defined as in Equation 1, except now increased in size to correspond
to the extended grid. The new grid will be denoted with Iext:

Iext =
[
(xmin + ∆xm, ymin + ∆yn) : m ∈ {0, . . . ,Mext}, n ∈ {0, . . . , Next}

]
, (6)

giving a new set of centroids

C
(m,n)
ext = [xmin + (m− 0.5)∆x, ymin + (n− 0.5)∆y]; m = 1, . . . ,Mext, n = 1, . . . , Next. (7)

Suppose we wish to extend I from the previous section the minimum permitted amount,
setting Mext = Next = 58. In our earlier execution of grid.prep this is precisely what
was achieved by setting ext = 2 (the extension factor). Included in mygrid are vectors

corresponding to the coordinates of Iext and C
(m,n)
ext for this extended grid size. Figure 2

shows the original grid I extended to Iext; code is given in the supplementary files.

The block-circulant covariance matrix ΣYext is now obtained using the extended cell-centroid-
wise Euclidean distance matrix Dext. This is not, however, computed with ‘raw’ Euclidean

6 On Circulant Embedding for Gaussian Random Fields in R

Figure 3: Left: An abstract ‘inflated’ representation of the extended lattice of cells wrapped
on a torus. Right: Comparing raw (dashed, pink) and minimum torus (solid, blue) Euclidean
distance calculation between two distinct cell centroids (•, black) on the extended lattice.
Directional markers (<<, red) on the solid lines indicate the continuity of the extended grid
as a torus.

distances between distinct centroids in Cext. To satisfy the circulant requirement for imple-
mentation of the FFT, the distances upon which ΣYext is defined must correspond to wrapping
the extended lattice on a torus and only thereafter finding the minimum Euclidean distances.

Wood and Chan (1994), Section 6 of Møller et al. (1998) and Appendix E in Møller and
Waagepetersen (2004) give details on how this is achieved. Briefly,

Dext[i, j] =
{

min [absm(i, j), Rx(AW,ext)− absm(i, j)]2

+ min [absn(i, j), Ry(AW,ext)− absn(i, j)]2
} 1

2
, (8)

where Rx(AW,ext) and Ry(AW,ext) represent the width and height of AW,ext. Furthermore,

denoting the horizontal and vertical positions of centroid i with C
(i)
ext,m and C

(i)
ext,n respectively,

absm(i, j) = |C(i)
ext,m − C

(j)
ext,m|; subscript n indicating vertical differences.

Figure 3 gives an abstract impression of the torus-wrapping procedure with respect to the
study region of interest (3D plotting achieved using package rgl; see Adler and Murdoch
2012), and shows the difference between what we will term the ‘raw’ Euclidean distance on
the extended grid, and the minimum distance on the torus-wrapped version thereof, between
two arbitrarily chosen locations. As we can see for this particular pair of centroids, the
distance matrix would include the torus distance.

To compute the required circulant difference matrix Dext for our example, we utilize the com-
ponents M.ext and N.ext (scalars – the extended grid size); cell.width and cell.height

(scalars – the cell size); and mcens.ext and ncens.ext (vectors of length M.ext and N.ext

respectively – the centroids of the extended grid along both axes) from mygrid. The following

Journal of Statistical Software 7

code computes Rx(AW,ext) (Rx) and Ry(AW,ext) (Ry), and uses the same axis-specific coordi-
nate matrix transpose-differencing as earlier. Equation 8 is directly reflected in the last three
lines:

R> Rx <- mygrid$M.ext * mygrid$cell.width

R> Ry <- mygrid$N.ext * mygrid$cell.height

R> MN.ext <- mygrid$M.ext * mygrid$N.ext

R> cent.ext <- expand.grid(mygrid$mcens.ext, mygrid$ncens.ext)

R> mmat.ext <- matrix(rep(cent.ext[, 1], MN.ext), MN.ext, MN.ext)

R> nmat.ext <- matrix(rep(cent.ext[, 2], MN.ext), MN.ext, MN.ext)

R> mmat.diff <- mmat.ext - t(mmat.ext)

R> nmat.diff <- nmat.ext - t(nmat.ext)

R> mmat.torus <- pmin(abs(mmat.diff), Rx - abs(mmat.diff))

R> nmat.torus <- pmin(abs(nmat.diff), Ry - abs(nmat.diff))

R> D.ext <- sqrt(mmat.torus^2 + nmat.torus^2)

Finally, the covariance matrix is again simply computed with:

R> SIGMA.Y.ext <- sigma^2 * r(D.ext, phi)

R> dim(SIGMA.Y.ext)

[1] 3364 3364

As simulation will require eigendecomposition of the covariance matrix, we will for illustrative
purposes store the eigenvalues of ΣYext ; displaying here the first six:

R> ext.eigs <- eigen(SIGMA.Y.ext, symmetric = TRUE, only.values = TRUE)

