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Abstract

Generalized linear and nonlinear mixed models (GLMMs and NLMMs) are commonly
used to represent non-Gaussian or nonlinear longitudinal or clustered data. A common
assumption is that the random effects are Gaussian. However, this assumption may be
unrealistic in some applications, and misspecification of the random effects density may
lead to maximum likelihood parameter estimators that are inconsistent, biased, and inef-
ficient. Because testing if the random effects are Gaussian is difficult, previous research
has recommended using a flexible random effects density. However, computational lim-
itations have precluded widespread use of flexible random effects densities for GLMMs
and NLMMs. We develop a SAS macro, SNP_NLMM, that overcomes the computational
challenges to fit GLMMs and NLMMs where the random effects are assumed to follow a
smooth density that can be represented by the seminonparametric formulation proposed
by Gallant and Nychka (1987). The macro is flexible enough to allow for any density
of the response conditional on the random effects and any nonlinear mean trajectory.
We demonstrate the SNP_NLMM macro on a GLMM of the disease progression of toenail
infection and on a NLMM of intravenous drug concentration over time.

Keywords: random effects, nonlinear mixed models, generalized linear mixed models, SAS,
SNP.

1. Introduction

Generalized linear mixed models (GLMMSs) are commonly used to represent non-Gaussian lon-
gitudinal or repeated measures data. Nonlinear mixed models (NLMMs) have been tradition-
ally employed to model pharmacokinetic/pharmacodynamic, growth curve, disease dynamic,
or other longitudinal data where the mean trajectory is an arbitrary non-linear function of a
vector of parameters.
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Let Vi, ¢ =1,...,m, j = 1,...,n;, be the jth response on the ith subject or cluster. For
both GLMMs and NLMMs we assume that Y;; conditioned on a g-dimensional vector of
centered subject-specific random effects b; has density fy, ;1b; (yi|bi; B, xi;), which depends on
a p-dimensional vector of fixed effects 5 and covariates z;;. Common choices for fy, s, are the
normal density and the Bernoulli and Poisson probability mass functions. We also assume
that the random effects b;, independent across ¢, have density g, (b;; ) which may depend on
a vector of parameters {. If we assume that Y;; are independent across i and, given b;, are
independent across j, then the likelihood of § = (37,£7)T is given by

L(6;Y) H/ / fY”|b (yz]|bzaﬁaxz])}gbi(bi;f)dbli"‘dbqi (1)

_H/H szy‘b yl]‘b“ﬂ’xlj)}gb (bz,f) 75

where Y is the vector of all responses across all m subjects. For brevity, we write the ¢-
dimensional integral using a single integral throughout the remainder of the manuscript.

Typically, one assumes that the random effects density g, (b;;€) is a g-dimensional normal
density. The assumption is usually made for convenience because the normal density is the
only density for the random effects supported in the SAS/STAT procedures GLIMMIX and
NLMIXED used to estimate GLMMs and NLMMs, respectively (SAS Institute Inc. 2008).

However, in many applications the assumption of Gaussian random effects may be too restric-
tive, and one stands to lose insight into the data generating process if one assumes a priori
that the random effects are Gaussian. Maximum likelihood estimators of the fixed effects, (3,
are also, in general, not consistent if the random effects density g;, has been misspecified for
GLMMs and NLMMs. Furthermore, researchers have noted that there is considerable bias
and loss of efficiency in the maximum likelihood parameter estimators assuming Gaussian
random effects when either the true random effects density deviates substantially from nor-
mality or the variance of the random effects is large and there is moderate misspecification
of the random effects (Neuhaus, Hauck, and Kalbfleisch 1992; Hartford and Davidian 2000;
Heagerty and Kurland 2001; Agresti, Caffo, and Ohman-Strickland 2004; Litiere, Alonso, and
Molenberghs 2008).

Several researchers have proposed methods to relax the assumption of Gaussian random effects
(or latent traits), and we briefly review the relative merits of the proposed approaches. At
one extreme, one can develop consistent and asymptotically normal estimators for the fixed
effects in a GLMM or generalized linear latent variable model that do not require the data
analyst to correctly posit the density for the random effects or latent traits. For example,
Ma and Genton (2010) use semiparametric theory to find the efficient estimating function for
parameters in a generalized linear latent variable model, that is, the projection of the score
vector onto the complement of the nuisance tangent space (where the density of the latent
trait is the infinite dimensional nuisance parameter), and show that the estimating function is
unbiased regardless of the true distribution of the latent traits. The general semiparametric
approach is explained in Tsiatis (2006). The approach advocated by Ma and Genton (2010)
is similar to the conditional likelihood inference proposed by Sartori and Severini (2004) for
GLMMs although the the derivation is completely different. However, these semiparametric
approaches treat the random effect/latent trait density as a nuisance parameter which may
be of scientific interest in many applications. Furthermore, deriving the efficient estimating
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functions for the fixed effects that do not require estimating the random effects density is not
trivial and depends on the conditional density fy, p, (+)-

Alternatively, the random effects distribution that does not assume any parametric form
may also be estimated by maximum likelihood. Several authors have proposed computational
methods to find the nonparametric maximum likelihood estimate of the random effects density
(Laird 1978; Bock and Aitkin 1981; Follmann and Lambert 1989; Lesperance and Kalbfleisch
1992; Aitkin 1999). Knott and Tzamourani (2007) propose using the bootstrap to obtain
confidence intervals for the estimated nonparametric density. Lindsay (1983) shows that
the nonparametric maximum likelihood estimator is discrete and has a limited number of
points of support. This is a serious limitation because in many applications we would expect
that the distribution of the random effects or latent traits to be continuous and a discrete
approximation may not provide sufficient insight into the true data generating mechanism.
Furthermore, we may be able to gain substantial efficiency by making the minimal and realistic
assumption that the random effects density is continuous.