R> ext.eigs <- ext.eigs$values

R> head(ext.eigs)

[1] 272.9771 265.6322 265.6322 264.5067 264.5067 257.5406

The block circulant nature of the extended, torus-wrapped covariance matrix means all the
required information is stored within the first row of ΣYext should we desire fast decomposition
using the FFT. This suggests the above commands, resulting in a large MextNext×MextNext =
3364 × 3364 structure, exhibit much redundancy. Under our current coding strategy, the
first-row entries correspond to the torus distances from the first, ‘bottom-left’ centroid to

the others. Via Equation 7, we would therefore only need to compare C
(1,1)
ext to C

(m,n)
ext ,

instead of the full C
(m,n)
ext to C

(m,n)
ext ; m ∈ {1, . . . ,Mext}, n ∈ {1, . . . , Next}, to obtain the

torus-wrapped distances needed. Eigendecomposition is then able to be performed on the
corresponding covariance values from application of r, once these results are trivially arranged
in a (substantially smaller!) Mext × Next matrix we will denote with C̃ (explicitly named
SIGMA.Y.ext.row1 below). This construct is referred to as the base matrix by Rue and Held
(2005). Observe:

R> m.abs.diff.row1 <- abs(mygrid$mcens.ext[1] - mygrid$mcens.ext)

R> m.diff.row1 <- pmin(m.abs.diff.row1, Rx - m.abs.diff.row1)

8 On Circulant Embedding for Gaussian Random Fields in R

R> n.abs.diff.row1 <- abs(mygrid$ncens.ext[1] - mygrid$ncens.ext)

R> n.diff.row1 <- pmin(n.abs.diff.row1, Ry - n.abs.diff.row1)

R> cent.ext.row1 <- expand.grid(m.diff.row1, n.diff.row1)

R> D.ext.row1 <- matrix(sqrt(cent.ext.row1[, 1]^2 + cent.ext.row1[, 2]^2),

+ mygrid$M.ext, mygrid$N.ext)

R> SIGMA.Y.ext.row1 <- sigma^2 * r(D.ext.row1, phi)

R> dim(SIGMA.Y.ext.row1)

[1] 58 58

Earlier, we computed and stored the eigenvalues of the full extended covariance matrix from
above as ext.eigs. Using SIGMA.Y.ext.row1, the same decomposition is able to be per-
formed using R’s fft function (package stats), which provides the fast discrete Fourier trans-
form operations:

R> ext.eigs.row1 <- rev(sort(Re(fft(SIGMA.Y.ext.row1, inverse = TRUE))))

R> head(ext.row1.eigs)

[1] 272.9771 265.6322 265.6322 264.5067 264.5067 257.5406

In fact, this code can be seen as a direct reflection of the theoretical comments in Appendix E
of Møller and Waagepetersen (2004) on page 258. Using the same lattice definitions as we
do, they note that the matrix of the eigenvalues for ΣYext , Λ̃, is found via the operation√
MextNext × F̄MextC̃F̄Next , where FL represents the normalized L×L discrete Fourier trans-

form matrix, F̄L its inverse, and C̃ is, as mentioned above, the Mext×Next matrix of the first
row of the torus-wrapped extended covariance matrix precisely as we have constructed the
object SIGMA.Y.ext.row1. As the R command fft computes the unnormalized Fourier trans-
form, the leading

√
MextNext term in the expression above is incorporated automatically, and

the transformation operation itself is simply achieved by executing fft on SIGMA.Y.ext.row1,
setting the argument inverse = TRUE.

Further inspection of the sorted eigenvalue vectors ext.eigs and ext.eigs.row1 (each are of
length 582) shows us that identical results are obtained. Thus, the usefulness of the FFT in this
situation in terms of speed and efficiency begins to become apparent – only the computation
and storage of the relatively small Mext × Next structure has been required in order for
decomposition to take place.

4. Single field realizations

Here, we compare the specific R commands and approximate execution times for simula-
tion of single variates of a Gaussian random field on the specific W studied in the previous
two sections. The FFT approach will be compared to two other well-known methods: the
eigenvalue decomposition (EIGEN) and the Cholesky decomposition (CHOL). A nominal ex-
ample of code using circulant embedding/FFT for generating a Gaussian random field, via
the GaussRF function available in the R package RandomFields (Schlather 2012), is presented
in the replication code in the supplementary files.

Journal of Statistical Software 9

4.1. Methods

Generation of the multivariate normal variables which follow the distribution of interest in all
three cases amounts to the initial, computationally cheap, generation of a standard normal
vector of the appropriate length, followed by a particular set of matrix operations involving
the decomposed matrix structures.

The eigenvalue decomposition uses numerical routines to identify the matrices Q and Λ, where
Q is an orthonormal MN ×MN matrix of the eigenvectors of the specified covariance matrix
ΣY , and Λ is the corresponding diagonal matrix of eigenvalues. It is subsequently recognized
that QΛQ> = ΣY . To generate a realization of the Gaussian random field following ΣY , the
steps are:

1. Given a MN ×MN covariance matrix, compute the orthonormal Q and diagonal Λ
such that QΛQ> = ΣY .

2. Generate a standard normal vector Z with dimension MN × 1.

3. Recover the realization by computing QΛ�1/2Z, where we use B�b to denote the
element-wise power of the matrix B to the scalar b.

In R, the eigen function is used to find Q and Λ, which uses algorithms from the LAPACK
library (Anderson et al. 2000, see also http://www.netlib.org/lapack/). The construction
of Q and Λ in Step 2 takes O(M3N3) time on a dense covariance matrix. Once these are
computed and stored, generating Z in Step 1 and calculating Qλ�1/2Z takes O(M2N2) time.

The Cholesky decomposition (or ‘factorization’) is a common alternative. For a positive
definite symmetric matrix A, the Cholesky factorization involves finding an upper-triangular
matrix R with positive diagonal entries, such that A = R>R. Algorithms for finding R are
typically faster than computing the eigenvalues and eigenvectors explicitly as required above.
For simulation of the Gaussian random field using CHOL,

1. Given a MN ×MN covariance matrix, compute R.

2. Generate a standard normal vector Z with dimension MN × 1.

3. Recover the realization by computing R>Z.

In R, chol computes the upper-triangular matrix R. The computation has the same overall
time complexity as eigenvector decomposition, namely O(M3N3) for the decomposition (as-
suming a dense covariance matrix, see below), and then O(M2N2) per sample (Golub and
Van Loan 1989; Gneiting, Ševč́ıková, Percival, Schlather, and Jiang 2006).

Finally, given the base matrix C̃ (the Mext × Next structure containing the first row of the
extended, torus-wrapped covariance matrix ΣYext), simulation under the FFT involves the
following steps (for which more detail is available in Appendix E of Møller and Waagepetersen
2004):

1. Compute the Mext × Next matrix of eigenvalues, Λ̃, by pre- and post-multiplication of
C̃ using the unnormalized inverse Fourier transform matrices of size Mext ×Mext and
Next ×Next respectively.

http://www.netlib.org/lapack/

10 On Circulant Embedding for Gaussian Random Fields in R

2. Generate a standard normal vector Z̃ with dimension MextNext × 1.

3. Find the normalized Fourier transform of Z̃, by pre- and post-multiplication of Z̃ us-
ing the normalized Fourier transform matrices of size Mext × Mext and Next × Next

respectively.

4. Compute Z̃ ◦ Λ̃�1/2, where ◦ denotes the Hadamard product.

5. Recover the realization via the normalized, inverse Fourier transform of the quantity
calculated in the previous step.

The R function fft is responsible for the calculations in Steps 1, 3, and 5 directly above.
The use of the FFT results in a significant improvement in time complexity over eigenvector
decomposition and Cholesky decomposition (Golub and Van Loan 1989). Each application
of the (two-dimensional) FFT takes O(MN logMN) time, which is therefore the time com-
plexity of the first and every subsequent sample (Møller and Waagepetersen 2004).

4.2. Generation

For our computational illustrations, we will remain with the exponential r with σ2 = 25 and
φ = 1. Simulations can be performed for any positive, finite values of these parameters as
well as any one of a host of other possible functional forms for r, on the proviso that the
resulting covariance matrix is positive definite (and in some cases, positive semidefinite). See
the documentation for the function CovarianceFct from package RandomFields (Schlather
2012) for some examples. In all cases, we will set the stationary mean µ = 0.

Execution time for the following examples is best split into two parts: 1) those operations
which only need to be performed once regardless of how many variables wish to be generated,
i.e., eigen- or Cholesky-decomposition of the covariance matrix, or inverse discrete Fourier
transformation of the base matrix; and 2) those operations to generate the standard normal
vector of the required dimensions and perform any additional matrix multiplications to recover
the appropriate realization (truncated to W). Although the simulations in this section are
focused on generating single realizations only, we investigate the relatively minor additional
computational impact of the generation of multiple realizations in Section 5.

For ease of presentation, a small function timings to compute execution times is defined (see
the code in the supplementary files) and used in the following simulations. In each example,
this function summarizes the elapsed time taken for the decomposition step (the difference
between t1 and t2 below) as Decomp, the time to actually generate the desired realization (the
difference between t2 and t3 below) as Generate, and the sum of both Decomp and Generate

as Total elapsed. Reported times are based on the first author’s local desktop machine
running Microsoft Windows 7 Professional with an AMD Phenom II X6 1100T 3.30GHz
processor and 4.00GB RAM.