Magder and Zeger (1996) and Knott and Tzamourani (2007) both propose a smooth nonpara-
metric maximum likelihood estimator of the random effects density. The method developed by
the former results in a finite mixture of Gaussian densities while the later suggest smoothing
the discrete estimate using kernel methods. Both involve ad hoc approaches to determine the
amount of smoothing and the approach advocated by Magder and Zeger (1996) can be compu-
tationally intensive. Tao, Palta, Yandell, and Newton (1999) nonparametrically estimate the
density of a random effect using a predictive recursive algorithm. The estimate is guaranteed
to be continuous if the starting density in the algorithm is chosen to be a continuous density,
but unfortunately the authors note that the sample size must be large to obtain promising
results and only implement their method on a one-dimensional random effect. Verbeke and
Lesaffre (1997) and Litiére et al. (2008) propose approximating the random effects distribu-
tion using a finite mixture of Gaussian distributions and develop an expectation-maximization
(EM) algorithm to fit the model. Like many EM algorithms, their algorithm may be com-
putationally intensive and slow. Ghidey, Lesaffre, and Eilers (2004) similarly assume that
the random effects are a Gaussian mixture and propose to estimate the mixing proportions
using a penalized log-likelihood. However, their method has only been applied to linear mixed
models.

Alternatively, many researchers have developed efficient computational methods to fit models
with flexible, parametric classes of random effects densities. For example, prior work has
developed computational methods to fit models where the random effects distribution is as-
sumed to belong to the class of t-distributions (Pinheiro, Liu, and Wu 2001; Lin and Lee
2006, 2007; Lee and Thompson 2008), skew extensions of the ¢- and normal distributions
(Ghosh, Branco, and Chakraborty 2007; Lin and Lee 2008; Ho and Lin 2010; Huang and
Dagne 2010; Labra, Garay, Lachos, and Ortega 2012), normal/independent distributions (a
class of thick tailed-distributions which contain the multivariate ¢, slash, and contaminated
normal distributions, see Rosa, Padovani, and Gianola 2003; Lachos, Bandyopadhyay, and
Dey 2011), and skew extensions of the normal/independent distributions (Lachos, Dey, and
Cancho 2009; Lachos, Ghosh, and Arellano-Valle 2010; Bandyopadhyay, Lachos, Castro, and
Dey 2012). Although each of these classes of distributions may be appropriate in certain
domain-specific applications, none is likely to be flexible enough for general use. For example,
none of the above classes permit multiple modes.

In another approach given extensive attention in the recent literature, one assumes that the
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random effects density follows a smooth density that can be represented by the seminonpara-
metric (SNP) formulation proposed by Gallant and Nychka (1987). Although this class of
densities does not include all continuous densities, the class is sufficiently flexible to include
skewed, multimodal, and think and thin-tailed densities. The density does not contain densi-
ties which have kinks, jumps, or oscillations; densities unlikely to occur in common practice.
The SNP representation has been previously used for the random effects density in GLMMs
(Chen, Zhang, and Davidian 2002) and NLMMs (Davidian and Gallant 1993; Vock, Davidian,
Tsiatis, A., and Muir 2012) as well as used for the latent trait density of generalized linear
latent variable models (Irincheeva, Cantoni, and Genton 2012). The SNP representation is
flexible enough to cover a broad variety of applications unlike some of the parametric classes
discussed above. Furthermore, the SNP representation works for multidimensional random
effects and can be implemented as the random effects density for NLMMs unlike some of its
competitors. Finally, by assuming that the random effects density is “smooth” without kinks
or oscillations, a minimal but realistic assumption, we may gain efficiency over nonparametric
methods. Overall, fitting a GLMM or NLMM assuming the random effects follow the SNP
representation is a prudent modeling approach when the random effects density is of scientific
interest and there is little subject-area knowledge to suggest a priori that the random effects
are Gaussian. Of course the choice of a method for a flexible random effects density depends
on the goal of the analysis. If the random effects density is not of interest to the investigator,
then the non-parametric approaches described above may be sufficient.

Previous work has used Fortran programs to estimate NLMMs and GLMMs where the random
effects are assumed to follow the SNP representation which has precluded widespread use of
the SNP density. There are two main problems in implementing the SNP density using
standard software. First, as noted earlier, standard software only permits Gaussian random
effects, so the software must be “tricked” to allow non-Gaussian random effects. Secondly,
to obtain maximum likelihood parameter estimates of 6, we must be able to approximate
the integral in Equation 1. This can be difficult for complex densities gp,; as described by
Irincheeva et al. (2012) many of the standard approaches for integral approximation work
poorly when the random effects follow the SNP representation.

We develop a SAS macro, SNP_NLMM, that overcomes those computational challenges and
allows one to fit easily GLMMs and NLMMs where the random effects density is assumed
to follow the SNP density. In Section 2, we discuss the SNP density in detail. Section 3
describes the input parameters for the SNP_NLMM macro as well as the output datasets. We
describe the computational details used in the macro in Section 4. Section 5 illustrates the
use of SNP_NLMM to fit a GLMM of longitudinal measurements on toenail infection. Section 6
describes the results from implementing the macro to estimate a NLMM of intravenous drug
concentration over time. We conclude in Section 7.