Beginning with EIGEN and our illustrative resolution of a 29×29 field on W , we use SIGMA.Y
from Section 2 to run

R> t1 <- Sys.time()

R> eigs <- eigen(SIGMA.Y, symmetric = TRUE)

R> decomp.eigen.29 <- eigs$vectors %*% diag(sqrt(eigs$values))

R> t2 <- Sys.time()

Journal of Statistical Software 11

R> std <- rnorm(M * N);

R> realz <- as.vector(decomp.eigen.29 %*% matrix(std))

R> realz[!inside.owin(x = cent[, 1], y = cent[, 2], w = W)] <- NA

R> realization.eigen.29 <- matrix(realz, M, N, byrow = TRUE)

R> t3 <- Sys.time()

R> timings(t1, t2, t3)

Decomp Generate Total elapsed

1.5888 secs 0.06239986 secs 1.6512 secs

This time can be improved upon by implementing CHOL:

R> t1 <- Sys.time()

R> decomp.chol.29 <- chol(SIGMA.Y)

R> t2 <- Sys.time()

R> std <- rnorm(M * N)

R> realz <- as.vector(t(decomp.chol.29) %*% matrix(std))

R> realz[!inside.owin(x = cent[, 1], y = cent[, 2], w = W)] <- NA

R> realization.chol.29 <- matrix(realz, M, N, byrow = TRUE)

R> t3 <- Sys.time()

R> timings(t1, t2, t3)

Decomp Generate Total elapsed

0.1499999 secs 0.09000015 secs 0.24 secs

The FFT method improves further over CHOL:

R> t1 <- Sys.time()

R> d <- dim(SIGMA.Y.ext.row1)

R> dp <- prod(d)

R> sdp <- sqrt(dp)

R> prefix <- sqrt(Re(fft(SIGMA.Y.ext.row1, TRUE)))

R> t2 <- Sys.time()

R> std <- rnorm(dp)

R> realz <- prefix * (fft(matrix(std, d[1], d[2]))/sdp)

R> realz <- as.vector(Re(fft(realz, TRUE)/sdp)[1:M, 1:N])

R> realz[!inside.owin(x = cent[, 1], y = cent[, 2], w = W)] <- NA

R> realization.fft.29 <- matrix(realz, M, N, byrow = TRUE)

R> t3 <- Sys.time()

R> timings(t1, t2, t3)

Decomp Generate Total elapsed

0 secs 0.01559901 secs 0.01559901 secs

The generated fields are given in the top row of Figure 4. For many applications, such
as our current interest in the consideration of planar point process intensity functions, this
relatively coarse discretization of the field over W may be inappropriate. At the very least

12 On Circulant Embedding for Gaussian Random Fields in R

the resolution of the grid must be fine enough to adequately capture the scale of dependence
present – important small-scale behavior in the field may be missed if the distance between
adjacent cell centroids is too great (this is dependent on our choice of correlation function and
the value of any scaling parameter such as φ). However, even modest increases in resolution
can lead to high computational expense. Overwrite the original lattice to give a 64 × 64
centroid grid and compute the finer covariance structures:

R> M <- N <- 64

R> mygrid <- grid.prep(W = W, M = M, N = N, ext = 2)

R> cent <- expand.grid(mygrid$mcens, mygrid$ncens)

R> mmat <- matrix(rep(cent[, 1], M * N), M * N, M * N)

R> nmat <- matrix(rep(cent[, 2], M * N), M * N, M * N)

R> D <- sqrt((mmat - t(mmat))^2 + (nmat - t(nmat))^2)

R> SIGMA.Y <- sigma^2 * r(D,phi)

R> Rx <- mygrid$M.ext * mygrid$cell.width

R> Ry <- mygrid$N.ext * mygrid$cell.height

R> m.abs.diff.row1 <- abs(mygrid$mcens.ext[1] - mygrid$mcens.ext)

R> m.diff.row1 <- pmin(m.abs.diff.row1, Rx - m.abs.diff.row1)

R> n.abs.diff.row1 <- abs(mygrid$ncens.ext[1] - mygrid$ncens.ext)

R> n.diff.row1 <- pmin(n.abs.diff.row1, Ry - n.abs.diff.row1)

R> cent.ext.row1 <- expand.grid(m.diff.row1, n.diff.row1)

R> D.ext.row1 <- matrix(sqrt(cent.ext.row1[, 1]^2 + cent.ext.row1[, 2]^2),

+ mygrid$M.ext, mygrid$N.ext)

R> SIGMA.Y.ext.row1 <- sigma^2 * r(D.ext.row1, phi)

The resolution of the new centroid grid was chosen as 64 × 64 here for the benefit of the
FFT generations to follow. It is noted that with our current use of the FFT, computational
efficiency can be optimized if M and N are powers of two; cf. Section 3 of Wood and Chan
(1994).

Once more beginning with EIGEN:

R> t1 <- Sys.time()

R> eigs <- eigen(SIGMA.Y, symmetric = TRUE)

R> decomp.eigen.64 <- eigs$vectors %*% diag(sqrt(eigs$values))

R> t2 <- Sys.time()

R> std <- rnorm(M * N);

R> realz <- as.vector(decomp.eigen.64 %*% matrix(std))

R> realz[!inside.owin(x = cent[, 1], y = cent[, 2], w = W)] <- NA

R> realization.eigen.64 <- matrix(realz, M, N, byrow = TRUE)

R> t3 <- Sys.time()

R> timings(t1, t2, t3)

Decomp Generate Total elapsed

4.052507 mins 0.1871998 secs 4.055627 mins

This time, we note a marked increase in the time taken to perform the spectral decomposition
– over four minutes. Using CHOL with this finer lattice also gives a noticeably increased
execution time, though it is not so severe as EIGEN:

Journal of Statistical Software 13

R> t1 <- Sys.time()

R> decomp.chol.64 <- chol(SIGMA.Y)

R> t2 <- Sys.time()

R> std <- rnorm(M * N)

R> realz <- as.vector(t(decomp.chol.64) %*% matrix(std))

R> realz[!inside.owin(x = cent[, 1], y = cent[, 2], w = W)] <- NA

R> realization.chol.64 <- matrix(realz, M, N, byrow = TRUE)

R> t3 <- Sys.time()

R> timings(t1, t2, t3)

Decomp Generate Total elapsed

14.4924 secs 1.638 secs 16.1304 secs

The FFT method, however, remains extremely cheap:

R> t1 <- Sys.time()

R> d <- dim(SIGMA.Y.ext.row1)

R> dp <- prod(d)

R> sdp <- sqrt(dp)

R> prefix <- sqrt(Re(fft(SIGMA.Y.ext.row1, TRUE)))

R> t2 <- Sys.time()

R> std <- rnorm(dp)

R> realz <- prefix * (fft(matrix(std, d[1], d[2]))/sdp)

R> realz <- as.vector(Re(fft(realz, TRUE)/sdp)[1:M, 1:N])

R> realz[!inside.owin(x = cent[, 1], y = cent[, 2], w = W)] <- NA

R> realization.fft.64 <- matrix(realz, M, N, byrow = TRUE)

R> t3 <- Sys.time()

R> timings(t1, t2, t3)

Decomp Generate Total elapsed

0 secs 0.01559997 secs 0.01559997 secs

The computational demands have become apparent owing to the fact that the covariance
matrix has now increased in size to a 4096× 4096 structure, from the original dimensions of
841× 841. These realizations are displayed in the second row of Figure 4.

So how fine can we go before the computational demands associated with constructing the
various quantities required for simulation become prohibitive? For a given application, a
64 × 64 lattice of cells may still be considered too coarse. We can expect some point at
which all the above approaches, even FFT, will be practically infeasible if we continue to set
higher and higher resolutions. Let us further increase the resolution to 27 × 27 = 128× 128,
achieved by setting M <- N <- 128. Implementation of both EIGEN and CHOL requires the
full MN ×MN = 1282 × 1282 SIGMA.Y. But in attempting to create it,

R> M <- N <- 128

R> mygrid <- grid.prep(W = W, M = M, N = N, ext = 2)

R> cent <- expand.grid(mygrid$mcens, mygrid$ncens)

R> mmat <- matrix(rep(cent[, 1], M * N), M * N, M * N)

14 On Circulant Embedding for Gaussian Random Fields in R

Error: cannot allocate vector of size 2.0 Gb

and R understandably refuses to complete constructing the appropriately-sized matrix due to
memory constraints (though these options can be tailored to a certain extent within the R
environment, the presence of such an error is on its own concerning). However, as the FFT
method requires only the Mext ×Next = 256× 256 SIGMA.Y.ext.row1,

R> M <- N <- 128

R> mygrid <- grid.prep(W = W, M = M, N = N, ext = 2)

R> cent <- expand.grid(mygrid$mcens, mygrid$ncens)

R> Rx <- mygrid$M.ext * mygrid$cell.width

R> Ry <- mygrid$N.ext * mygrid$cell.height

R> m.abs.diff.row1 <- abs(mygrid$mcens.ext[1] - mygrid$mcens.ext)

R> m.diff.row1 <- pmin(m.abs.diff.row1, Rx - m.abs.diff.row1)

R> n.abs.diff.row1 <- abs(mygrid$ncens.ext[1] - mygrid$ncens.ext)

R> n.diff.row1 <- pmin(n.abs.diff.row1, Ry - n.abs.diff.row1)

R> cent.ext.row1 <- expand.grid(m.diff.row1, n.diff.row1)

R> D.ext.row1 <- matrix(sqrt(cent.ext.row1[, 1]^2 + cent.ext.row1[, 2]^2),

+ mygrid$M.ext, mygrid$N.ext)

R> SIGMA.Y.ext.row1 <- sigma^2 * r(D.ext.row1, phi)

and no such memory impediment occurs. FFT-based simulation can then proceed exactly as
performed earlier:

R> t1 <- Sys.time()