2. Seminonparametric density

To motivate the development of the SNP density, we consider a NLMM of intravenous drug
concentration over time. We will return to this example in detail in Section 6. Let Y;; and
ti; be the concentration and time since infusion began, respectively, for the ith subject at the
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jth measurement. The concentration profile is assumed to follow the model

Yij = a, [GXP {— 7 (1 —t3;)(ti; — ti,inf)} — exp <_Vitij>:| + €ij (2)

= h(zij; Cl;, Vi) + €ij,

where D; is the infusion rate subject ¢ received; Cl; and V; are the unknown subject-specific
clearance and volume distribution parameters; t;kj = I(tij < tijnt); tint is the infusion time;

xij = (tij, i int, D;)T; and €ij ud NAO, a2h(xij; Cl;, V;)*'}. Because we assume that Cl; and V;
vary across the population, they are subject-specific random effects. Let b; = (log Cl;,log Vi) T.
Throughout the remainder of the manuscript, we write the g-dimensional vector of centered
(non-mean-zero) random effects b; as

bi = pu+ RZ;, (3)

where p is a ¢-dimensional vector, R is a ¢ x ¢ lower triangular matrix, and Z; is a ¢-
dimensional random effects vector. One would traditionally assume that Z; follows a standard
g-dimensional normal density which implies that E(b;) = p and VAR(b;) = RR'". We rewrite
the likelihood given in Equation 1 in terms of Z; as

L(0;Y) = H / H {inj\bi(yij‘,U/ + Rz; B, xz‘j)} g, (1 + Rzi; &) | R|dz; (4)
=17 j=1

_H/H{injZi(yij‘zi;/@’ﬂ7r’xij)}gZi(Zi;f)dZiv
=17 j=1

where r = vech(R) is the vector containing the non-zero components of R, and, in the example
given, fyl,j‘ 7z, is the normal density with mean h(x;;; Cl;, V;) and variance th(xij; Cl;, Vi)?.
Instead of assuming that Z; is distributed as standard normal, we assume that Z; belongs to
the smooth class of densities, G, described by Gallant and Nychka (1987). These authors give
a mathematical description of densities in this class which are sufficiently differentiable to
rule out densities with jumps or oscillations but flexible enough to include thick/thin-tailed,
skewed, and multi-modal densities. Mathematically, densities ¢ € G may be expressed as a
infinite Hermite series, g(z) = P2 (2)1(z), plus a lower bound on the tails, where Py (2) is an
infinite dimensional polynomial and (z) is the standardized form of a known density with
a moment generating function. The density (z) is usually taken to be the standard normal
density as is the case for this macro. For modeling purposes the lower bound is typically
disregarded and the polynomial is truncated. Densities in the truncated class which disregard
the lower bound have been referred to as seminonparametric or SNP.

The SNP density with degree of truncation K is given by
2

95 (2:€) = P2(2)¢(2) = ST g (A b (), (5)

(J1+-+ig<K

where ¢,(-) is the g-dimensional standard normal density, j; > 0 for I = 1,...,q, and K is the
order of the polynomial P (z). For example, with K = 2 and ¢ = 2, Px(z) = ago + a1021 +
a01z2+a20z%+a11z1z2+aogz§ = aooz?zg—l—aloz%zg—i—angzi+a202%zg+a11z%z%—i—aogz?zg. Note
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that the subscripts of the coefficients in the polynomial match the powers of the ¢ random
effects in the same term.

Because gg (z; &) is a polynomial of order K squared times a standard normal density, gg (2;€)
will be non-negative for any choice of £&. However, for gg to be a proper density we must
constrain the d-dimensional vector of coefficients a = {ajl,---u’q SJ1te o+ g < K}, such that gg
integrates to 1. This is equivalent to imposing the constraint o' Aa = 1, where A is the matrix
with (7, k) element equal to {E(Ufl+kl) e E(qu+kq)}, J1,- .- Jq (similarly kq, ..., kq) are the
subscripts of the jth (kth) element of a, and U is distributed as a standard normal (Zhang
and Davidian 2001). Because A is positive definite, there is a matrix B so that A = B?; this
implies ¢'c = 1 where ¢ = Ba. Rather than to impose the constraint ¢' ¢ = 1, we can use a
polar coordinate transformation to write ¢ using only d—1 parameters where ¢; = sin(&;), co

cos(§1) sin(&2), ..., cg—1 = cos(&1) ... cos(§q—2)sin(€g-1), ca = cos(&1)...cos(§q-1), —7/2 <
¢ <m/2forj=1,...,d—1,and £ = (&,...,€4-1)" (Zhang and Davidian 2001).

We note that when K = 0, then Pg(z) is just a constant, ag,. o, which must equal 1, and
the density g%i simplifies to the standard g-dimensional normal. For K > 0, the SNP density
does not force E(Z;) = 0. Therefore, E(b;) = p + RE(Z;) and VAR(b;) = RVAR(Z;)R".
These moments can easily be computed by noting that the moments of Z; are just linear
combinations of moments of a standard normal density.

The above discussion has assumed a fixed K, the value of K controls the departure from the
base density, here the standard normal, and, therefore, the flexibility for approximating the
true random effects density. K is not the number of components in a mixture or the number
of subpopulations in the underlying population. Instead, K plays a similar role to the band-
width in kernel density estimation with smaller bandwidths and larger values of K capturing
more local features of the random effects densities but leading to more variable estimators
(Song, Davidian, and Tsiatis 2002). The class of possible densities grows monotonically as
K increases, and Irincheeva et al. (2012) relate the number of possible modes to K and g.
However, none of the extensive methodological work on the SNP representation has related
K to other features of the corresponding class of densities such as the maximum skewness
and kurtosis permitted in the class (see, for example, Gallant and Nychka 1987; Davidian
and Gallant 1993; Zhang and Davidian 2001; Chen et al. 2002; Song et al. 2002; Doehler and
Davidian 2008; Zhang and Davidian 2008; Vock et al. 2012). Although one could a priori fix
a choice of K, an objective selection method is often preferred because of the lack of rela-
tionship between K and the features of the distribution permitted. Specifically, most work
has advocated treating K as a tuning parameter and has suggested fitting models for several
values of K and then choosing K based on information criteria and/or visual inspection of
the estimated densities (Davidian and Gallant 1993; Zhang and Davidian 2001; Chen et al.
2002; Vock et al. 2012). Prior research cited above has indicated that K need not be larger
than two to capture many complicated densities.