R> d <- dim(SIGMA.Y.ext.row1)

R> dp <- prod(d)

R> sdp <- sqrt(dp)

R> prefix <- sqrt(Re(fft(SIGMA.Y.ext.row1, TRUE)))

R> t2 <- Sys.time()

R> std <- rnorm(dp)

R> realz <- prefix * (fft(matrix(std, d[1], d[2]))/sdp)

R> realz <- as.vector(Re(fft(realz, TRUE)/sdp)[1:M, 1:N])

R> realz[!inside.owin(x = cent[, 1], y = cent[, 2], w = W)] <- NA

R> realization.fft.128 <- matrix(realz, M, N, byrow = TRUE)

R> t3 <- Sys.time()

R> timings(t1, t2, t3)

Decomp Generate Total elapsed

0.0156002 secs 0.03119993 secs 0.04680014 secs

and still, the execution time is barely noticeable. This realization is given in the third row of
Figure 4.

The improvement in efficiency for FFT over CHOL and EIGEN does not stop there. We
continued to experiment with ever-finer grids for FFT, stopping at M <- 2049 and N <- 2049,
at which point the basic expand.grid commands used to define the centroid objects cent

and cent.ext.row1, consisting of a staggering 20482 = 4, 194, 304 and 40962 = 16, 777, 216

Journal of Statistical Software 15

EIGEN CHOL FFT

M,N = 29

M,N = 64

M,N = 128

Figure 4: Field realizations within W via the eigenvalue and Cholesky decompositions, as
well as the FFT approach, for varying resolutions.

Figure 5: The ‘super-fine’ FFT realization within W based on a 2048 × 2048 rectangular
centroid grid.

individual coordinates respectively, created their own modest computational delays. Even so,
the total elapsed time for a realization of this ‘super-fine’ field using the FFT methods in the
same way as above took only 55 seconds, and this is shown separately in Figure 5.

16 On Circulant Embedding for Gaussian Random Fields in R

Generally speaking, we may be content in practice with resolutions far coarser than the super-
fine example, provided of course we can adequately capture the scale of dependence. However,
the fact that we already encounter difficulties using the EIGEN and CHOL decomposition
methods for resolutions not much finer than a 64 × 64 lattice, as well as the computational
expense already exhibited at those levels, makes the FFT approach very appealing. There
is however a key issue in the use of FFT in this context: stationarity and isotropy must
be imposed in order for the block-Toeplitz extended covariance matrix to be valid. Where
this cannot be safely assumed, the Cholesky decomposition may be a more sensible option.
Nevertheless, these constraints on a given Gaussian field are not overly restrictive in practice,
with a wide variety of surfaces still capable of being generated by controlling the form of r
and any parameters influencing it (φ), as well as the variance σ2.

An additional requirement for successful implementation of the FFT mechanism, mentioned
earlier, is that the extended torus-wrapped covariance matrix be positive semidefinite. There
is no way to guarantee this in a given application, though Møller et al. (1998) and Møller
and Waagepetersen (2004) remark that this has rarely been a problem for them in practice,
provided a suitable level of discretization is employed, comments supported by our experiences.
Wood and Chan (1994) and these later works recommend choosing larger lattice extensions
as a possible remedy in the event negative eigenvalues are encountered, while Gneiting et al.
(2006) explore the use of appropriately modified covariance functions.

4.3. A note on sparse covariance structures

The running time calculations made above all assumed a dense covariance matrix. There
has been a considerable amount of work developing efficient algorithms for the case when the
covariance matrix or precision matrix (inverse of the covariance matrix) is banded, or more
generally, sparse. In both cases there can be significant improvements in time complexity,
sometimes giving algorithms which are even faster than those based on FFT.

A matrix B has bandwidth bw if all of its non-zero entries lie on the diagonal or on one of
the first bw lower or upper diagonals, that is, if Bij > 0 implies |i − j| ≤ bw. Martin and
Wilkinson (1965) showed that when B is positive definite there exists a Cholesky factorization
B = R>R such that R also has bandwidth at most bw and, furthermore, R can be obtained
in time linear in the number of rows or columns of B.

Banded matrices of this form occur frequently when simulating Gaussian Markov random
fields. For these simulations, an entry i, j of the precision matrix Σ−1 is non-zero only if i and
j are neighbors. Hence bandedness arises from small neighborhood sizes, a property which
Rue (2001) uses to great effect when designing efficient samplers. He observes that careful
permutation of the nodes can lead to substantial reductions in bandwidth, and presents
heuristic algorithms for finding good permutations (finding the optimal permutation is an
NP-hard problem; see Papadimitriou 1976).

Note that the covariance matrix of a Gaussian random field will not be bounded unless the
correlation function becomes identically zero for more than close distances.