We can obtain estimates of 6 by using the maximum likelihood estimator. For a given K,
the optimization problem is exactly the same as in standard finite dimensional maximum
likelihood estimation provided we can approximate the integral in Equation 4 (see Section 4).
However, optimization of the likelihood with the SNP density can be highly dependent on
starting values for &; therefore, it is advisable to maximize the likelihood using a few sets
of “good” starting values to ensure that one obtains the global maximum. Our macro uses
the following routine advocated by Doehler and Davidian (2008) to generate starting values
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and parameter estimates. SNP_NLMM obtains initial estimates for 3, E(b;), and VAR(b;) by
fitting the GLMM or NLMM assuming Gaussian random effects. The likelihood over a grid
of values for £ is evaluated where [ is set to the initial estimate and starting values for u
and 7 are set to the values that result in the same values of E(b;) and VAR(b;) as their initial
estimates from assuming Gaussian random effects. The macro then uses a small number of
those sets of parameter values with large likelihoods as starting values in the maximization
of the likelihood.

3. Macro input parameters and output datasets

3.1. Input parameters

The following gives the input parameters needed for SNP_NLMM with the default values

/#SNP_NLMM(dataset = , subject = , response = ,
prog_stat = , log_cond_dens , start_value =, q = , Kmax = 2,
all_K = 1, info_crit = "BIC", quad_pt_KO = 0, quad_pt_K1 = O,
grid_pt_K1 = 9, max_K1 = 1, quad_pt_K2 = 0, grid_pt_K2 = 9,
max_K2 = 1, quad_pt_K3 = 0, grid_pt_K3 = 9, max_K3 = 1,
quad_pt_K4 = 0, grid_pt_K4 = 9, max_K4 1);

where

e dataset: Specifies the dataset that contains the response, subject/cluster variable, and
any additional covariates needed to specify the conditional likelihood. Because the
macro uses the NLMIXED procedure in SAS, all covariates should be numeric.

e subject: Specifies the subject/cluster variable. Observations that have the same value
of subject are assumed to have the same realization of the random effects.

e response: Specifies the response variable of interest.

e prog_stat: Additional programming statements needed to specify the conditional den-
sity. The syntax is the same as for the NLMIXED procedure. We emphasize that the
centered (non-mean zero) random effects must be referred to as b_1 and b_2. The pro-
gramming statements should be enclosed with the %str() macro command. Typically
one would need to specify any parameters that are part of the conditional density in-
cluding the mean and variance if the conditional density is Gaussian or the probability
of success if the conditional density is Bernoulli.

e log_cond_dens: The logarithm of the density of the response given the random effects.
We emphasize that the centered (non-mean zero) random effects must be referred to
as b_1 and b_2. The statements should be enclosed with the %str () macro command.
While having the user specify the conditional density and corresponding programming
statements does require greater involvement, this allows for greater flexility.

e start_values: Starting values for the fixed effect parameters, p and 3, as well as vari-
ance components, R, assuming Gaussian random effects. The starting values should
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be given using the syntax of the parms statement in in NLMIXED procedure in SAS, for
example betal = 5 beta2 = 1. The variance of the random effects has been param-
eterized using R where VAR(b;) = RR" and R is a lower triangular matrix. The (i, 5)
non-zero components of R should be referred to as r_ij. The ¢th component of the
vector p should be referred to as mu_i. The statements should be enclosed with the
%hstr() macro command.

e q: Specifies the dimension of the random effects. Currently only q = 1 and q = 2 are
supported.

e Kmax: Specifies the maximum degree of flexibility considered. As noted above, prior
research has indicated that K need not be larger than two to approximate most densities
encountered in practice. Currently Kmax must be less than or equal to four for one-
dimensional random effects and less than or equal to three for two-dimensional random
effects. The default is Kmax = 2.

e all_K:Ifall_K = 1, then models with K, the degree of flexibility in the random effects
density, equal to zero through Kmax are fit. If al1_K = 0, then models with K equal to
just zero and Kmax are fit. The default is all_K = 1.

e info_crit: Specify the information criterion, BIC or AIC, that should be used to
select the degree of flexibility in the random effects density. The default is info_crit
= "BIC".

e quad_pt_KO and similarly for _K1, _K2, _K3, _K4: Specifies the number of quadrature
points used for K = 0 and similarly for other values of K. If quad_pt_KO = O the
number of quadrature points is adaptively selected. Specifically, the macro continues to
increase the number of quadrature points until the relative change in the log likelihood
evaluated at the first set of starting values is below a pre-specified tolerance. We recom-
mend first running the macro with quad_pt_KO = 0 to select the number of quadrature
points adaptively. Then one can re-run the optimization a couple of times with larger
numbers of quadrature points to ensure that the maximum likelihood estimates are not
sensitive to the number of quadrature points. This is especially helpful if the number
of quadrature points selected adaptively is small. The default is to have the number of
quadrature points selected adaptively.

e grid_pt_K1 and similarly for _K2, _K3, _K4: Specifies the number of grid points in
each dimension of ¢ that should be used in the grid search for starting values. We note
that for ¢ = 1 the dimension of £ equals K and for ¢ = 2 the dimension of £ equals
(K +1)(K +2)/2—1. For ¢ = 2 and large values of K, the number of grid points can
be quite large and the time to evaluate the likelihood at each of these grid points can
be extensive. However, we have found that a fine grid is the best way to ensure that the
global maximum is obtained. We recommend that the number of grid points in each
dimension be at least 9 for ¢ = 1 with K less than 4 and for ¢ = 2 with K less than or
equal to 2. For scenarios with larger values of K, we would recommend the number of
grid points in each dimension to be at least 5-7.

e max_K1 and similarly for _K2, _K3, _K4: Specifies the number of optimizations with
different sets of starting values that should be performed to ensure that one obtains the
global maximum. The default is max_K1 = 1.
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3.2. Output datasets

The following datasets are generated from the macro, are stored in the work directory, and
are printed as part of the output:

e dim_total: Contains the number of observations used, number of observations not used,
number of subjects, number of parameters, and number of quadrature points for each
value of K considered.

e fitstat_total: Contains the fit statistics AIC and BIC as well as —2 log likelihood
for each value K considered.

e parm_total: Contains the parameter estimates and standard errors for each value of
K considered.

e parm_final_K: Contains the parameter estimates, standard errors, p values, and confi-
dence intervals for the value of K selected by the information criteria in info_crit.

In addition to the datasets generated, SNP_NLMM plots the estimated density for each value of
K considered.

4. Computational details

We describe here some of the computational issues in implementing the SNP density for
GLMMs and NLMMs. This section may be skipped by the reader solely interested in applying
the macro. However, these issues may be of interest to investigators trying to implement other
flexible random effects densities in standard software.

As discussed previously, to obtain the maximum likelihood parameter estimator, we must be
able to approximate the contribution to the likelihood from each subject, £;(6,Y;), where

Ei(anz‘):/H{fymzi(yz’j\zi;B»Maﬂﬂ?z‘j)}gzi(zi;ﬁ)dzi- (6)
j=1

We have found traditional numerical integration techniques available are either too compu-
tationally intensive or not appropriate if either fy; 7, of gz, are non-Gaussian. For example,
the first-order approximation (Beal and Sheiner 1988) requires that the conditional density of
the response given the random effects to be Gaussian. Also, the Laplace approximation does
not perform well if the random effects distribution has multiple modes. Although Gaussian
quadrature can be used to approximate a broad array of integrals, quadrature, as currently
implemented, has limitations as well. Non-adaptive Gaussian quadrature centers the quadra-
ture points at the mean of the random effects and scales them based on the variance of the
random effects. However, the region over which the integrand in Equation 6 contains most
of its mass may not be near the mean of the random effects. Therefore, a large number of
quadrature points may be needed to achieve a reasonable approximation. When gz, is a SNP
density, we have found the number of quadrature points needed is usually too large to be
computationally feasible for ¢ > 2.

To reduce the number of quadrature points needed to obtain a reasonable approximation,
Liu and Pierce (1994) suggest centering the quadrature points at the mode of the integrand
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and scaling by the inverse of the negative Hessian matrix. Because, in the context of random
effects models, both the mode and Hessian depend on the values of the fixed effect parameters,
Pinheiro and Bates (1995) suggest the following iterative algorithm to obtain estimates for 6.
Let ZZ 1 be the empirical Bayes estimate of Z; given the current (i.e., kth) estimates of 3, u,
r, and &, ﬁ(k 0k () and é (k). respectively, and C;’Zk be the estimated covariance matrix
of th. That is,

Zi,k = arg max,, H {fymzi (yij|zi§ B(k)> ﬂ(k),f(k)7 l‘ij)} gZi(zi§ g(k))- (7)
j=1
1/2

We can write Z; = Zl E+ G U; in terms of the random variable U; and then perform a
change of variable to have the mtegral in Equation 6 taken with respect to U;:

2 Y| 2 \Yij k ik Uza y M, Ty Tig ) 0 97\ Lk Zkzuz, Us -
i(0,Y7) \G/| fjuz + G2 8 )Y 92,(Ziw + CliPui €)d

This integral can then be approximated by a weighted ¢-dimensional sum such that

Pq(u;) W
¢q(ui)d '

/|G1/2|H Fyijiz. (szIsz+G1/2u1;ﬁ,uvr,fcij)}gz (Zig + Gjluiz )

T T
~ Z Z 1/2| H {sz]IZ (sz|sz +G1/2uk,ﬁ,,u,7“ xu)}gz (Zik +G1122u7;,§)><
ki=1  kg=1

j=1

{bq(ur)}™ IIU%H

where uj = (ug,,. .. ,ukq)T and uy, and wy,, by =1,...,T,1=1,...,¢, are the abscissas and
weights, respectively, for the one-dimensional Gaussain quadrature rule based on the standard
normal kernel with T" quadrature points.

Using this approximation to Equation 6, we can then maximize Equation 4 with respect to
B, w, r, and £ to obtain S+ p*+D) a1 and R respectively. Typically one would
iterate, until convergence, between finding the empirical Bayes estimates to re-approximate
Equation 6, and then updating 3, u, r, and £. In many applications, the number of quadrature
points needed for an accurate approximation is small; and, therefore, the dimension of the
integral can be large and still be computationally feasible (see Schilling and Bock 2005, who
considered numerical integration up to 8 dimensions). We have described (adaptive) Gaussian
quadrature in the context of a single-level random effect, but the approach may be extended
to multi-level models (Rabe-Hesketh, Skrondal, and Pickles 2005). Additional efficiency may
be gained by using spherical quadrature rules although those are not considered as part of
SNP_NLMM.