In other applications, the covariance or precision matrices may not have low bandwidth, but
they can still be sparse, with few non-zero entries. An advantage of sparse matrices, with
appropriate data structures (e.g., Furrer and Sain 2010), is that computations like multiplying
a vector by a matrix are essentially linear in the number of non-zero entries of the matrix.
This fact forms the foundation of sparse iterative algorithms (reviewed in Golub and Van

Journal of Statistical Software 17

Loan 1989) which can be used to solve massive linear systems without ever constructing a
copy of the matrix.

Sparse iterative samplers (Schneider and Willsky 2003; Parker and Fox 2012) follow a similar
strategy except that they produce samples instead of solutions. The algorithms are iterative,
in the sense that they produce a sequence of (correlated) samples. Each sample comes closer
and closer to the target distribution, the rate of convergence in both cases being sub-quadratic.
Under the unrealistic assumption of exact arithmetic, the algorithms can produce a sample
with O(MN) matrix-vector multiplications. Most importantly these methods, like the cir-
culant embedding approach, do not require storage of the complete covariance or precision
matrices as they make use of the matrix only via a matrix-vector multiplication.

5. Timing multiple realizations

The previous section showed that the main contributor to execution time when generating
single realizations using EIGEN, CHOL, and FFT, are the operations performing the decom-
position step. This cost need not be repeated should one require multiple realizations of the
Gaussian field for a given W , covariance matrix, and grid resolution. Repetition of code is
restricted to generation of a new standard normal vector of the appropriate dimension, and
any associated matrix multiplication steps required to transform this vector into one reflecting
the desired covariance structure. As such, it is of interest to briefly examine the nature of
the increase in computational expense from generation of a single variate to generation of
multiple variates.

To this end, we employ the code demonstrated in the previous two sections and evaluate the
execution times for simulation of Gaussian fields on the unit square (zero mean, exponential
correlation function with σ2 = 2 and φ = 0.05). Generation is performed for varying grid
resolutions M = N = 5, 10, . . . , 65, 70, and the number of realizations S is varied with S =
1, 10, 100, 1000. Figure 6 shows the recorded times in each of these situations for EIGEN,
CHOL, and FFT. The leftmost plot gives the times for the unrepeated decomposition step.
Time taken to generate the desired number of realizations is given in the second column, and
moving down we see that the increase in generation time appears to be directly proportional
to the increasing S. The total elapsed time i.e., the sum of the decomposition and generation
steps, is provided in the right column.

The experimental results closely match the expectations from theory. From above, we would
expect a per-sample time complexity of O(M2N2) = O(N4) for EIGEN and CHOL, and
O(MN log(MN)) = O(N2 log(N)) complexity for FFT, ignoring in all cases the computation
time for the original decompositions.

6. Concluding remarks

Introduced by Dietrich and Newsam (1993) and Wood and Chan (1994) in the context of
Gaussian fields, it is clear that FFT is an invaluable tool when simulating these stochastic
processes. The seminal work of Møller et al. (1998) discusses the use of this approach for
the unconditional and conditional simulation of LGCP, where the logarithm of the planar
intensity function is assumed to be driven by a latent Gaussian process. This was followed
by theoretical instructions on circulant embedding of the covariance matrix associated with

18 On Circulant Embedding for Gaussian Random Fields in R

Figure 6: DECOMP, GENERATE and TOTAL ELAPSED timings for multiple field realiza-
tions using EIGEN, CHOL, and FFT.

Journal of Statistical Software 19

a given LGCP, and subsequent implementation of the two-dimensional FFT, in Møller and
Waagepetersen (2004).

It is important that interesting and useful technical achievements continue to be taken ad-
vantage of by applied researchers. The main goal of this work was therefore to augment the
historical efforts with respect to the FFT and Gaussian processes in an applied sense, provid-
ing a clear translation from the technical notes into R code alongside intuitive visuals. The
benefits afforded by working with the two-dimensional FFT when simulating stationary Gaus-
sian fields (as opposed to alternative methods) were also made clear, as computation time and
efficiency was also highlighted. It is in fact only slight modifications of the showcased code
which drives the relevant operations in the recently released R package lgcp (Taylor, Davies,
Rowlingson, and Diggle 2013); currently available on the Comprehensive R Archive Network
(CRAN) at http://CRAN.R-project.org/. Package lgcp provides the functionality to han-
dle spatial and spatiotemporal modeling using the LGCP, where FFT support plays a large
part in the practical feasibility of the methods. Also of interest is the impressive R package
RandomFields, programmed primarily in C, which contains a suite of functions surrounding
stochastic processes.

Acknowledgments

The authors are indebted to an anonymous referee and an editor for their constructive feedback
which dramatically improved this work.

References

Adler D, Murdoch D (2012). rgl: 3D Visualization Device System (OpenGL). R package
version 0.92.894, URL http://CRAN.R-project.org/package=rgl.

Anderson E, Bai Z, Bischof C, Blackford LS, Demmel J, Dongarra J, Croz JD, Greenhaum
A, Hammerling S, McKenney A, Sorensen D (2000). LAPACK Users Guide. Society for
Industrial and Applied Mathematics, Philadelphia, 3rd edition.