However, adaptive quadrature requires m maximizations at each iteration because the integral
in Equation 6 is re-centered and re-scaled about the updated empirical Bayes estimates at each
iteration. The maximizations can be too time consuming if gz, is sufficiently complex as is
the case for the SNP density. Adaptive importance sampling, another numerical integration
technique which is a stochastic version of adaptive Gaussian quadrature, also requires m
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maximizations at each iteration and, therefore, suffers from the same limitation (Pinheiro
and Bates 1995). A novelty of SNP_NLMM is the computational approach to approximate
Equation 6 when gz, (-) is a flexible and complex random effects density, which we describe
below.

Heuristically, we would like to center and scale the integral one time at something reasonably
close to Z;, the true value of the random effect, to avoid m maximizations at each iteration.
As suggested in Vock et al. (2012), we propose to center and scale the quadrature points at
the empirical Bayes estimates and their estimated variance from assuming Gaussian random
effects. The approach advocated here is similar to the computational approach taken by
Rizopoulos (2012) in the context of joint longitudinal-survival models. Rizopoulos (2012)
suggests using Gaussian quadrature to approximate the integral over the random effects in the
joint model with quadrature points centered and scaled at the empirical Bayes estimates and
estimated variance obtained from the model of only the longitudinal data. In our application,
we need to be careful as Z; is assumed to have mean zero when Gaussian random effects
are assumed, but this need not be the case for a flexible random effects density, such as the
SNP density. Let lA)Z-,G be the empirical Bayes estimate of b;, the centered random effect, from
assuming Gaussian random effects and (A?Z-,G the estimated variance of the empirical Bayes
estimates.

Then we have

u+ RZ; = big + G5U; (8)
Zi = R V(b — u) + R'GAU;,

which we can substitute into Equation 6 and take the integral with respect to U;:
i(0,Y3) /\R 1Gml H [fy”|z {ym!R (bic — ) + R~ 1G1/2uz;5,u7r, wa x (9
9z, {R— (hic — ) + R~ 1(;1/2%;5} du;.

As before we can now use Gaussian quadrature to approximate Equation 9; that is,

[ H [ sl B = )+ B s

07 (B by~ )+ B s} O g,

$q(ui)
T T
12 1/2
DD /|H{qulZ (yigl R~ (bic — ) + R'G, /G“k’/”’“’mij)}x
ki=1 k=1 =

92, (R (big — ) + R GG €){gu 1Hwkl

SNP_NLMM uses the NLMIXED procedure in SAS for numerical integration and optimization of
the likelihood. Because NLMIXED does not allow the user to center the quadrature points at
arbitrary values and does not permit non-Gaussian random effects, we must creatively use

11
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programming statements to force NLMIXED to fit the GLMM or NLMM with the SNP density
using the integration strategy above. More specifically, if we consider

q|R™ 1G1/2|1_[ [f {yw|R (lG w)+ R~ 1G/ul;ﬁ,u,r,xij}} X

92, (R bi — 1) + R1G G €6 (us) } !

to be the conditional “density” of the response given the random effect u; (which one can
specify using the general log likelihood function in the model statement of the NLMIXED
procedure), specify a standard g-dimensional normal for the random effects density, and use
the noad option to avoid adaptive quadrature, then the NLMIXED procedure will fit the desired
GLMM or NLMM with the SNP random effects density using our prosed method for numerical
integration. These steps use the “likelihood reformulation” technique discussed by Liu and
Yu (2008) to allow for non-Gaussian random effects densities. Overall, we have found that
the above strategy provides an excellent approximation of the integral while being far less
computationally demanding than either non-adaptive or adaptive Gaussian quadrature.

5. GLMM example: Toenail infection

As a motivating example, we consider data from a multicenter randomized trial on the effect
of two oral treatments on dermatophyte onychonycosis, a toenail infection. Investigators
measured the degree of onycholysis, a measure of the separation between the nail plate and
nail bed, at baseline and 4, 12, 24, 36, and 48 weeks after starting therapy. A total of 294
patients were enrolled in the study and had a total of 1908 measurements taken. These data
have been previously analyzed by DeBacker, Vroey, Lesaffre, Scheys, and Keyser (1998) and
Lesaffre and Spiessens (2001).

One question of interest to the investigators was whether there was a difference in the propor-
tion of patients with moderate to severe onycholysis over time between the two treatments.
Let Y;; be the indicator if patient 4, ¢ = 1,...,m, has moderate or severe onycholysis at the
Jth measurement, j = 1,...,n;. Similarly define ¢;; to be the time since subject i started
treatment at jth measurement and a; to be the indicator for whether or not subject ¢ was on
treatment A.

In keeping with previous analyses, we posit that conditioned on a subject-specific intercept

bi;, Yi; are independent and follow a logistic regression model with linear predictor by; +
Bitij + Pea; + B3tija;. That is, we assume

Y;j’bh' “'\Cll bernoulli(pij) (10)
pij = exp(bi; + Pitij + Paa; + Batijai) /{1 + exp(bi; + Pitij + Paa; + Batijai)},

where by; are independent across ¢ and can be written as b;; = p + RZ; for constants p
and R. Previous research has assumed that the density of Z; is a standard one-dimensional
normal density (Lesaffre and Spiessens 2001); however, we assume that the density of Z; can
be approximated by the SNP representation with K = 0, 1, and 2 (subsequent analysis with
larger values of K, not shown, did not improve the model fit).