Baddeley AJ, Turner R (2005). “spatstat: An R Package for Analyzing Spatial Point Patterns.”
Journal of Statistical Software, 12(6), 1–42. URL http://www.jstatsoft.org/v12/i06/.

Dietrich CR, Newsam GN (1993). “A Fast and Exact Method for Multidimensional Gaussian
Stochastic Simulations.” Water Resources Research, 29(8), 2861–2869.

Furrer R, Sain SR (2010). “spam: A Sparse Matrix R Package with Emphasis on MCMC
Methods for Gaussian Markov Random Fields.” Journal of Statistical Software, 36(10),
1–25. URL http://www.jstatsoft.org/v36/i10/.

Gneiting T, Ševč́ıková H, Percival DB, Schlather M, Jiang Y (2006). “Fast and Exact Simu-
lation of Large Gaussian Lattice Systems in R2: Exploring the Limits.” Journal of Com-
putational and Graphical Statistics, 15(3), 483–501.

Golub GH, Van Loan CF (1989). Matrix Computations. 2nd edition. Johns Hopkins University
Press, London.

http://CRAN.R-project.org/
http://CRAN.R-project.org/package=rgl
http://www.jstatsoft.org/v12/i06/
http://www.jstatsoft.org/v36/i10/

20 On Circulant Embedding for Gaussian Random Fields in R

Martin RS, Wilkinson JH (1965). “Symmetric Decomposition of Positive Definite Band Ma-
trices.” Numerische Mathematik, 7(5), 355–361.

Møller J, Syversveen AR, Waagepetersen RP (1998). “Log Gaussian Cox Processes.” Scandi-
anvian Journal of Statistics, 25(3), 451–482.

Møller J, Waagepetersen RP (2004). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall, Boca Raton.

Papadimitriou CH (1976). “The NP-Completeness of the Bandwidth Minimization Problem.”
Computing, 16(3), 263–270.

Parker A, Fox C (2012). “Sampling Gaussian Distributions in Krylov Spaces with Conjugate
Gradients.” SIAM Journal on Scientific Computing, 34(3), B312–B334.

R Core Team (2013). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Rue H (2001). “Fast Sampling of Gaussian Markov Random Fields.” Journal of the Royal
Statistical Society B, 63(2), 325–338.

Rue H, Held L (2005). Gaussian Markov Random Fields: Theory and Applications. Chapman
and Hall, Boca Raton.

Schlather M (2012). RandomFields: Simulation and Analysis of Random Fields. R package
version 2.0.59, URL http://CRAN.R-project.org/package=RandomFields.

Schneider MK, Willsky AS (2003). “Krylov Subspace Method for Covariance Approximation
and Random Processes and Fields.” Multidimensional Systems and Signal Processing, 14(4),
295–318.

Taylor BM, Davies TM, Rowlingson BS, Diggle PJ (2013). “lgcp: An R Package for Inference
with Spatial and Spatio-Temporal Log-Gaussian Cox Processes.” Journal of Statistical
Software, 52(4), 1–40. URL http://www.jstatsoft.org/v52/i04/.

Wand MP, Jones MC (1995). Kernel Smoothing. Chapman and Hall, Boca Raton.

Wood ATA, Chan G (1994). “Simulation of Stationary Gaussian Processes in [0, 1]d.” Journal
of Computational and Graphical Statistics, 3(4), 409–432.

Affiliation:

Tilman M. Davies
Department of Mathematics & Statistics
University of Otago
PO Box 56
Dunedin, New Zealand 9054
E-mail: tdavies@maths.otago.ac.nz
URL: http://www.maths.otago.ac.nz/home/department/staff/
_staffscript.php?s=tilman_davies

http://www.R-project.org/
http://CRAN.R-project.org/package=RandomFields
http://www.jstatsoft.org/v52/i04/
mailto:tdavies@maths.otago.ac.nz
http://www.maths.otago.ac.nz/home/department/staff/_staffscript.php?s=tilman_davies
http://www.maths.otago.ac.nz/home/department/staff/_staffscript.php?s=tilman_davies

Journal of Statistical Software 21

David J. Bryant
Allan Wilson Centre for Molecular Ecology and Evolution
Department of Mathematics & Statistics
University of Otago
PO Box 56
Dunedin, New Zealand 9054
E-mail: dbryant@maths.otago.ac.nz
URL: http://www.maths.otago.ac.nz/~dbryant/

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 55, Issue 9 Submitted: 2012-01-16
November 2013 Accepted: 2013-04-05

mailto:dbryant@maths.otago.ac.nz
http://www.maths.otago.ac.nz/~dbryant/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Basic concept
	Circulant embedding
	Single field realizations
	Methods
	Generation
	A note on sparse covariance structures

	Timing multiple realizations
	Concluding remarks