The call to SNP_NLMM is given as
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/#SNP_NLMM(dataset = toenail, subject = id, response =y,
prog_stat = Jstr(eta = b_1 + betal * time + beta2 * trt +
beta3 * trt * time; p = exp(eta) / (1 + exp(eta));),
log_cond_dens = Jstr(y * log(p) + (1 - y) * log(l - p)),
start_value= Jstr(mu_1 = -0.5566 betal = -0.1703 beta2 = -0.0006
beta3 = -0.0672 r_11 = 1),
q =1, Kmax = 2, all_ K 1, info_crit = "BIC",
quad_pt_KO = 31, quad_pt_K1 = 31, grid_pt_K1 = 9, max_K1 = 2,
quad_pt_K2 = 31, grid_pt_K2 = 9, max_K2 = 4);

In the code, t;; and a; are denoted by the variable names time and trt with the rest of the
variable names self-explanatory. We note that the prog_stat command defines the linear pre-
dictor, eta, and the conditional probability, p, of having moderate or severe toenail infection
given the subject-specific intercept, b_1. The starting values were chosen based on the logistic
regression model that does not account for within-person correlation. The inputs Kmax = 2
and all_K = 1 indicate that we are considering the SNP density with K = 0, 1, and 2, and
the value of K will be selected by BIC (info_crit = "BIC"). For both K =1 and K = 2
we use a grid of 9 in each dimension of £ in the grid search for starting values (grid_pt_K1
9, grid_pt_K2 = 9). The number of quadrature points, quad_pt_KO = 31, quad_pt_K1
31, quad_pt_K2 = 31 were selected by first letting NLMIXED select the number of quadrature
points adaptively (that is, quad_pt_KO = 0). The macro was re-run with larger number of
quadrature points to ensure that the maximum likelihood estimates were not sensitive to the
number of quadrature points.

The fit statistics and parameter estimates from fitting the model implied by Equation 10 are
given as part of the standard output of SNP_NLMM and are re-printed below. We note that
expect_bl and var_bl refer to E(b;) and VAR(b;), respectively; the remaining parameter
names of interest are specified by the user in the prog_stat statement, above.

Information Criteria
By Degree of Flexibility

Criteria Value_KO Value_K1 Value_K2
-2 Log Likelihood 1250.8 1250.7 1226.0
AIC (smaller is better) 1260.8 1262.7 1240.0
AICC (smaller is better) 1260.8 1262.8 1240.0
BIC (smaller is better) 1279.2 1284.8 1265.8

Parameter Estimates
By Degree of Flexibility

Parameter Est_KO StdErr_KO Est_K1 StdErr_K1 Est_K2 StdErr_K2

expect_bl -1.62 0.43 -1.68 0.52 -2.17 0.68
var_bl 16.05 3.03 16.47 3.68 16.17 6.09
betal -0.39 0.044 -0.39 0.045 -0.38 0.045

beta2 -0.16 0.58 -0.17 0.59 0.42 0.46

13
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K=2 Estimated Random Effects Density
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Figure 1: Estimated density of the random intercept from Equation 10 with K = 2 concerning
the toenail infection study.

beta3 -0.14 0.068 -0.14 0.068 -0.13 0.070
mu_1 -1.62 0.43 0.70 4.53 0.17 0.46
r_11 4.01 0.38 4.36 1.36 2.46 0.46
xi_1 . . -1.28 0.56 -0.58 0.062
xi_2 . . . . -0.70 0.062

The parameter estimates are similar across all values of K, although the estimated mean of
the random intercept is approximately one standard error smaller for K = 2. The estimate
for 2 is also considerably larger for K = 2 but remains non-significant. Of interest to the
investigators was the value of (3, the interaction between treatment and time, which remained
boarder-line significant across each of the three models.

Each of the information criteria prefer K = 2 which, based on the plot of the estimated
density given in Figure 1, indicates a strong departure from normality and the presence of
two groups. One group of subjects with the mode of by; at approximately —5 has a very low
probability of moderate to severe onycholysis across all time points. The predicted probability
of having moderate or severe onycholysis at each of the scheduled visit times is less than 1.1
percent for both treatment groups. This mode suggests that those who enter the trial without
moderate to severe infection have very little probability of transitioning to a more infected
state. However, those in the second group with the mode at approximately 1 experience a clear
progression through the disease. The estimated probability of having significant onycholysis
at weeks 0, 4, 12, 24, 36, and 48 for a patient taking treatment A with by; = 1 is 0.81, 0.71,
0.47, 0.16, 0.04, and 0.01, respectively.

Fitting a flexible random effects model not only alters estimates of parameters such as E(by;),
but perhaps more importantly improves our understanding of the underlying data generating
process and disease progression.
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6. NLMM example: Pharmacokinetics of argatroban

As an example of a NLMM, we consider a pharmacokinetic study of argatroban, an anti-
coagulant, reported in Davidian and Giltinan (1995, Chapter 9.5) and introduced in Section 2.
In this study, 36 patients received a four-hour intravenous infusion of argatroban at one of nine
infusion rates ranging from 1 to 5 pg/kg/min in increments of 0.5 ug/kg/min (four patients at
each infusion rate). A 37th patient had an infusion rate of 4.38 pg/kg/min. The intravenous
concentration of argatroban was recorded at 30, 60, 90, 115, 160, 200, 240, 245, 250, 255,
260, 275, 295, 320, and 360 minutes after starting infusion. Let Y;; and ¢;; be defined as in
Section 2. The concentration profile is assumed to follow the model given by Equation 2.
Let log(Cli) = b1i7 log(Vi) = bgi, and bi = (bh‘,bgi)—r = U + RZZ where Zi = (Zli,Zgi)T,
p = (p1,pu2)", and R is a 2 x 2 lower triangular matrix. We assume that the density of Z;
can be represented by the density given in Equation 5 for K =0, 1, and 2.

The call to SNP_NLMM is given by

/#SNP_NLMM(dataset = arg, subject = indiv, response = conc,
prog_stat = Jstr(cl = exp(b_1); v = exp(b_2);
pred = (dose / cl) * (exp(- cl * (1 - t1) * (time - tinf) / v) -
exp(- cl * (time) / v)); var = (sig ** 2) * (pred ** (2 * gamma));),
log_cond_dens = Jstr(log(l / sqrt(2 * pi * var) *
exp( - 1/ (2 * var) * (conc - pred) ** 2))),
start_value = Jstr(mu_1 = - 5.5 mu_2 = - 2.0 r_11 = 0.374 r_21 = 0.016
r_22 = 0.076 sig = 23.0 gamma = 0.22),
q = 2, Kmax = 2, all_K = 1, info_crit = "BIC", quad_pt_KO = 11,
quad_pt_K1 9, grid_pt_K1 = 9, max_K1 = 5,
quad_pt_K2 = 9, grid_pt_K2 = 7, max_K2 = 9);

In the code above, dose, c1, v, tinf, t1, time, and conc refer to D;, Cl;, Vi, tinf, tijs tig,
and Y;;, where those quantities were defined in Section 2. The prog_stat specifies the mean
and variance of the conditional normal density while log_cond_dens is just the logarithm
of the normal density. The starting values were chosen from fitting a nonlinear model of
the concentration profile with no random effects. As in the preceding example, we consider
models with K =0, 1 and 2 (Kmax = 2, all_K = 1). Following our recommendation given
in Section 3, we used a grid of 9 and 7 points in each dimension of ¢ for K =1 and K = 2,
respectively. The number of quadrature points (quad_pt_KO = 11, quad_pt_K1 = 9, and
quad_pt_K2 = 9) were selected in a similar way as in the example in Section 5.

The fit criteria and parameter estimates from fitting the model implied by Equation 2 assum-
ing K =0, 1, and 2 are given as part of the standard output of the macro and are shown
below. We should note that with only 37 patients it is difficult to make any definitive state-
ments on the joint density of log(Cl;) and log(V;). Nonetheless, all the information criteria
prefer K = 1 which, based on the bivariate density plot given in Figure 2 and as part of
the standard output of the macro, shows strong departure from normality with a group of
patients having a much lower log clearance than the others. Fixed effect parameter estimates
are nearly identical across all K considered although the standard errors are larger for K = 2
indicating that we may be overfitting the data.
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K=1 Estimated Random Effects Density
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Figure 2: Estimated density of the log clearance and volume parameters from Equation 2
with K = 1 concerning the PK/PD study of argatroban.

Information Criteria
By Degree of Flexibility

Criteria Value_KO Value_K1 Value_K2
-2 Log Likelihood 5712.8 5702.5 5698.8
AIC (smaller is better) 5726.8 5720.5 5722.8
AICC (smaller is better) 5727.0 5720.9 5723.4
BIC (smaller is better) 5738.0 5735.0 5742.1

Parameter Estimates
By Degree of Flexibility

Parameter Est_KO StdErr_KO Est_K1 StdErr_K1 Est_K2 StdErr_K2

cov_b1lb2 0.014 0.012 0.018 0.013 0.017 0.013
expect_bl -5.42 0.065 -5.42 0.064 -5.43 0.064
expect_b2 -1.87 0.038 -1.86 0.039 -1.86 0.038
var_bl 0.15 0.036 0.15 0.034 0.15 0.035
var_b2 0.011 0.0075 0.013 0.0078 0.017 0.0089
mu_1 -5.42 0.065 -5.56 0.059 -5.53 0.14
mu_2 -1.87 0.038 -1.86 0.035 -1.75 0.064
r_11 0.39 0.046 0.29 0.032 0.29 0.031
r_21 0.035 0.030 0.070 0.028 0.070 0.031
r_22 0.10 0.035 0.087 0.028 0.11 0.027
sig 11.21 3.79 11.72 3.65 11.21 3.43

gamma 0.34 0.056 0.33 0.052 0.34 0.051
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xi_1 . . -0.34 0.13 0.070 0.22
xi_2 . . -0.82 0.20 0.62 0.32
xi_3 . . . . -0.56 0.19
xi_4 . . . . -0.12 0.44
xi_5 . . . . -0.59 0.27

7. Conclusion

For many applications of GLMMs and NLMMs, there is little subject area knowledge that
would justify assuming a priori that the random effects are Gaussian. Given that fixed
effect parameter estimators will be inconsistent, biased, and inefficient if the random effects
density is misspecified, the one advantage to assuming Gaussian random effects density was
computational ease. However, advances in computation and the SNP_NLMM macro allow flexible
random effect densities to be easily and quickly implemented. The total computation time
for all models in the toenail infection example is less than 30 seconds. When ¢ = 2 as in the
PK/PD study of argatroban, the grid search for K = 2 can be somewhat time consuming
depending on the fineness of the grid and computing speed. But optimization takes less than
a couple of minutes for all three models. In addition to improved inference of parameter
estimators, one gains an improved understanding of the data generating process which can be
crucial for scientific understanding. We hope that the SNP_NLMM macro allows flexible random
effect densities to be fit routinely for GLMMs and NLMMs.
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